首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Irrigation techniques that reduce water applications are increasingly applied in areas with scarce water resources. In this study, the effect of two regulated deficit irrigation (RDI) strategies on peach [Prunus persica (L.) Batsch cv. “Catherine”] performance was studied over three growing seasons. The experimental site was located in Murcia (SE Spain), a Mediterranean region. Two RDI strategies (restricting water applications at stage II of fruit development and postharvest) based on stem water potential (Ψs) thresholds (?1.5 and ?1.8 MPa during fruit growth and ?1.5 and ?2.0 MPa during postharvest) were compared to a fully irrigated control. Soil water content (θv), Ψs, gas exchange parameters, vegetative growth, crop load, yield and fruit quality were determined. RDI treatments showed significantly lower values of θv and Ψs than control trees when irrigation water was restricted, causing reductions in stomatal conductance and photosynthesis rates. Vegetative growth was reduced by RDI, as lower shoot lengths and pruning weights were observed under those treatments when compared to control. However, fruit size and yield were unaffected, and fruit quality was slightly improved by RDI. Water savings from 43 to 65 % were achieved depending on the year and the RDI strategy, and no negative carryover effect was detected during the study period. In conclusion, RDI strategies using Ψs thresholds for scheduling irrigation in mid–late maturing peach trees under Mediterranean conditions are viable options to save water without compromising yield and even improving fruit quality.  相似文献   

2.
A field study on cotton (Gossypium hirsutum L., cv.) was carried out from 2005 to 2008 in the Çukurova Region, Eastern Mediterranean, Turkey. Treatments were designated as I100 full irrigation; DI70, DI50 and DI00 which received 70, 50, and 0% of the irrigation water amount applied in the I100 treatment. The irrigation water amount to be applied to the plots was calculated using cumulative pan evaporation that occurred during the irrigation intervals. The effect of water deficit or water stress on crop yield and some plant growth parameters such as yield response, water use efficiencies, dry matter yield (DM), leaf area index (LAI) as well as on lint quality components was evaluated. The average seasonal evapotranspiration ranged from 287 ± 15 (DI00) to 584 ± 80 mm (I100). Deficit irrigation significantly affected crop yield and all yield components considered in this study. The average seed cotton yield varied from 1369 ± 197 (DI00) to 3397 ± 508 kg ha−1 (I100). The average water use efficiency (WUEET) ranged from 6.0 ± 1.6 (I100) to 4.8 ± 0.9 kg ha−1 mm−1 (DI00), while average irrigation water use efficiency (WUEI) was between 9.4 ± 3.0 (I100) and 14.4 ± 4.8 kg ha−1 mm−1 (DI50). Deficit irrigation increased the harvest index (HI) values from 0.26 ± 0.054 (I100) to 0.32 ± 0.052 kg kg−1 (DI50). Yield response factor (Ky) was determined to be 0.98 based on four-year average. Leaf area index (LAI) and dry matter yields (DM) increased with increasing water use. This study demonstrated that the full irrigated treatment (I100) should be used for semiarid conditions with no water shortage. However, DI70 treatment needs to be considered as a viable alternative for the development of reduced irrigation strategies in semiarid regions where irrigation water supplies are limited.  相似文献   

3.
The effects of mid-summer regulated deficit irrigation (RDI) treatments were investigated on Clementina de Nules citrus trees over three seasons. Water restrictions applied from July, once the June physiological fruit drop had finished, until mid September were compared with a Control treatment irrigated during all the season to match full crop evapotranspiration (ETc). Two degrees of water restrictions were imposed based on previous results also obtained in Clementina de Nules trees ( [Ginestar and Castel, 1996] and [González-Altozano and Castel, 1999]). During the RDI period, deficit irrigation was applied based on given reductions over the ETc, but also taking into account threshold values of midday stem water potential (Ψs) of −1.3 to −1.5 MPa for RDI-1 and of −1.5 to −1.7 MPa for RDI-2. Results showed that water savings achieved in the RDI-2 treatment impaired yield by reducing fruit size. On the contrary, the RDI-1 strategy allowed for 20% water savings, with a reduction in tree growth but without any significant reduction in yield, fruit size nor in the economic return when irrigation was resumed to normal dose about three months before harvest. Water use efficiency (WUE) in the RDI trees was similar or even higher than in Control trees. RDI improved fruit quality increasing total soluble solids (TSS) and titratable acidity (TA). In conclusion, we suggest that the RDI-1 strategy here evaluated can be applied in commercial orchards not only in case of water scarcity, but also as a tool to control vegetative growth improving fruit composition and reducing costs associated with the crop management.  相似文献   

4.
We investigated the long-term effects of different deficit irrigation (DI) options on tree growth, shoot and leaf attributes, yield determinants and water productivity of almond trees (Prunus dulcis, cv. Marta) grown in a semiarid climate in SE Spain. Three partial root-zone drying (PRD) irrigation treatments encompassing a wide range of water restriction (30%, 50% and 70% of full crop requirements, ETc) and a regulated deficit irrigation treatment (RDI, at 50% ETc during kernel-filling) were compared over three consecutive growth seasons (2004–2006) to full irrigation (FI). The results showed that all deficit irrigation treatments have a negative impact on trunk growth parameters. The magnitude of the reduction in trunk growth rate was strongly correlated through a linear relationship with the annual volume of water applied (WA) per tree. Similarly, a significant relationship was found between WA and the increase in crown volume. In contrast, leaf-related attributes and some yield-related parameters (e.g., kernel fraction) were not significantly affected by the irrigation treatments. Except in PRD70, individual kernel weight was significantly reduced in the deficit irrigated treatments. Kernel yield, expressed in percent of the maximum yield observed in the FI treatment, showed a linear decrease with decreasing WA and a slope of 0.43, which implies that a 1% decrease in water application would lead to a reduction of 0.43% in yield. Water productivity increased drastically with the reduction of water application, reaching 123% in the case of PRD30. Overall, our results demonstrate the prevalence of direct and strong links between the intensity of the water restriction under PRD – i.e., the total water supply during the growing season – and the main parameters related to tree growth, yield and water productivity. Noteworthy, the treatments that received similar annual water volumes under contrasted deficit irrigation strategies (i.e., PRD70 and RDI) presented a similar tree performance.  相似文献   

5.
Deficit irrigation after harvest has been proven to be a more profitable strategy for producing loquats due to its effects on promoting earlier flowering and harvest date next season. To determine water savings which most advance flowering and harvest dates, an experiment was established to compare phenology, fruit quality and yield in ‘Algerie’ loquats over two consecutive seasons. In this experiment some trees were programmed to receive 50%, 25% or 0% of the water applied to controls (RDI50%, RDI25%, and RDI0%, respectively) from mid-June to the end of July (6 weeks). Fully irrigated trees acted as first controls while trees undergoing previously tested postharvest deficit irrigation (25% of water applied to controls; RDILong) from early June up to the end of August (13 weeks of RDI total) acted as second controls. All deficit irrigation treatments promoted earlier flowering when compared to fully irrigated trees; the greatest advancement in full bloom date (27 days) was achieved with severe short term RDI (RDI0% and RDI25%). The trees suffering an extended period of water stress advanced full bloom date but to a lesser extent (13 and 18 days; 2004/2005 and 2005/2006, respectively). Earlier bloom derived in an earlier harvest date without detrimental effects on fruit quality and productivity. In this regard, the most severe RDI (RDI0%) advanced mean harvest date the most (7 and 9 days, depending on the season), and increased the percentage of precocious yield to the highest extent. Productivity was not diminished by reduced irrigation in either season. Fruit size and grading was enhanced thanks to RDI in both seasons. Earliness and better fruit class distribution under RDI also improved fruit value and gross revenue enabling farmers both to increase earning and economize on water.  相似文献   

6.
‘Chok Anan’ mangoes are mainly produced in the northern part of Thailand for the domestic fresh market and small scale processing. It is appreciated for its light to bright yellow color and its sweet taste. Most of the fruit development of on-season mango fruits takes place during the dry season and farmers have to irrigate mango trees to ensure high yields and good quality. Meanwhile, climate changes and expanding land use in horticulture have increased the pressure on water resources. Therefore research aims on the development of crop specific and water-saving irrigation techniques without detrimentally affecting crop productivity.The aim of this study was to assess the response of mango trees to varying amounts of available water. Influence of irrigation, rainfall, fruit set, retention rate and alternate bearing were considered as the fruit yield varies considerably during the growing seasons. Yield response and fruit size distribution were measured and WUE was determined for partial rootzone drying (PRD), regulated deficit irrigation (RDI) and irrigated control trees.One hundred ninety-six mango trees were organized in a randomized block design consisting of four repetitive blocks, subdivided into eight fields. Four irrigation treatments have been evaluated with respect to mango yield and fruit quality: (a) control (CO = 100% of ETc), (b) (RDI = 50% of ETc), (c) (PRD = 50% of ETc, applied to alternating sides of the root system) and (d) no irrigation (NI).Over four years, the average yield in the different irrigation treatments was 83.35 kg/tree (CO), 80.16 kg/tree (RDI), 80.85 kg/tree (PRD) and 66.1 kg/tree (NI). Water use efficiency (WUE) calculated as yield per volume of irrigation water was always significantly higher in the deficit irrigation treatments as compared to the control. It turned out that in normal years the yields of the two deficit irrigation treatments (RDI and PRD) do not differ significantly, while in a dry year yield under PRD is higher than under RDI and in a year with early rainfall, RDI yields more than PRD. In all years PRD irrigated mangoes had a bigger average fruit size and a more favorable fruit size distribution.It was concluded that deficit irrigation strategies can save considerable amounts of water without affecting the yield to a large extend, possibly increasing the average fruit weight, apparently without negative long term effects.  相似文献   

7.
The aim of this study was to quantify and compare the effects of two different deficit irrigation (DI) strategies (regulated deficit irrigation, or RDI, and partial rootzone drying, PRD) on almond (Prunus dulcis (Mill.) D.A. Webb) fruit growth and quality. Five irrigation treatments, ranging from moderate to severe water restriction, were applied: (i) full irrigation (FI), irrigated to satisfy the maximum crop water requirements (ETc); (ii) regulated deficit irrigation (RDI), receiving 50% of ETc during the kernel-filling stage and at 100% ETc throughout the remaining periods; and three PRD treatments – PRD70, PRD50 and PRD30 – irrigated at 70%, 50% and 30% ETc, respectively, during the whole growth season. The DI treatments did not affect the overall fruit growth pattern compared to the FI treatment, but they had a negative impact on the final kernel dry weight for the most stressed treatments. The allocation of water to the different components of the fruit, characterized by the fresh weight ratio of kernel to fruit, appeared to be the process most clearly affected by DI. Attributes of the kernel chemical composition (lipid, protein, sugar and organic acid contents) were not negatively affected by the intensity of water deprivation. Overall, our results indicated that PRD did not present a clear advantage (or disadvantage) over RDI with regard to almond fruit growth and quality.  相似文献   

8.
The need for sophisticated irrigation strategies in fruit tree orchards has led to an increasing interest in reliable and robust sensor technology that allows automatic and continuous recording of the water stress of trees under field conditions. In this work we have evaluated the potential of the leaf patch clamp pressure (LPCP) probe for monitoring water stress in a 4-year-old ‘Arbequina’ hedgerow olive orchard with 1667 trees ha−1. The leaf patch output pressure (Pp) measured by the LPCP probe is inversely correlated with the leaf turgor pressure (>50 kPa). Measurements of Pp were made over the entire irrigation season of 2010 (April to November) on control trees, irrigated up to 100% of the crop water needs (ETc), and on trees under two regulated deficit irrigation (RDI) strategies. The 60RDI trees received 59.2% of ETc and the 30RDI trees received 29.4% of ETc. In the case of the RDI trees the irrigation amounts were particularly low during July and August, when the trees are less sensitive to water stress. At severe water stress levels (values of stem water potential dropped below ca. −1.70 MPa; turgor pressure < 50 kPa) half-inversed or completely inversed diurnal Pp curves were observed. Reason for these phenomena is the accumulation of air in the leaves. These phenomena were reversible. Normal diurnal Pp profiles were recorded within a few days after rewatering, the number depending on the level of water stress previously reached. This indicates re-establishment of turgescence of the leaf cells. Crucial information about severe water stress was derived from the inversed diurnal Pp curves. In addition Pp values measured on representative trees of all treatments were compared with balancing pressure (Pb) values recorded with a pressure chamber on leaves taken from the same trees or neighbored trees exposed to the same irrigation strategies. Concomitant diurnal Pb measurements were performed in June and September, i.e. before and after the period of great water stress subjected to RDI trees. Results showed close relationships between Pp and Pb, suggesting that the pressure chamber measures relative turgor pressure changes as the LPCP probe. Therefore the probe seems to be an advantageous alternative to the pressure chamber for monitoring tree water status in hedgerow olive tree orchards.  相似文献   

9.
A field study was carried out in order to determine the effect of deficit irrigation regimes on grain yield and seasonal evapotranspiration of safflower (Carthamus tinctorius L.) in Thrace Region of Turkey. The field trials were conducted on a loam Entisol soil, on Dincer, the most popular variety in the research area. A randomised complete block design with three replications was used. Combination of four well-known growth stages of the plant, namely vegetative (Va), late vegetative (Vb), flowering (F) and yield formation (Y) were considered to form a total of 16 (including rain fed) irrigation treatments. The effect of irrigation and water stress at any stage of development on grain yield per hectare and 1000 kernels weight was evaluated. Results showed that safflower was significantly affected by water stress during the sensitive late vegetative stage. The highest yield was obtained in VaVbFY treatment. Seasonal irrigation water use and evapotranspiration were 501 and 721 mm, respectively, for the non-stressed treatment. Safflower grain yield of this treatment was 5.22 Mg ha−1 and weight of 1000 kernels was 55 g. The seasonal yield-water response factor value was 0.87. The total water use efficiency was 7.2 kg ha−1 mm−1. Irrigation schedule of the non-stressed treatment may be as follows: the first irrigation is at the vegetative stage, when after 40-50 days from sowing/elongation and branching stage, that is the end of May; the second irrigation is at the late vegetative stage, after 70-80 days from sowing/heading stage, that is in the middle of June; the third irrigation is at the flowering stage, approximately 50% level, that is the first half of July; and the fourth irrigation is at the yield formation stage, seed filling, that is the last week of July.  相似文献   

10.
The successful application of postharvest regulated deficit irrigation (RDI) over ten consecutive years (from season 1999/2000 to season 2007/2008) confirms the sustainability of this strategy for producing ‘Algerie’ loquat. Postharvest RDI consisting in a reduction of watering (between 45 and 80% depending on the season) from early June until the end of August, improved loquat profitability by increasing fruit value and by reducing water consumption with respect to fully irrigated trees (control). The increase in fruit value in RDI trees was due to a consistent improvement in harvest earliness as a result of an earlier blooming. Water savings of around 20% did not diminish yield nor fruit quality. Water use efficiency in RDI trees rose by over 30%. Water productivity reached 9.5 € m−3 of water applied in RDI trees versus 6.6 € m−3 in control trees. The most noticeable effect of RDI on vegetative growth was a significant and progressive decline in trunk growth. The canopy volume seems to be strongly influenced by pruning and no significant effects were detected in this parameter. Our results confirm the suitability of RDI in loquat and the economic benefits of saving water during the summer.  相似文献   

11.
During four growing seasons, 10-year-old apricot trees (Prunus armeniaca L., cv. ‘Búlida’) were submitted to three different drip irrigation regimes: (1) a control treatment, irrigated at 100% of seasonal crop evapotranspiration (ETc), (2) a continuous deficit irrigation (DI) treatment, irrigated at 50% of the control treatment, and (3) a regulated deficit irrigation (RDI) treatment, irrigated at 100% of ETc during the critical periods, which correspond to stage III of fruit growth and 2 months after harvest (early postharvest), and at 25% of ETc during the rest of the non-critical periods in the first two growing seasons and at 40% of ETc in the third and fourth. Soil–plant–water relation parameters were sensitive to the water deficits applied, which caused reductions in leaf and soil water potentials. The longer and severer deficits of the RDI treatment decreased fruit yield in the first two seasons. The RDI treatment pointed to two threshold values that defined the level at which both plant growth and yield were negatively affected with respect to the control treatment: (1) a predawn leaf water potential of around −0.5 MPa during the critical periods, and (2) a 22% drop in irrigation water. The total yield obtained in the DI treatment was significantly reduced in all the years studied due to the lower number of fruits per tree. No changes in the physical characteristics of fruits were observed at harvest. RDI can be considered a useful strategy in semiarid areas with limited water resources.  相似文献   

12.
Saline water has been included as an important substitutable resource for fresh water in agricultural irrigation in many fresh water scarce regions. In order to make good use of saline water for agricultural irrigation in North China, a semi-humid area, a 3-year field experiment was carried out to study the possibility of using saline water for supplement irrigation of cucumber. Saline water was applied via mulched drip irrigation. The average electrical conductivity of irrigation water (ECiw) was 1.1, 2.2, 2.9, 3.5 and 4.2 dS/m in 2003 and 2004, and 1.1, 2.2, 3.5, 4.2 and 4.9 dS/m in 2005. Throughout cucumber-growing season, the soil matric potential at 0.2 m depth immediately under drip emitter was kept higher than −20 kPa and saline water was applied after cucumber seedling stage. The experimental results revealed that cucumber fruit number per plant and yield decreased by 5.7% per unit increase in ECiw. The maximum yield loss was around 25% for ECiw of 4.9 dS/m, compared with 1.1 dS/m. Cucumber seasonal accumulative water use decreased linearly over the range of 1.5-6.9% per unit increase in ECiw. As to the average root zone ECe (electrical conductivity of saturated paste extract), cucumber yield and water use decreased by 10.8 and 10.3% for each unit of ECe increase in the root zone (within 40 cm away from emitter and 40 cm depths), respectively. After 3 years irrigation with saline water, there was no obvious tendency for ECe to increase in the soil profile of 0-90 cm depths. So in North China, or similar semi-humid area, when there is no enough fresh water for irrigation, saline water up to 4.9 dS/m can be used to irrigate field culture cucumbers at the expense of some yield loss.  相似文献   

13.
The effects of regulated deficit irrigation (RDI) and crop load on Japanese plum were investigated. RDI applied during phase II of fruit growth and post-harvest was compared with irrigation to match full crop evapotranspiration. Each irrigation treatment was thinned to a commercial crop load (described as medium) and to approximately 40% less than the commercial practice (described as low). The RDI strategy allowed for 30% water savings, increasing tree water use efficiency, with minimal effect on crop yield and fruit growth providing that plant water stress during the fruit growth period was low (stem water potential > −1.5 MPa), trees could recover optimum water status well before harvest, and crop load was low. However, the economic return, calculated from fruit weight distribution by commercial categories, was more affected by RDI than yield. The combination of medium crop load and RDI shifted fruit mass distribution towards the low value categories. This lead to similar or even higher economic returns in the RDI treatment with low crop level than with the medium one. In addition, since both, low crop level and RDI, increased fruit total soluble solids (TSS) concentration, fruit under RDI and low crop levels had the highest values of TSS.  相似文献   

14.
A field study was carried out to determine the effects of water stress imposed at different development stages on grain yield, seasonal evapotranspiration, crop-water relationships, yield response to water and water use efficiency of safflower (Carthamus tinctorius L.) for winter and summer sowing. The field trials were conducted on a loam Entisol soil in Thrace Region in Turkey, using Dincer, the most popular safflower variety in the research area. A randomised complete block design with three replications was used. Three known growth stages of the plant were considered and a total of 8 (including rainfed) irrigation treatments were applied. The effect of irrigation or water stress at any stage of development on grain yield per hectare and 1000 kernel weight, was evaluated. Results of this study showed that safflower was significantly affected by water shortage in the soil profile due to omitted irrigation during the sensitive vegetative stage. The highest yield was observed in the fully irrigated control and was higher for winter sowing than for summer sowing. Evapotranspiration calculated for non-stressed production was 728 and 673 mm for winter and summer sowing, respectively. Safflower grain yield of the fully irrigated treatments was 4.05 and 3.74 t ha−1 for winter and summer season, respectively. The seasonal yield response factor was 0.97 and 0.81 for winter and summer sowing, respectively. The highest total water use efficiency was obtained in the treatment irrigated only at vegetative stage while the lowest value was observed when the crop was irrigated only at yield stage. As conclusions: (i) winter sowing is suggested; (ii) if deficit irrigation is to apply at only one or two stages, Y stage or Y and F stages should be omitted, respectively.  相似文献   

15.
The reduction in agricultural water use in areas of scarce supplies can release significant amounts of water for other uses. As improvements in irrigation systems and management have been widely adopted by fruit tree growers already, there is a need to explore the potential for reducing irrigation requirements via deficit irrigation (DI). It is also important to quantify to what extent the reduction in applied water through DI is translated into net water savings via tree evapotranspiration (ET) reduction. An experiment was conducted in a commercial pistachio orchard in Madera, CA, where a regulated deficit irrigation (RDI) program was applied to a 32.3-ha block, while another block of the same size was fully irrigated (FI). Four trees were instrumented with six neutron probe access tubes each, in the two treatments and the soil water balance method was used to determine tree ET. Seasonal irrigation water in FI, applied through a full-coverage microsprinkler system, amounted to 842 mm, while only 669 mm were applied in RDI. Seasonal ET in FI was 1024 mm, of which 308 mm were computed as evaporation from soil (Es). In RDI, seasonal ET was reduced to 784 mm with 288 mm as Es. The reduction in applied water during the deficit period amounted to 147 mm. The ET of RDI during the deficit period was also reduced relative to that of FI by 133 mm, which represented 33% of the ET of FI during the deficit irrigation period. There was an additional ET reduction in RDI of about 100 mm that occurred in the post-deficit period.  相似文献   

16.
Precision irrigation in grapevines could be achieved using physiologically based irrigation scheduling methods. This paper describes an investigation on the effects of three midday stem water potential (midday ΨS) thresholds, imposed from post-setting, over water use, vegetative growth, grape quality and yield of grapevines cv. Cabernet Sauvignon. An experiment was carried out on a vineyard located at the Isla de Maipo, Metropolitana Region, Chile, throughout the 2002/03, 2003/04 and 2004/05 growing seasons. Irrigation treatments consisted in reaching the following midday ΨS thresholds: −0.8 to −0.95 MPa (T1); −1.0 to −1.2 MPa (T2) and −1.25 to −1.4 MPa (T3) from post-setting to harvest. Results showed significant differences in grape quality components among treatments and seasons studied. In average, T3 produced smallest berry diameter (6% reduction compared to T1), high skin to pulp ratio (13% increment compared to T1) and significant increments in soluble solids and anthocyanins. Improvements in grape quality attributes were attributed to mild grapevine water stress due to significant reductions in water application (46% for T2 and 89% for T3 less in average, both compared to T1). This study found significant correlations between midday ΨS and berry quality components, no detrimental effects on yield by treatments were found in this study. This research proposes a suitable physiological index and thresholds to manage RDI and irrigation scheduling on grapevines to achieve high quality grapes on mild water stress conditions.  相似文献   

17.
Growth and yield responses of developing almond trees (Prunus amygdalus, Ruby cultivar) to a range of trickle irrigation amounts were determined in 1985 through 1987 (the fifth through seventh year after planting) at the University of California's West Side Field Station in the semi-arid San Joaquin Valley. The treatments consisted of six levels of irrigation, ranging from 50 through 175% of the estimated crop evapotranspiration (ETc), applied to a clean-cultivated orchard using a line source trickle irrigation system with 6 emitters per tree. ETc was estimated as grass reference evapotranspiration (ET0) times a crop coefficient with adjustments based upon shaded area of trees and period during the growing season. Differential irrigation experiments prior to 1984 on the trees used in this study significantly influenced the initial trunk cross-section area and canopy size in the 50% ETc treatment and 125% ETc treatment. In these cases, treatment effects must be identified as relative effects rather than absolute. The soil of the experimental field was a Panoche clay loam (nonacid, thermic, Typic Torriorthents). The mean increase in trunk cross-sectional area for the 3-year period was a positive linear function (r 2 = 0.98) of total amounts of applied water. With increases in water application above the 50% ETc treatment, nut retention with respect to flower and fertile nut counts after flowering, was increased approximately 10%. In 1985 and 1987, the nut meat yields and mean kernel weights increased significantly with increasing water application from 50% to 150% ETc. Particularly in the higher water application treatments, crop consumptive use was difficult to quantify due to uncertainty in estimates of deep percolation and soil water uptake. Maintenance of leaf water potentials higher than –2.3 MPa during early nut development (March through May) and greater than –2.5 MPa the remainder of the irrigation season (through August) were positively correlated with sustained higher vegetative growth rates and higher nut yields.  相似文献   

18.
Pomegranate trees (Punica granatum L.) is a deciduous fruit tree included in the so-called group of minor fruit tree species, not widely grown but of some importance in the south east of Spain. Pomegranate trees are considered as a culture tolerant to soil water deficit. However, very little is known about pomegranate orchard water management. The objective of this research was to asses the feasibility of using trunk diameter variation (TDV) indexes, obtained by means of LVDT sensors, as a plant water stress indicators for pomegranate trees. The experiment was carried out with mature trees grown in the field under three irrigation regimes: control well watered trees; trees continuously deficit irrigated at 50% of the control regime (SDI); and trees that had a summer water stress cycle being irrigated at 25% of the control rates only in July and August (RDI). The seasonal variations of maximum diurnal trunk shrinkage (MDS) and trunk growth rates (TGR) were compared with midday stem water potential (Ψstem) measurements. During the course of the entire season, control trees maintained lower MDS values than the SDI ones. In the RDI treatment, as water restrictions began, there was a slow increase in MDS, in correspondence with a decrease in Ψstem. When water was returned at full dosage, the RDI quickly recovered to MDS and Ψstem values similar to the control. However, lower MDS for a given Ψstem values were observed as the season advanced. The magnitude of differences between well watered and deficit irrigated trees was much larger in the case of MDS than for Ψstem. However, the tree-to-tree variability of the MDS readings was more than four times higher than for Ψstem; average coefficient of variation of 7.5 and 36% for Ψstem and MDS, respectively. On the other hand, TGR did not clearly reflect differences in tree water status. Overall, results reported indicated that MDS is a good indicator of pomegranate tree water status and it can be further used for managing irrigation. However, the seasonal changes in the MDS-Ψstem relationship should be taken into account when attempting to use threshold MDS values for scheduling irrigation.  相似文献   

19.
Regulated deficit irrigation (RDI) was applied on field-grown pear-jujube trees in 2005 and 2006 and its effects on crop water-consumption, yield and fruit quality were investigated. Treatments included severe, moderate and low water deficit treatments at bud burst to leafing, flowering to fruit set, fruit growth and fruit maturation stages. Different deficit irrigation levels at different growth stages had significant effects on the fruit yield and quality. Moderate and severe water deficits at bud burst to leafing and fruit maturation stages increased fruit yield by 13.2-31.9% and 9.7-17.5%, respectively. Fruit yield under low water deficit at fruit growth and fruit maturation stages was similar to that of full irrigation (FI) treatment. All water deficit treatments reduced water consumption by 5-18% and saved irrigation water by 13-25% when compared to the FI treatment. During the bud burst to leafing stage, moderate and severe water deficits did not have effect on the fruit quality, but significantly saved irrigation water and increased fruit yield. Low water deficit during the fruit growth stage and low, moderate and severe water deficits during the fruit maturation stage had no significant effect on the fruit weight and fruit volume but reduced fruit water content slightly, which led to much reduced rotten fruit percentage during the post-harvest storage period. Such water deficit treatments also shortened the fruit maturation period by 10-15 d and raised the market price of the fruit. Fruit quality shown as fruit firmness, soluble solid content, sugar/acid ratio and vitamin C (VC) content were all enhanced as a result of deficit irrigation. Our results suggest that RDI should be adopted as a beneficial agricultural practice in the production of pear-jujube fruit.  相似文献   

20.
Vine water status, yield and berry composition are variables within a vineyard. There is current interest in defining zones of similar yield and berry composition. The aim of this study was to compare two methods for identifying zones of similar yield within a 7.5-ha ‘Pinot noir’ vineyard. The two methods were based on: spatial distribution of average midday leaf water potential (ΨL) and plant cell density (PCD?=?near-infrared/red) which is a vegetation index. A proposal for splitting the vineyard into eight new irrigation zones was assessed. A ‘blind’ zonation based on regular polygons of equal sizes was also established as a standard for comparison. Coefficients of variation (C v) in yield for both methods were compared with that of the blind zonation. In 2006 and 2007, a k-means cluster analysis indicated that variability in ΨL was mainly effected by soil properties. In both years, the vineyard was fully irrigated (100?% ETc). The two methods did not improve yield C v for full irrigation in 2006 and 2007 compared to blind zonation. In 2009, regulated deficit irrigation (RDI) was applied resulting in higher variability in ΨL and yield. The ΨL method of zonation significantly reduced coefficient of variation under RDI but PCD method did not despite the reduction in C v by 16.7?%. We recommend irrigation zonation based on ΨL when RDI is applied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号