首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 374 毫秒
1.
A field study was carried out in order to determine the effect of deficit irrigation regimes on grain yield and seasonal evapotranspiration of safflower (Carthamus tinctorius L.) in Thrace Region of Turkey. The field trials were conducted on a loam Entisol soil, on Dincer, the most popular variety in the research area. A randomised complete block design with three replications was used. Combination of four well-known growth stages of the plant, namely vegetative (Va), late vegetative (Vb), flowering (F) and yield formation (Y) were considered to form a total of 16 (including rain fed) irrigation treatments. The effect of irrigation and water stress at any stage of development on grain yield per hectare and 1000 kernels weight was evaluated. Results showed that safflower was significantly affected by water stress during the sensitive late vegetative stage. The highest yield was obtained in VaVbFY treatment. Seasonal irrigation water use and evapotranspiration were 501 and 721 mm, respectively, for the non-stressed treatment. Safflower grain yield of this treatment was 5.22 Mg ha−1 and weight of 1000 kernels was 55 g. The seasonal yield-water response factor value was 0.87. The total water use efficiency was 7.2 kg ha−1 mm−1. Irrigation schedule of the non-stressed treatment may be as follows: the first irrigation is at the vegetative stage, when after 40-50 days from sowing/elongation and branching stage, that is the end of May; the second irrigation is at the late vegetative stage, after 70-80 days from sowing/heading stage, that is in the middle of June; the third irrigation is at the flowering stage, approximately 50% level, that is the first half of July; and the fourth irrigation is at the yield formation stage, seed filling, that is the last week of July.  相似文献   

2.
Water regulations have decreased irrigation water supplies in Nebraska and some other areas of the USA Great Plains. When available water is not enough to meet crop water requirements during the entire growing cycle, it becomes critical to know the proper irrigation timing that would maximize yields and profits. This study evaluated the effect of timing of a deficit-irrigation allocation (150 mm) on crop evapotranspiration (ETc), yield, water use efficiency (WUE = yield/ETc), irrigation water use efficiency (IWUE = yield/irrigation), and dry mass (DM) of corn (Zea mays L.) irrigated with subsurface drip irrigation in the semiarid climate of North Platte, NE. During 2005 and 2006, a total of sixteen irrigation treatments (eight each year) were evaluated, which received different percentages of the water allocation during July, August, and September. During both years, all treatments resulted in no crop stress during the vegetative period and stress during the reproductive stages, which affected ETc, DM, yield, WUE and IWUE. Among treatments, ETc varied by 7.2 and 18.8%; yield by 17 and 33%; WUE by 12 and 22%, and IWUE by 18 and 33% in 2005 and 2006, respectively. Yield and WUE both increased linearly with ETc and with ETc/ETp (ETp = seasonal ETc with no water stress), and WUE increased linearly with yield. The yield response factor (ky) averaged 1.50 over the two seasons. Irrigation timing affected the DM of the plant, grain, and cob, but not that of the stover. It also affected the percent of DM partitioned to the grain (harvest index), which increased linearly with ETc and averaged 56.2% over the two seasons, but did not affect the percent allocated to the cob or stover. Irrigation applied in July had the highest positive coefficient of determination (R2) with yield. This high positive correlation decreased considerably for irrigation applied in August, and became negative for irrigation applied in September. The best positive correlation between the soil water deficit factor (Ks) and yield occurred during weeks 12-14 from crop emergence, during the “milk” and “dough” growth stages. Yield was poorly correlated to stress during weeks 15 and 16, and the correlation became negative after week 17. Dividing the 150 mm allocation about evenly among July, August and September was a good strategy resulting in the highest yields in 2005, but not in 2006. Applying a larger proportion of the allocation in July was a good strategy during both years, and the opposite resulted when applying a large proportion of the allocation in September. The different results obtained between years indicate that flexible irrigation scheduling techniques should be adopted, rather than relying on fixed timing strategies.  相似文献   

3.
This study was undertaken to investigate genotypic differences of five maize cultivars in grain yield response to two different modes of deficit irrigation, conventional deficit irrigation and partial root zone irrigation. Three irrigation treatments were implemented: (1) FULL irrigation, the control treatment where plant water requirement, 100% Class-A pan evaporation, was fully met and the furrows on both sides of the plant rows were irrigated; (2) partial root zone irrigation (PRI), 35% deficit irrigation, compared to FULL treatment, was applied in every other furrow thus irrigating only one side of the plant rows. The furrows irrigated were alternated every irrigation; (3) conventional deficit irrigation (CDI), the same amount of water as PRI was applied in furrows on both sides of the plant rows, similar to FULL irrigation treatment. Five maize cultivars (P.31.G.98, P.3394, Rx:9292, Tector and Tietar) showing extreme growth response to water stress were selected out of ten cultivars tested with earlier completed greenhouse-pot experiment. A split-plot experimental design, comprising three irrigation treatments and five maize cultivars with four replicates, was used during two years of work, in 2005 and 2006. Total of nine irrigations, with one-week irrigation interval, were annually applied using a drip-irrigation system. Soil water status was monitored using a neutron moisture gauge, in addition to measuring leaf water potential and above-ground biomass production throughout the growing season. Grain yield and other yield attributes were measured at harvest as well as assessing differences in plant root distributions. Decrease in grain yield and harvest index of the tested cultivars, compared to FULL treatment, was proportionally less under PRI than CDI. Whether or not a significant yield advantage can be obtained under PRI compared to CDI showed significant (P < 0.05) genotypic variability. Tector and Tietar among the tested cultivars of maize showed significantly higher grain yield (P < 0.05) under PRI than CDI. The yield advantage of the genotypes (P.3394 and Tector) under PRI compared to CDI seems related to their enhanced root biomass developed under PRI.  相似文献   

4.
Wheat (Triticum durum L.) yields in the semi-arid regions are limited by inadequate water supply late in the cropping season. Planning suitable irrigation strategy and nitrogen fertilization with the appropriate crop phenology will produce optimum grain yields. A 3-year experiment was conducted on deep, fairly drained clay soil, at Tal Amara Research Station in the central Bekaa Valley of Lebanon to investigate the response of durum wheat to supplemental irrigation (IRR) and nitrogen rate (NR). Three water supply levels (rainfed and two treatments irrigated at half and full soil water deficit) were coupled with three N fertilization rates (100, 150 and 200 kg N ha−1) and two cultivars (Waha and Haurani) under the same cropping practices (sowing date, seeding rate, row space and seeding depth). Averaged across N treatments and years, rainfed treatment yielded 3.49 Mg ha−1 and it was 25% and 28% less than half and full irrigation treatments, respectively, for Waha, while for Haurani the rainfed treatment yielded 3.21 Mg ha−1, and it was 18% and 22% less than half and full irrigation, respectively. On the other hand, N fertilization of 150 and 200 kg N ha−1 increased grain yield in Waha by 12% and 16%, respectively, in comparison with N fertilization of 100 kg N ha−1, while for cultivar Haurani the increases were 24% and 38%, respectively. Regardless of cultivar, results showed that supplemental irrigation significantly increased grain number per square meter and grain weight with respect to the rainfed treatment, while nitrogen fertilization was observed to have significant effects only on grain number per square meter. Moreover, results showed that grain yield for cultivar Haurani was less affected by supplemental irrigation and more affected by nitrogen fertilization than cultivar Waha in all years. However, cultivar effects were of lower magnitude compared with those of irrigation and nitrogen. We conclude that optimum yield was produced for both cultivars at 50% of soil water deficit as supplemental irrigation and N rate of 150 kg N ha−1. However, Harvest index (HI) and water use efficiency (WUE) in both cultivars were not significantly affected neither by supplemental irrigation nor by nitrogen rate. Evapotranspiration (ET) of rainfed wheat ranged from 300 to 400 mm, while irrigated wheat had seasonal ET ranging from 450 to 650 mm. On the other hand, irrigation treatments significantly affected ET after normalizing for vapor pressure deficit (ET/VPD) during the growing season. Supplemental irrigation at 50% and 100% of soil water deficit had approximately 26 and 52 mm mbar−1 more ET/VPD, respectively, than those grown under rainfed conditions.  相似文献   

5.
In rainfed Mediterranean areas, early sowings which lead to early growth and maturity to escape terminal heat and drought usually give higher grain yield than late sowings in years when rains come early. We test the hypothesis that early sowing coupled with a small amount of irrigation to ensure earlier emergence increases grain yield significantly, while improving irrigation water productivity. Replicated field experiments were conducted for 4 years in the semi-arid central Bekaa Valley of Lebanon. Barley was sown early, and half of the plots were irrigated with 25-30 mm of water immediately after sowing (EI). Half of the plots also received irrigation around heading stage (LI). Besides yields, other agronomic data were collected throughout crop growth, and the supplemental irrigation water use efficiency (WUESI) was calculated. Our results confirm the hypothesis that in Mediterranean areas early sowing followed immediately with a small amount of irrigation increases barley grain yield significantly. Farmers in the region should seriously consider practicing this technique as it produces a higher WUESI than irrigation at the heading stage.  相似文献   

6.
This study compares the effects of different irrigation regimes on seed yield and oil yield quality and water productivity of sprinkler and drip irrigated sunflower (Helianthus annus L.) on silty-clay-loam soils in 2006 and 2007 in the Mediterranean region of Turkey. In sprinkler irrigation a line-source system was used in order to create gradually varying irrigation levels. Irrigation regimes consisted of full irrigation (I1) and three deficit irrigation treatments (I2, I3 and I4), and rain-fed treatment (I5). In the drip system, irrigation regimes included full irrigation (FI-100), three deficit irrigation treatments (DI-25, DI-50, DI-75), partial root zone drying (PRD-50) and rain-fed treatment (RF). Irrigations were scheduled at weekly intervals both in sprinkler and drip irrigation, based on soil water depletion within a 0.90 m root zone in FI-100 and I1 plots. Irrigation treatments influenced significantly (P < 0.01) sunflower seed and oil yields, and oil quality both with sprinkler and drip systems. Seed yields decreased with increasing water stress levels under drip and sprinkler irrigation in both experimental years. Seed yield response to irrigation varied considerably due to differences in soil water contents and spring rainfall distribution in the experimental years. Although PRD-50 received about 36% less irrigation water as compared to FI-100, sunflower yield was reduced by an average of 15%. PRD-50 produced greater seed and oil yields than DI-50 in the drip irrigation system. Yield reduction was mainly due to less number of seeds per head and lower seed mass. Soil water deficits significantly reduced crop evapotranspiration (ET), which mainly depends on irrigation amounts. Significant linear relationships (R2 = 0.96) between ET and oil yield (Y) were obtained in each season. The seed yield response factors (kyseed) were 1.24 and 0.86 for the sprinkler and 1.19 and 1.06 for the drip system in 2006 and 2007, respectively. The oil yield response factor (kyoil) for sunflower was found to be 1.08 and 1.49 for both growing seasons for the sprinkler and 1.36 and 1.25 for the drip systems, respectively. Oil content decreased with decreasing irrigation amount. Consistently greater values of oil content were obtained from the full irrigation treatment plots. The saturated (palmitic and stearic acid) and unsaturated (oleic and linoleic acid) fatty acid contents were significantly affected by water stress. Water stress caused an increase in oleic acid with a decrease in linoleic acid contents. The palmitic and stearic acid concentrations decreased under drought conditions. Water productivity (WP) values were significantly affected by irrigation amounts and ranged from 0.40 to 0.71 kg m−3 in 2006, and from 0.69 to 0.91 kg m−3 in 2007. The PRD-50 treatment resulted in the greatest WP (1.0 kg m−3) and irrigation water productivity (IWP) (1.4 kg m−3) in both growing seasons. The results revealed that under water scarcity situation, PRD-50 in drip and I2 in sprinkler system provide acceptable irrigation strategies to increase sunflower yield and quality.  相似文献   

7.
The experiment aimed at evaluating the yield and quality response of broccoli (Brassica oleracea L. var. italica) to applied irrigation water and nitrogen by drip irrigation method during the spring and autumn cultivation periods of 2007. Irrigation water was applied based on a ratio of Class A pan evaporation (kcp = 0.50, 0.75, 1.00 and 1.25) with 7 days interval. Also, the effect of four nitrogen levels (0 kg ha−1, 150 kg ha−1, 200 kg ha−1 and 250 kg ha−1) was compared with each treatment. The seasonal evapotranspiration in the treatments varied from 233 mm to 328 mm during the spring period and from 276 mm to 344 mm during the autumn period. The highest broccoli yield was obtained in the spring period as 11.02 t ha−1 and in the autumn period as 4.55 t ha−1. In general, there were statistical differences along nitrogen does with respect to yield and yield components while there were no statistically significant differences in the yield and yield components among irrigation regimes. Both yield and yield parameters in the spring period were found to be higher than that of the autumn period due to the low temperature and high rainy days in autumn. Irrigation water use efficiency (IWUE) ranged from 3.78 kg m−3 to 14.61 kg m−3 during the spring period and from 1.89 kg m−3 to 5.93 kg m−3 during the autumn period. On the other hand, nitrogen use efficiency (NUE) changed as 37.32-73.13% and 13.08-22.46% for spring and autumn season, respectively.  相似文献   

8.
Studies on irrigation scheduling for soybean have demonstrated that avoiding irrigation during the vegetative growth stages could result in yields as high as those obtained if the crop was fully irrigated during the entire growing season. This could ultimately also lead to an improvement of the irrigation water use efficiency. The objective of this study was to determine the effect of different irrigation regimes (IRs) on growth and yield of four soybean genotypes and to determine their irrigation water use efficiency. A field experiment consisting of three IR using a lateral move sprinkler system and four soybean genotypes was conducted at the Bledsoe Research Farm of The University of Georgia, USA. The irrigation treatments consisted of full season irrigated (FSI), start irrigation at flowering (SIF), and rainfed (RFD); the soybean genotypes represented maturity groups (MGs) V, VI, VII, and VIII. A completely randomized block design in a split-plot array with four replicates was used with IR as the main treatment and the soybean MGs as the sub-treatment. Weather variables and soil moisture were recorded with an automatic weather station located nearby, while rainfall and irrigation amounts were recorded with rain gauges located in the experimental field. Samplings for growth analysis of the plant and its components as well as leaf area index (LAI) and canopy height were obtained every 12 days. The irrigation water use efficiency (IWUE) or ratio of the difference between irrigated and rainfed yield to the amount of irrigation water applied was estimated. The results showed significant differences (P < 0.05) between IR for dry matter of the plant and its components, canopy height, and maximum leaf area index as well as significant differences (P < 0.05) between MGs due to IR. Differences for the interaction between IR and MG were significant (P < 0.05) only for dry matter of pods and seed yield. In general, seed yield increased at a rate of 7.20 kg for each mm of total water received (rainfall + irrigation) by the crop. Within IR, significant differences (P < 0.05) on IWUE were found between maturity groups with values as low as 0.55 kg m−3 for MG V and as high as 1.14 kg m−3 for MG VI for the FSI treatment and values as low as 0.48 kg m−3 for maturity group V and as high as 1.02 kg m−3 for maturity group VI for the SIF treatment. We also found that there were genotypic differences with respect to their efficiency to use water, stressing the importance of cultivar selection as a key strategy for achieving optimum yields with reduced use of water in supplemental irrigation.  相似文献   

9.
The analysis of long-term irrigation performance series is a valuable tool to improve irrigation management and efficiency. This work focuses in the assessment of irrigation performance indices along years 1995-2008, and the cause-effect relationships with irrigation modernization works taking place in the 4000 ha surface-irrigated La Violada Irrigation District (VID). Irrigation management was poor, as shown by the low mean seasonal irrigation consumptive use coefficient (ICUC = 51%) and the high relative water deficit (RWD = 20%) and drainage fraction (DRF = 54%). April had the poorest irrigation performance because corn (with low water demand in this month) was irrigated to promote its emergence, whereas winter grains (with high water demands in this month) were not fully irrigated in water-scarce years. Corn, highly sensitive to water stress, was the crop with best irrigation performance because it was preferentially irrigated to minimize yield losses. The construction of a new elevated canal that decreased seepage and drainage fractions, the entrance in operation of six internal reservoirs that would increase irrigation scheduling flexibility, and the on-going transformation from surface to sprinkler irrigation systems are critical changes in VID that should lead to improved ICUC, lower RWD and lower DRF. The implications of these modernization works on the conservation of water quantity and quality within and outside VID is further discussed.  相似文献   

10.
During 2 years, a melon crop (Cucumis melo L. cv. Sancho) was grown under field conditions to investigate the effects of different nitrogen (N) and irrigation (I) levels on fruit yield, fruit quality, irrigation water use efficiency (IWUE) and nitrogen applied efficiency (NAE). The statistical design was a split-plot with four replications, where irrigation was the main factor of variation and N was the secondary factor. In 2005, irrigation treatments consisted of applying daily a moderate water stress equivalent to 75% of ETc (crop evapotranspiration), a 100% ETc control and an excess irrigation of 125% ETc (designated as I75, I100 and I125), while the N treatments were 30, 85, 112 and 139 kg N ha−1 (designated as N30, N85, N112 and N139). In 2006, both the irrigation and N treatments applied were: 60, 100 and 140% ETc (I60, I100 and I140) and 93, 243 and 393 kg N ha−1 (N93, N243 and N393). Moderate water stress did not reduce melon yield and high IWUE was obtained. Under severe deficit irrigation, the yield was reduced by 22% mainly due to decrease fruit weight. The relative yield (yield/maximum yield) was higher than 95% when the irrigation depth applied was in the range of 87-136% ETc. In 2006, the interaction between irrigation and N was significant for yield, fruit weight and IWUE. The best yield, 41.3 Mg ha−1, was obtained with 100% ETc at N93. The flesh firmness and the placenta and seeds weight increased when the irrigation level was reduced by 60% ETc. The highest NAE was obtained with quantities of water close to 100% ETc and increased as the N level was reduced. The highest IWUE was obtained with applications close to 90 kg N ha−1. The I243 and I393 treatments produced inferior fruits due to higher skin ratios and lower flesh ratios. These results suggest that it is possible to apply moderate deficit irrigation, around 90% ETc, and reduce nitrogen input to 90 kg ha−1 without lessening quality and yields.  相似文献   

11.
Accurate crop development models are important tools in evaluating the effects of water deficits on crop yield or productivity and predicting yields to optimize irrigation under limited available water for enhanced sustainability and profitable production. Food and Agricultural Organization (FAO) of United Nations addresses this need by providing a yield response to water simulation model (AquaCrop) with limited sophistication. The objectives of this study were to evaluate the AquaCrop model for its ability to simulate wheat (Triticum aestivum L.) performance under full and deficit water conditions in a hot dry environment in south of Iran, to study the effect of different scenarios of irrigation (crop growth stages and depth of water applied) on wheat yield. The AquaCrop model was evaluated with experimental data collected during the three field experiments conducted in Ahvaz. The AquaCrop model was able to accurately simulate soil water content of root zone, crop biomass and grain yield, with normalized root mean square error (RMSE) less than 10%. The analysis of irrigation scenarios showed that the highest grain yield could be obtained by applying four irrigations (200 mm) at sowing, tillering, stem elongation and flowering or grain filing stages for wet years, four irrigations (200 mm) at sowing, stem elongation and flowering stages for normal years and six irrigations (300 mm) at sowing, emergence, tillering, stem elongation, flowering and grain filing stages for dry years. The least amount of irrigation water to provide enough water to response to evaporative demand of environment and to obtain high WUE for wet, normal and dry years were 100, 200 and 250 mm, respectively.  相似文献   

12.
Effect of irrigation method and quantity on squash yield and quality   总被引:1,自引:0,他引:1  
Squash yield and quality under furrow and trickle irrigation methods and their responses to different irrigation quantities were evaluated in 2010 spring and fall growing seasons. A field experiment was conducted using squash (Cucurbita pepo L.) grown in northern Egypt at Shibin El Kom, Menofia. A randomized split-plot design was used with irrigation methods as main plots and different irrigation quantities randomly distributed within either furrow or trickle irrigation methods. Irrigation quantity was a fraction of crop evapotranspiration (ETc) as: 0.5, 0.75, 1.0, 1.25, and 1.5 ETc. Each treatment was repeated three times, two of five rows from each replicate were left for squash seed production. In well-watered conditions (1.0 ETc), seasonal water use by squash was 304 and 344 mm over 93 days in spring and 238 and 272 mm over 101 days in fall under trickle and furrow irrigation methods, respectively. Squash fruit yield and quality were significantly affected by season and both irrigation method and quantity. Fruit number and length were not affected by irrigation method and growing season, respectively. Interaction between season and irrigation quantity significantly affected leaf area index, total soluble solid (TSS), and fruit weight. Moreover, seed yield and quality were significantly affected by growing season and both irrigation method and quantity except harvest index, which was not affected by irrigation method. Significant differences for the interaction between season and irrigation method were only found for seed yield and 100 seeds weight. Except for harvest index, no significant difference was observed by interaction between season and irrigation quantity. Both fruit and seed yields were significantly affected in a linear relationship (r2 ≥ 0.91) by either deficit or surplus irrigation quantities under both irrigation methods. Adequate irrigation quantity under trickle irrigation, relative to that of furrow, enhanced squash yield and improved its quality in both growing seasons. Fall growing season was not appropriate for seed production due to obtaining many of empty seeds caused by low weather variables at the end of the season. The results from small experiment were extrapolated to large field to find out optimal irrigation scheduling under non-uniform of irrigation application.  相似文献   

13.
The Southeast U.S. receives an average of 1300 mm annual rainfall, however poor seasonal distribution of rainfall often limits production. Irrigation is used during the growing season to supplement rainfall to sustain profitable crop production. Increased water capture would improve water use efficiency and reduce irrigation requirements. Furrow diking has been proposed as a cost effective management practice that is designed to create a series of storage basins in the furrow between crop rows to catch and retain rainfall and irrigation water. Furrow diking has received much attention in arid and semi-arid regions with mixed results, yet has not been adapted for cotton production in the Southeast U.S. Our objectives were to evaluate the agronomic response and economic feasibility of producing cotton with and without furrow diking in conventional tillage over a range of irrigation rates including no irrigation. Studies were conducted at two research sites each year from 2005 to 2007. Irrigation scheduling was based on Irrigator Pro for Cotton software. The use of furrow diking in these studies periodically reduced water consumption and improved yield and net returns. In 2006 and 2007, when irrigation scheduling was based on soil water status, an average of 76 mm ha−1 of irrigation water was saved by furrow diking, producing similar cotton yield and net returns. Furrow diking improved cotton yield an average of 171 kg ha−1 and net return by $245 ha−1 over multiple irrigation rates, in 1 of 3 years. We conclude that furrow diking has the capability to reduce irrigation requirements and the costs associated with irrigation when rainfall is periodic and drought is not severe.  相似文献   

14.
Improving irrigation water management is becoming important to produce a profitable crop in South Texas as the water supplies shrink. This study was conducted to investigate grain yield responses of corn (Zea mays) under irrigation management based on crop evapotranspiration (ETC) as well as a possibility to monitor plant water deficiencies using some of physiological and environmental factors. Three commercial corn cultivars were grown in a center-pivot-irrigated field with low energy precision application (LEPA) at Texas AgriLife Research Center in Uvalde, TX from 2002 to 2004. The field was treated with conventional and reduced tillage practices and irrigation regimes of 100%, 75%, and 50% ETC. Grain yield was increased as irrigation increased. There were significant differences between 100% and 50% ETC in volumetric water content (θ), leaf relative water content (RWC), and canopy temperature (TC). It is considered that irrigation management of corn at 75% ETC is feasible with 10% reduction of grain yield and with increased water use efficiency (WUE). The greatest WUE (1.6 g m−2 mm−1) achieved at 456 mm of water input while grain yield plateaued at less than 600 mm. The result demonstrates that ETC-based irrigation can be one of the efficient water delivery schemes. The results also demonstrate that grain yield reduction of corn is qualitatively describable using the variables of RWC and TC. Therefore, it appears that water status can be monitored with measurement of the variables, promising future development of real-time irrigation scheduling.  相似文献   

15.
Effective irrigation management in arid and semi-arid regions, like South Africa, could increase crop yield and thereby improve productivity of scarce fresh water resources. Experiments were conducted at the Hatfield Experimental Farm of the University of Pretoria, South Africa, from 2004 to 2006, to investigate the effect of soil water depletion regimes on rose-scented geranium (Pelargonium capitatum × P. radens cv. Rose) essential oil yield, essential oil composition and water-use efficiency in an open field and a rain shelter. Four maximum allowable soil water depletion levels (MAD), 20, 40, 60 and 80% of the plant available soil water (ASW) in the top 0.8 m root zone, were applied as treatments. Plant roots extracted most soil water from the top 0.4 m soil layer. Increasing the soil water depletion level to 60% and higher resulted in a significant reduction in herbage mass and essential oil yield. Water stress apparently increased the essential oil concentration (percentage oil on fresh herbage mass basis), but its contribution to total essential oil yield (kg/ha oil) was limited. Irrigation treatments did not affect essential oil composition. An increase in maximum allowable depletion level generally resulted in a decrease in leaf area and an increase in leaf to stem fresh mass ratio. Up to 28% of irrigation water could be saved by increasing maximum allowable depletion level of ASW from 20 to 40%, without a significant reduction in essential oil yield.  相似文献   

16.
Field experiments were conducted at the Luancheng Agro-Ecosystem Experimental Station of the Chinese Academy of Sciences during the winter wheat growing seasons in 2006-2007 and 2007-2008. Experiments involving winter wheat with 1, 2, and 3 irrigation applications at jointing, heading, or milking were conducted, and the total irrigation water supplied was maintained at 120 mm. The results indicated that irrigation during the later part of the winter wheat growing season and increase in irrigation frequency decreased the available soil water; this result was mainly due to the changes in the vertical distribution of root length density. In ≤30-cm-deep soil profiles, 3 times irrigation at jointing, heading, and milking increased the root length density, while in >30-cm-deep soil profiles, 1 time irrigation at jointing resulted in the highest root length density. With regard to evapotranspiration (ET), there was no significant (LSD, P < 0.05) difference between the regimes wherein irrigation was applied only once at jointing; 2 times at jointing and heading; and 3 times at jointing, heading, and milking. Compared with 1 and 3 times irrigation during the winter wheat growing season, 2 times irrigation increased grain yield and 2 times irrigation at jointing and heading produced the highest water-use efficiency (WUE). Combining the results obtained regarding grain yield and WUE, it can be concluded that irrigation at the jointing and heading stages results in high grain yield and WUE, which will offer a sound measurement for developing deficit irrigation regimes in North China.  相似文献   

17.
In order to study the effects of drip irrigation with saline water on waxy maize, three years of field experiments were carried out in 2007-2009 in North China Plain. Five treatments with average salinity of irrigation water, 1.7, 4.0, 6.3, 8.6, and 10.9 dS/m were designed. Results indicated that the irrigation water with salinity <10.9 dS/m did not affect the emergence of waxy maize. As salinity of irrigation water increased, seedling biomass decreased, and the plant height, fresh and dry weight of waxy maize in the thinning time decreased by 2% for every 1 dS/m increase in salinity of irrigated water. The decreasing rate of the fresh ear yield for every 1 dS/m increase in salinity of irrigation water was about 0.4-3.3%. Irrigation water use efficiency (IWUE) increased with the increase in salinity of irrigation water when salinity was <10.9 dS/m. Precipitation during the growing period significantly lightened the negative impacts of irrigation-water salinity on the growth and yield. Soil salinity in depth of 0-120 cm increased in the beginning of irrigation with saline water, while it was relatively stable in the subsequent year when salinity of irrigation water was not higher than 4.0 dS/m and the soil matric potential (SMP) at 0.2 m directly underneath the drip emitter was controlled above −20 kPa.  相似文献   

18.
Corn crop response under managing different irrigation and salinity levels   总被引:1,自引:0,他引:1  
Non-uniformity of water distribution under irrigation system creates both deficit and surplus irrigation areas. Water salinity can be hazard on crop production; however, there is little information on the interaction of irrigation and salinity conditions on corn (Zea Mays) growth and production. This study evaluated the effect of salinity and irrigation levels on growth and yield of corn grown in the arid area of Egypt. A field experiment was conducted using corn grown in northern Egypt at Quesina, Menofia in 2009 summer season to evaluate amount of water applied, salinity hazard and their interactions. Three salinity levels and five irrigation treatments were arranged in a randomized split-plot design with salinity treatments as main plots and irrigation rates within salinity treatments. Salinity treatments were to apply fresh water (0.89 dS m−1), saline water (4.73 dS m−1), or mixing fresh plus saline water (2.81 dS m−1). Irrigation treatments were a ratio of crop evapotranspiration (ET) as: 0.6ET, 0.8ET, 1.0ET, 1.2ET, and 1.4ET. In well-watered conditions (1.0ET), seasonal water usable by corn was 453, 423, and 380 mm for 0.89EC, 2.81EC and 4.73EC over the 122-day growing season, respectively. Soil salt accumulation was significantly increased by either irrigation salinity increase or amount decrease. But, soil infiltration was significantly decreased by either salinity level or its interaction with irrigation amount. Leaf temperature, transpiration rate, and stomata resistance were significantly affected by both irrigation and salinity levels with interaction. Leaf area index, harvest index, and yield were the greatest when fresh and adequate irrigation was applied. Grain yield was significantly affected in a linear relationship (r2 ≥ 0.95) by either irrigation or salinity conditions with no interaction. An optimal irrigation scheduling was statistically developed based on crop response for a given salinity level to extrapolate data from the small experiment (uniform condition) to big field (non-uniformity condition) under the experiment constraints.  相似文献   

19.
Spate irrigation is a method of flood water harvesting, practiced in Dera Ismael Khan (D.I. Khan), Pakistan for agricultural production for the last several hundred years in which during monsoon period flood water is used for irrigation before wheat sowing. A field study on the effect of different pre-sowing water application depths on the yield of wheat was conducted during 2006-2007. The spate irrigation command areas normally receive the flood water as a result of rainfall on the mountains during the months of July to September, which also carries a significant amount of sediment load. The flood water flows in different torrents and is diverted through earthen bunds to the fields for irrigation with depth of water application ranging from 21 to 73 cm and resulted in sediment deposition of 1.8-3.6 cm per irrigation. In this study, the effect on wheat yield of three different pre-sowing water application depths (D1 < 30 cm, D2 = 30-45 cm and D3 > 45 cm) were studied under field conditions. Fifteen fields with field sizes of about 2-3 ha were randomly selected, in each field five samples were collected for analysis of soil physical properties, yield and yield components. Five major soil texture classes (silty clay, clay loam, silty clay loam, silt loam and loam) were found in the area with water-holding capacity ranging from 23% to 36.3% (on a volume basis) and bulk density varied from 1.35 to 1.42 g cm−3. About 36% more grain yield was obtained from loam soil fields, followed by silt loam (24%) as compared to wheat grown on silty clay soil condition. The maximum wheat grain yield of 3448 kg ha−1 was obtained from fields with water application depths of 30-45 cm and the lowest wheat yield was recorded in fields with water application depths greater than 45 cm. On-farm application efficiencies ranged from 22% to 93% with an overall average of about 49%. Due to large and uneven fields, a lot of water is lost. In general, the application efficiency decreased with increasing water application depth. Based on the results of this research, in arid to semi-arid environments, for optimum wheat yield under spate irrigation, the pre-sowing water application depth may be about 30-45 cm (September to July) and under or over irrigation should be avoided.  相似文献   

20.
The CROPGRO simulation model was calibrated for processing tomato in Southern Italy with a 2002 data set and validated with three independent data sets with acceptable results. Subsequently this model was combined with 53 years of local historical weather data and it was used as a research tool to evaluate the benefits, risks and costs of 23 different interactive irrigation and/or N-management scenarios. Irrigation water was applied (i) on reported dates with 3 and 5 days intervals and application rates of 15 and 25 mm or (ii) with automatic irrigation initiated at residual soil moisture levels in the upper 30 cm of the soil profile of 25, 50, or 75%. Three amount levels of N application (100, 200 and 300 kg ha−1 as ammonium nitrate) were considered. A simple economic analysis, including tomato marketable yield and price, irrigation and nitrogen cost and other fixed production costs, was used to estimate expected net return for each management scenario.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号