首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the absence of a Canadian national water policy, Alberta has developed a long-term water management plan called the Water for Life strategy. Because irrigation activities are so prominent in Alberta, accounting for 71% of the province's surface water use, successful implementation of this strategy will depend largely on the participation of the irrigation sector. Through a survey of irrigation officials, this study explores irrigators’ views on the likelihood of attaining one of the strategy's main goals—a 30% increase in water use efficiency by 2015 over 2005 levels. Irrigators’ views vary significantly as to the extent and means by which the 30% goal can be achieved and their views reflect the heterogeneity of farming conditions within the area. Hence, instead of a broad-based approach, implementation of the strategy will require research into developing economic instruments that can be effective under local conditions. This involves gaining a thorough understanding of the variability of factors that influence farmers’ decisions while being mindful that, as this study discovers, economic instruments as a concept have little support in the irrigation industry.  相似文献   

2.
Using group-level and household-level data collected in 2006-2007 in two districts in Hubei Province of China, we investigate social capital and water source variables and assess the factors influencing the formation of a sub-group, which is a sub-set of the original water user group (WUG). We use a probit model and regression analysis to examine the impact of sub-group formation on the adoption of alternate wetting and drying (AWD). Results show that when social capital is strong, farmers tend not to form sub-groups because strong social capital can prevent overuse of water. However, when social capital in a group is weak, farmers need to avoid overuse of water by forming a sub-group. Therefore, if farmers in the group of weak social capital are physically constrained and thus fail to form a sub-group, overuse of water is more likely. Such failure occurs when the existence of many water sources physically prevents farmers from forming a sub-group. We also found that when social capital is strong, farmers adopt the AWD practice even without forming a sub-group.  相似文献   

3.
In the last decade irrigation districts in the Ebro Valley of Spain have started to use database applications to enhance their management operations. Such applications often put more emphasis on administrative issues than on water management issues. A new irrigation district management software called “Ador” is presented in this paper. This database application has been designed to overcome limitations identified in an analysis of the software used in the study area. Ador can be used in irrigation districts independently of the type of irrigation system (surface, sprinkler or trickle) and the type of irrigation distribution network (open channel or pressurised). It can even be used in irrigation districts combining different types of irrigation systems and different types of irrigation distribution networks. The software can be used with minimum district information. The goals are to manage detailed information about district water management and to promote better on-farm irrigation practices. Ador is currently used to enhance management of 62 irrigation districts accounting for some 173,000 hectares in the Ebro Valley.  相似文献   

4.
The non-uniformity of soils, weather, fields, cropping pattern and canal systems in most surface irrigation schemes makes irrigation water management complex, but optimum performance is important particularly in irrigation schemes with limited water supply. This paper focuses on the performance of irrigation water management during the area and water allocation with a case study of an irrigation scheme in the semi-arid region of India. Often the irrigation managers or authorities of these heterogeneous irrigation schemes also need to deal with different allocation rules. The allocation plans and the corresponding water delivery schedules during the allocation process were estimated with the help of a simulation–optimisation model for different allocation rules based on cropping distributions (free and fixed), water distributions (free and fixed-area proportionate), irrigation depth (full, fixed depth and variable depth irrigation) and irrigation interval (from 14 to 35 days). The performance measures of productivity (in terms of net benefits and area irrigated), equity (in water distribution), adequacy and excess were assessed for these different allocation plans and schedules. These were further compared with the performance measures of the existing rule (fixed depth irrigation at a fixed interval). The analysis revealed that these performance measures are in some cases complimentary and in other cases conflicting with each other. Therefore, it would be appropriate for the irrigation managers to understand fully the nature of the variation in performance measures for different allocation rules prior to deciding the allocation plans for the irrigation scheme.  相似文献   

5.
This paper analyses the efficiency with which water is used in small-scale irrigation schemes in North-West Province in South Africa and studies its determinants. In the study area, small-scale irrigation schemes play an important role in rural development, but the increasing pressure on water resources and the approaching introduction of water charges raise the concern for more efficient water use. With the data envelopment analysis (DEA) techniques used to compute farm-level technical efficiency measures and sub-vector efficiencies for water use, it was shown that under constant returns to scale (CRS) and variable returns to scale (VRS) specification, substantial technical inefficiencies, of 49% and 16%, respectively, exist among farmers. The sub-vector efficiencies for water proved to be even lower, indicating that if farmers became more efficient using the technology currently available, it would be possible to reallocate a fraction of the irrigation water to other water demands without threatening the role of small-scale irrigation. In a second step, Tobit regression techniques were used to examine the relationship between sub-vector efficiency for water and various farm or farmer characteristics. Farm size, landownership, fragmentation, the type of irrigation scheme, crop choice and the irrigation methods applied showed a significant impact on the sub-vector efficiency for water. Such information is valuable for extension services and policy makers since it can help to guide policies towards increased efficiency.  相似文献   

6.
Irrigation of pasture enables the intensification of land use, but can also result in increased losses of nitrogen (N) and phosphorus (P). In 2006 an irrigation scheme was introduced into the Kakanui River and Waiareka Creek catchments in North Otago, New Zealand, which has intensified land use, especially dairying. Supplementation of the Waiareka Creek by direct discharge of ‘clean’ irrigation water from a nearby River is practiced to raise the minimum flow. This supplementation is hypothesized to dilute N and P losses associated with increased land use intensification and irrigation return flow. Farm losses of N and P before irrigation were then used as a reference to judge in the Kakanui River, and compare against dilution in the Waiareka Creek, the effectiveness of best management practices (BMPs) to improve water quality in 2010 and 2020. Data for N and P fractions from three sites since the mid 1990s were analysed, and flow adjustments for direct discharge to the Waiareka Creek made. Similar concentrations of N and P fractions in Waiareka Creek before and after irrigation began suggest the current minimum flow of 100 L s−1 is insufficient to improve the nutrient status of the Creek, but does dilute recent intensification, which without dilution would have increased concentrations by 30-400%. In the lower Kakanui catchment, direct discharge does not occur and N and P concentrations increased, while little change occurred in the upper Kakanui catchment. Within each catchment, N and P losses from sheep and beef farms and dairy farms (with and without BMPs) were modelled for 2010 and 2020 and compared against that estimated in 2000. This showed that although substantial decreases could be made by adopting BMPs, the predicted increase in N and P losses (up to 200% by 2020) would require either more rigorous use of existing strategies or additional strategies to improve water quality, over and above dilution which is restricted by a need to minimise the risk of flooding.  相似文献   

7.
The organization of two farmer-managed irrigation systems in the western hills of Nepal is described by examining the ways in which the activities of water allocation, water distribution, maintenance, and resource mobilization are performed. Due to the topography and environment, these two organizations are structured primarily to mobilize the large amount of labor required for maintenance of the intake and canal. Both organizations precisely define each member's water allocation. In one system, water is allocated in proportion to the area of an individual's land holding, while in the other water allocation is by purchased shares. These two cases were used to analyze the importance of the principle of water allocation for expansion of area irrigated and equity of access to irrigation. Evidence from the two systems shows that in this hill environment water allocation by purchased shares provides the individual incentive and an organizational mechanism for efficient development of irrigation resources. Expansion of area irrigated and equity of access to irrigation were found to be greater in the system which allocates water by purchased shares than where water was allocated in proportion to area irrigated.  相似文献   

8.
The importance of farmer participation in system design and management has been emphasized in previous studies. The purpose of this study was to identify the factors affecting farmer participation in irrigation management using survey research. The study was conducted in Doroodzan Dam Irrigation Network in Fars province, Iran. Multistage stratified random sampling was used to collect data from 270 farmers as the research sample. Results reveal that farmers’ attitudes toward participation in irrigation management, attitudes toward personnel of the State Water Authority and the Agricultural Extension Service Centers (AESCs), family size, the problem perception, dependence on the dam for water, and educational background have influenced their participation in irrigation management. By contrast, contact with information sources, animal units, sociability, age and agricultural experience did not affect farmers’ participation. Moreover, based on farmers’ perspectives, unequal water distribution among farms, dissatisfaction with Water Authority operators and high water fees and charges were the main problems and obstacles toward farmer participation in irrigation management.  相似文献   

9.
The reported study aimed at developing an integrated management strategy for irrigation water and fertilizers in case of wheat crop in a sub-tropical sub-humid region. Field experiments were conducted on wheat crop (cultivar Sonalika) during the years 2002–2003, 2003–2004 and 2004–2005. Each experiment included four fertilizer treatments and three irrigation treatments during the wheat growth period. During the experiment, the irrigation treatments considered were I1 = 10% maximum allowable depletion (MAD) of available soil water (ASW); I2 = 40% MAD of ASW; I3 = 60% MAD of ASW. The fertilizer treatments considered in the experiments were F1 = control treatment with N:P2O5:K2O as 0:0:0 kg ha−1, F2 = fertilizer application of N:P2O5:K2O as 80:40:40 kg ha−1; F3 = fertilizer application of N:P2O5:K2O as 120:60:60 kg ha−1 and F4 = fertilizer application of N:P2O5:K2O as 160:80:80 kg ha−1. In this study CERES-wheat crop growth model of the DSSAT v4.0 was used to simulate the growth, development and yield of wheat crop using soil, daily weather and management inputs, to aid farmers and decision makers in developing strategies for effective management of inputs. The results of the investigation revealed that magnitudes of grain yield, straw yield and maximum LAI of wheat crop were higher in low volume high frequency irrigation (I1) than the high volume low frequency irrigation (I3). The grain yield, straw yield and maximum LAI increased with increase in fertilization rate for the wheat crop. The results also revealed that increase in level of fertilization increased water use efficiency (WUE) considerably. However, WUE of the I2 irrigation schedule was comparatively higher than the I1 and I3 irrigation schedules due to higher grain yield per unit use of water. Therefore, irrigation schedule with 40% maximum allowable depletion of available soil water (I2) could safely be maintained during the non-critical stages to save water without sacrificing the crop yield. Increase in level of fertilization increases the WUE but it will cause environmental problem beyond certain limit. The calibrated CERES-wheat model could predict the grain yield, straw yield and maximum LAI of wheat crop with considerable accuracy and therefore can be recommended for decision-making in similar regions.  相似文献   

10.
In many countries today, irrigation systems have been transferred to the water user associations (WUAs). Accordingly, it is believed that the performance of the irrigation systems is dependent on the performance of the WUAs.In this study, the performance of participatory irrigation management (PIM) over time is assessed with regard to the Kestel WUA serving a wide area of Turkey's Aegean coast. Data relating to the WUA is obtained from both the State Hydraulic Works and WUAs’ own records. In addition, two surveys have been carried out with the members of the WUA with an 8-year interval between them. Data have been analyzed within the framework of selected irrigation performance criteria and indicators. The non-parametric Mann-Whitney U test was used to compare the perceptions of the farmers on the WUA at different survey periods. A Logit model was estimated to evaluate the relationship between the irrigation problems and the level of satisfaction from the WUA.The performance of the WUA with the indicators of utility, productivity, sustainability and financial efficiency was found to be positive; while the performance of adequacy was identified as poor. The farmers were generally satisfied of the WUA's operation, with their level of satisfaction improving over time. On the other hand, the farmers were not fully convinced that they had input with the system management. The initial design of the channel system and its maintenance were identified to be the key factors affecting user satisfaction.Overall, the Kestel WUA may be considered a successful example, thus supporting a promising future for PIM. Yet improved control and farmer education is needed for a superior performance of all indicators; and further enhanced farmer participation in management should be achieved in order to raise the level of farmer satisfaction.  相似文献   

11.
A crucial, yet little understood, element in the economic studies of irrigation is the role played by companies who manage the supply of water. Many of these companies are publicly managed as they have the potential to act as monopolists. Possibly as a consequence of their ownership structure, analysts have questioned the economic viability and management of these firms. The case is made that many of these companies do not run profitably, that they rely on government subsidies to survive, that they do not spend enough on maintenance and that they run down their capital base. The purpose in this paper is to specify the measures that allow analysts to examine the financial viability of a publicly owned irrigation management companies and to apply these to a scheme in Vietnam. Of concern and contention in any irrigation scheme is the price that a company should charge for water in order to recover costs in the short-run. It was found that the company under investigation could not operate without subsidies and did run down their assets. It was found that a great disparity exists between what the consumers were charged for water and what the company received for supplying it. To ensure the sustainability of the Irrigation Management Companies in long term, they may have to increase the water fee by 3.75 times the current rate set by the provincial government (US$ 20 per ha).  相似文献   

12.
A field study (1999-2000 to 2001-2002) was carried out to optimize the irrigation frequency and suitable water application methods for cauliflower with a view to increase curd yield (CY) and water use efficiency (WUE). Check Basin (CB), Each Furrow (EF) and Alternate Furrow (AF) methods were tested with three irrigation frequencies depending on the attainment of soil matric potential (Ψm) value at 0.2 m depth as: −0.03 MPa (F1), −0.05 MPa (F2) and −0.07 MPa (F3). Maximum CY was recorded under F1 and decreased by 10.4 and 31.4%, respectively under F2 and F3 frequencies. In contrast, WUE decreased by 9.3% from F3 to F1. Highest CY and WUE obtained under CB followed by EF and AF methods. Furrow application methods saved 12-24% irrigation water over CB method. Maximum soil water stress coefficient (Ks) recorded at curd development stage in comparison to other stages. Both seasonal evapotranspiration (ETa) and yield-moisture stress index (Kys) recorded positive linear relationships with CY. Present study shows a crop response factor of 0.822 for cauliflower. In this region, cauliflower should be irrigated with check basin method at an interval of 8-10 days.  相似文献   

13.
Regulated deficit irrigation (RDI) was applied on field-grown pear-jujube trees in 2005 and 2006 and its effects on crop water-consumption, yield and fruit quality were investigated. Treatments included severe, moderate and low water deficit treatments at bud burst to leafing, flowering to fruit set, fruit growth and fruit maturation stages. Different deficit irrigation levels at different growth stages had significant effects on the fruit yield and quality. Moderate and severe water deficits at bud burst to leafing and fruit maturation stages increased fruit yield by 13.2-31.9% and 9.7-17.5%, respectively. Fruit yield under low water deficit at fruit growth and fruit maturation stages was similar to that of full irrigation (FI) treatment. All water deficit treatments reduced water consumption by 5-18% and saved irrigation water by 13-25% when compared to the FI treatment. During the bud burst to leafing stage, moderate and severe water deficits did not have effect on the fruit quality, but significantly saved irrigation water and increased fruit yield. Low water deficit during the fruit growth stage and low, moderate and severe water deficits during the fruit maturation stage had no significant effect on the fruit weight and fruit volume but reduced fruit water content slightly, which led to much reduced rotten fruit percentage during the post-harvest storage period. Such water deficit treatments also shortened the fruit maturation period by 10-15 d and raised the market price of the fruit. Fruit quality shown as fruit firmness, soluble solid content, sugar/acid ratio and vitamin C (VC) content were all enhanced as a result of deficit irrigation. Our results suggest that RDI should be adopted as a beneficial agricultural practice in the production of pear-jujube fruit.  相似文献   

14.
In the dry areas, water, not land, is the most limiting resource for improved agricultural production. Maximizing water productivity, and not yield per unit of land, is therefore a better strategy for dry farming systems. Under such conditions, more efficient water management techniques must be adopted. Supplemental irrigation (SI) is a highly efficient practice with great potential for increasing agricultural production and improving livelihoods in the dry rainfed areas. In the drier environments, most of the rainwater is lost by evaporation; therefore the rainwater productivity is extremely low. Water harvesting can improve agriculture by directing and concentrating rainwater through runoff to the plants and other beneficial uses. It was found that over 50% of lost water can be recovered at a very little cost. However, socioeconomic and environmental benefits of this practice are far more important than increasing agricultural water productivity. This paper highlights the major research findings regarding improving water productivity in the dry rainfed region of West Asia and North Africa. It shows that substantial and sustainable improvements in water productivity can only be achieved through integrated farm resources management. On-farm water-productive techniques if coupled with improved irrigation management options, better crop selection and appropriate cultural practices, improved genetic make-up, and timely socioeconomic interventions will help to achieve this objective. Conventional water management guidelines should be revised to ensure maximum water productivity instead of land productivity.  相似文献   

15.
The CROPGRO simulation model was calibrated for processing tomato in Southern Italy with a 2002 data set and validated with three independent data sets with acceptable results. Subsequently this model was combined with 53 years of local historical weather data and it was used as a research tool to evaluate the benefits, risks and costs of 23 different interactive irrigation and/or N-management scenarios. Irrigation water was applied (i) on reported dates with 3 and 5 days intervals and application rates of 15 and 25 mm or (ii) with automatic irrigation initiated at residual soil moisture levels in the upper 30 cm of the soil profile of 25, 50, or 75%. Three amount levels of N application (100, 200 and 300 kg ha−1 as ammonium nitrate) were considered. A simple economic analysis, including tomato marketable yield and price, irrigation and nitrogen cost and other fixed production costs, was used to estimate expected net return for each management scenario.  相似文献   

16.
Develi Basin is a semi-arid basin in central Turkey where water sustains both irrigated agriculture and an internationally important wetland, the Sultan Marshes. Agricultural and environmental changes in the Develi Basin have occurred since irrigation management was transferred in 1994 from a state authority (DSI) to irrigation associations (Kovalı and Ağcaaşar IAs). In this paper we evaluate the practices of the IAs using extensive data from interviews with farmers and IA officials, as well as data from reports prepared by DSI and the IAs, using comparisons with case studies reported in the scientific literature. Irrigated areas and surface water use in the Develi Basin showed significant fluctuations from 1995 to 2003. The area allocated to high water-consuming plants increased. Maintenance activities became dependent on fee collection rates. Quality of the irrigation water did not changed significantly. Ground-water levels, flow rates from springs, and water levels in the Sultan Marshes all dropped. Overall analyses indicate that the water requirements of the Sultan Marshes have not been met, while water use for irrigation has been effective but not efficient. To reconcile agricultural and wetland water requirements, a basin-wide approach in water planning is recommended. Amounts of water to be allocated to the IAs and wetlands need to be clearly defined. DSI has to monitor canal maintenance by the IAs more closely, and IAs need to be given more responsibilities for future rehabilitation of the canals. Realistic water pricing, increased reliability of irrigation scheduling, higher on-farm irrigation efficiency, and in the long-term, modernization of the irrigation system need to be considered.  相似文献   

17.
Although spate irrigation systems are risk-prone, they can be an important component for livelihood security in semi-arid areas. Spate uses water (flood water), which upstream users often do not require, as rainfall during these periods is more than sufficient. The use of this flood water for spate irrigation is therefore a good opportunity to convert water with a low opportunity cost to high value water. As more rivers are closing, due to socio-economic and climate changes, spate irrigation may become increasingly relevant in semi-arid areas. Spate irrigation systems pose institutional and technical challenges: collective action is challenged by complex upstream-downstream interactions between users within the system, and the high labour demands for regular reconstruction of temporary diversion weirs and intake structures. This paper describes a spate irrigation system in Makanya village, Tanzania that emerged in response to increased upstream water use. We use three of the four dimensions (hydrological, hydraulic and sociological) of spate irrigation proposed by Van Steenbergen (1997) to assess the Makanya spate irrigation system. The Makanya spate irrigation system has an organisational structure that is similar to the canal irrigation (furrow) committees located upstream, and effectively deals with the institutional demands of managing water in spate irrigation systems. Water allocation is reminiscent to the water sharing arrangements existing in the full irrigation system, which previously was in place at the site and in the high- and midlands of the Makanya catchment and therefore set this system apart from the traditional spate irrigation practice elsewhere. Technically, a major challenge is the reconstruction of the head works after each flood. Another aspect is the changes in the river bed. Flash floods carry sediments that deposit on the fields, raising the elevation of the irrigated land every year and making it increasingly difficult for the river water to enter the plots. Improving system efficiency through modernisation of the diversion and distribution structures in this case is not feasible due to the huge amounts of sediments delivered to the system each year. Instead investments in conjunctive use of groundwater could be the solution because it involves a relatively small intervention, minimises the physical disturbance of the system, and therefore is likely to respect the existing locally developed water management arrangements.  相似文献   

18.
Locating high quality groundwater resources in semi-arid regions with growing population and agricultural development is an expensive undertaking. Simple susceptibility indexing method, based on vulnerability and quality index, can be used to facilitate this application. The GIS technique provides an efficient environment to reach this objective. The contamination susceptibility index was calculated by taking the product of the vulnerability index (VI) and the quality index (QI). The VI index was calculated using DRASTIC method to evaluate the hydrogeological characteristics of the Aquifer. The quality index calculation procedure, based on the water classification, was introduced to evaluate hydrochemical data. The susceptibility indexing method was applied in the Chebba-Mellouleche Aquifer, located in Eastern Tunisia. The results show a clear degradation of the water quality throughout the Aquifer. In addition, the susceptibility indexing map which incorporates hydrogeological and hydrochemical datasets reveals a similarity with areas of high anthropogenic activities. Thus, it is more realistic to estimate the groundwater contamination. The main aim of this study is to give an overview of the drinking and irrigation water quality in relation to the hydrogeological characteristics of the Chebba-Mellouleche Aquifer. This overview can form the basis for further investigations.  相似文献   

19.
After measuring root morphological indices, such as the length, diameter, volume density, surface area and tip number of both living and dead roots on the ridge and slope under alternate furrow irrigation (AFI) and conventional furrow irrigation (CFI, control treatment) using Minirhizotrons, the responses of root morphology and distribution in maize to AFI were analyzed. Results show that root morphological indices of living or dead roots were lower on the ridge than on the slope under AFI, whereas root morphological indices of living or dead roots were higher on the ridge than on the slope under CFI. Compared to CFI, AFI significantly increased root tip number and surface area of fine roots (with the diameter of ≤2.5 × 10−1 mm) and promoted roots to deeper soil on the slope, and then simulated root water uptake. AFI only decreased the grain yield by 0.9%, but increased water use efficiency on seed yield by 8.3%. Thus AFI promoted root growth and metabolism on the slope, increased the effective absorption area of root system and improved water use efficiency without significant reduction of grain yield.  相似文献   

20.
Drip irrigation systems and irrigation strategies like deficit irrigation (DI) and partial root drying (PRD) are potential water saving irrigation systems and strategies. This paper analyses the Serbian farmer's economic incentive to use these water saving systems and strategies instead of the present sprinkler irrigation. The analysis is a partial budgeting analysis, based on irrigation application efficiency from the literature, standard figures for power requirements, pumping efficiency and friction losses for various sources of water and pressure requirements, yields and water use from recent Serbian field experiments, as well as prices and cost structures for potatoes collected in the Belgrade region. The analysis shows that changing the present system and strategy can save a significant amount of water (almost 50%). At the same time, however, irrigation costs are also significantly increased (more than doubled), and the total production costs are increased by 10% (deficit drip irrigation) and 23% (PRD). Increased taxes on water, investment subsidies, increased energy prices, and an increased yield or yield quality may provide incentives for farmers to change to new systems and strategies. The analysis indicates that a 0.80 to 1.97 € m−3 water tax is needed to make deficit drip irrigation and PRD profitable. The socioeconomic cost of providing water for irrigation and the alternative value of saved water are probably not that high. Thus, water taxation may not be a socioeconomic efficient means to improve the irrigation water productivity of Serbian potato production. Drip irrigation and PRD may, however, also increase the yield quality, and a 10-23% quality premium (price increase) is needed to make deficit drip irrigation and PRD profitable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号