首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rapid urbanization and industrialization have increased the pressure on limited existing fresh water to meet the growing needs for food production. Two immediate responses to this challenge are the efficient use of irrigation technology and the use of alternative sources of water. Drip irrigation methods may play an important role in efficient use of water but there is still limited information on their use on sugar beet crops in arid countries such as Iran. An experiment was conducted to evaluate the effects of irrigation method and water quality on sugar beet yield, percentage of sugar content and irrigation water use efficiency (IWUE). The irrigation methods investigated were subsurface drip, surface drip and furrow irrigation. The two waters used were treated municipal effluent (EC = 1.52 dS m−1) and fresh water (EC = 0.509 dS m−1). The experiments used a split plot design and were undertaken over two consecutive growing seasons in Southern Iran. Statistical testing indicated that the irrigation method and water quality had a significant effect (at the 1% level) on sugar beet root yield, sugar yield, and IWUE. The highest root yield (79.7 Mg ha−1) was obtained using surface drip irrigation and effluent and the lowest root yield (41.4 Mg ha−1) was obtained using furrow irrigation and fresh water. The highest IWUE in root yield production (9 kg m−3) was obtained using surface drip irrigation with effluent and the lowest value (3.8 kg m−3) was obtained using furrow irrigation with fresh water. The highest IWUE of 1.26 kg m−3 for sugar was obtained using surface drip irrigation. The corresponding efficiency using effluent was 1.14 kg m−3. Irrigation with effluent led to an increase in the net sugar yield due to an increase in the sugar beet root yield. However, there was a slight reduction in the percentage sugar content in the plants. This study also showed that soil water and root depth monitoring can be used in irrigation scheduling to avoid water stress. Such monitoring techniques can also save considerable volumes of irrigation water and can increase yield.  相似文献   

2.
Excess salinity in irrigation water reduces sugarcane yield and juice quality. This study was conducted to compare the effect of irrigation with water of 1.3 dS m−1 vs. 3.4 dS m−1 on sugarcane yield and quality, and to evaluate whether an electrostatic conditioning treatment of the water influenced the salt effects. The study was conducted in a commercial field divided into large plots ranging from 1.0 to 1.2 ha in size. Cane and sugar yields were reduced approximately 17% by the 3.4 dS m−1 water compared to the 1.3 dS m−1 water, but juice quality parameters were not affected. Conditioning of the irrigation water using a device called an ‘electrostatic precipitator’ which claimed to affect various water properties had no effect on cane yield, juice quality or soil salinity levels. The detrimental effect of the high salt irrigation water was somewhat less than might be expected, probably due to good late summer rainfall which may have flushed the root zone from the excessive salts.  相似文献   

3.
Soil water is an important factor affecting photosynthesis, transpiration, growth, and yield of crops. Accurate information on soil water content (SWC) is crucial for practical agricultural water management at various scales. In this study, remotely sensed parameters (leaf area index, land cover type, and albedo) and spatial data manipulated using the geographic information system (GIS) technique were assimilated into the boreal ecosystem productivity simulator (BEPS) model to monitor SWC dynamics of croplands in Jiangsu Province, China. The monsoon climate here is characterized by large interannual and seasonal variability of rainfall causing periods of high and low SWC. Model validation was conducted by comparing simulated SWC with measurements by a gravimetric method in the years 2005 and 2006 at nine agro-meteorological stations. The model-to-measurement R2 values ranged from 0.40 to 0.82. Nash-Sutcliffe efficiency values were in the range from 0.10 to 0.80. Root mean square error (RMSE) values ranged from 0.028 to 0.056 m3 m−3. Simulated evapotranspiration (ET) was consistent with ET estimated from pan evaporation measurements. The BEPS model successfully tracked the dynamics and extent of the serious soil water deficit that occurred during September-November 2006. These results demonstrate the applicability of combining process-based models with remote sensing and GIS techniques in monitoring SWC of croplands and improving agricultural water management at regional scales in a monsoon climate.  相似文献   

4.
Decreasing in water availability for cotton production has forced researchers to focus on increasing water use efficiency by improving either new drought-tolerant cotton varieties or water management. A field trial was conducted to observe the effects of different drip irrigation regimes on water use efficiencies (WUE) and fiber quality parameters produced from N-84 cotton variety in the Aegean region of Turkey during 2004 and 2005. Treatments were designated as full irrigation (T100, which received 100% of the soil water depletion) and those that received 75, 50 and 25% of the amount received by treatment T100 on the same day (treatments T75; T50 and T25, respectively). The average seasonal water use values ranged from 265 to 753 mm and the average seed cotton yield varied from 2550 to 5760 kg ha−1. Largest average cotton yield was obtained from the full irrigation treatment (T100). WUE ranged from 0.77 kg m−3 in the T100 to 0.98 kg m−3 in the T25 in 2004 growing season and ranged from 0.76 kg m−3 in the T100 to 0.94 kg m−3 in the T25 in 2005 growing season. The largest irrigation water use efficiency (IWUE) was observed in the T25 (1.46 kg m−3), and the smallest IWUE was in the T100 treatment (0.81 kg m−3) in the experimental years. A yield response factor (ky) value of 0.78 was determined based on averages of two years. Leaf area index (LAI) and dry matter yields (DM) increased with increasing water use for treatments. Fiber qualities were influenced by drip irrigation levels in both years. The results revealed that well-irrigated treatments (T100) could be used for the semi-arid climatic conditions under no water shortage. Moreover, the results also demonstrated that irrigation of cotton with drip irrigation method at 75% level (T75) had significant benefits in terms of saved irrigation water and large WUE indicating a definitive advantage of deficit irrigation under limited water supply conditions. In an economic viewpoint, 25.0% saving in irrigation water (T75) resulted in 34.0% reduction in the net income. However, the net income of the T100 treatment is found to be reasonable in areas with no water shortage.  相似文献   

5.
The objective of this study was to compare soil water measurements made using capacitance and neutron probes by means of a water balance experiment in a drainage lysimeter. The experiment was conducted in a 5-year-old drip-irrigated peach orchard (Prunus persica L. Batsch, cv. Flordastar, on GF-677 peach rootstock) planted in a clay loam textured soil located in southern Spain. Four drainage lysimeters (5 m × 5 m × 1.5 m), each containing one tree, were constructed and equipped with one lateral line containing eight drippers per tree, with a discharge rate of 2 L h−1. Three access tubes for the neutron probe (NP), symmetrically facing three PVC access tubes containing the multi-depth capacitance probes (MDCP) were located perpendicularly to the drip line (0.2, 0.6 and 1 m). The results demonstrated that both the capacitance and neutron probes gave similar soil water content values under steady state hydraulic gradient conditions (0.2 m from the emitter) although some discrepancies were found in heterogeneous soil water distribution conditions (1 m from the emitter), which might be attributed to the smaller soil volume explored by the MDCP compared with the NP. Explanations for the discrepancies between both devised are presented. When water inputs and outputs were fairly constant, the volumetric soil water content could be considered to represent field saturation (θsat = 0.36 m3 m−3). When drainage was zero, there were 2 days when the soil water content was constant and could be considered as field capacity (θfc = 0.31 m3 m−3). The findings suggest that: (i) capacitance probes can be used for continuous real-time soil water content monitoring unlike the manual measurements obtained with the neutron probe; (ii) the location of the sensors is critical when used for drip irrigation scheduling and our recommendations for practical agricultural purposes would be to place MDCP sensors in the place representing the highest root density, leading the sensors to become biological sensors rather than mere soil moisture sensors; and (iii) on average, the water balance values determined by lysimeter match those calculated using the data from both probes. However, due to the smaller soil volume explored by MDCP, more of these sensors must be used to characterize the soil water status in water balance studies.  相似文献   

6.
The aim of the present investigation was to simulate the uptake concentrations (weights of ion per volume of water absorbed) of Na+ and Cl in hydroponic tomato crops as a function of the NaCl concentration in the root zone. An empirical model was calibrated and validated, which can be incorporated into on-line operating decision support systems aimed at optimizing the nutrient supply and minimizing the discharge of drainage solution in tomato crops grown in closed-cycle hydroponic systems. Three experiments were conducted, of which one was carried out to calibrate the model using irrigation water with NaCl concentration ranging from 0 to 14.7 mol m−3 while the other two experiments were commissioned to validate the model within either a low (0.5-2 mol m−3) or a high (1.2-12 mol m−3) concentration range. The model could successfully predict the uptake concentration of Na+, but Cl could not be simulated by this model at external Cl concentrations lower than 10 mol m−3. The results indicate that Na+ is excluded actively and effectively by the tested tomato cultivar even at low external Na+ concentrations, while Cl is readily taken up at low concentrations, particularly during the initial growing stages. Due to the efficient exclusion of Na+ by tomato, the Na+ concentration in the root environment increased rapidly to extremely high levels even when the Na+ concentration in the irrigation water was relatively low. These results indicate that tomato genotypes characterized by high salt-exclusion efficiency, require irrigation water with a very low NaCl concentration, if they are grown in closed hydroponic systems and the drainage water is not flushed periodically. To maintain Na+ at levels lower than 19 mol m−3 in the root zone of the tomato hybrid ‘Formula’ in closed hydroponics, a maximum acceptable Na+ concentration of 0.53 mol m−3 was estimated for the irrigation water.  相似文献   

7.
Agricultural food production in arid and semi-arid regions faces the challenge to ensure high yields with limited supply of water. This raises the question to which extent irrigation supply can be reduced without detriment to yield. Our study focuses on the yield-water uptake relationship for maize in the moderate water stress range in order to determine the onset of stress-induced dry-matter and yield losses. Compensatory plant responses under moderate stress levels are discussed in relation to seasonal climatic conditions.Summer-sown and spring-sown maize were irrigated with a decreasing amount of water in a field experiment in Pakistan. Water supply ranged from 100% water required to maintain soil at field capacity (FC) to 40% of FC. The average dry-matter and yield levels were slightly higher for summer-sown (15.0 Mg ha−1) compared to spring-sown maize (13.1 Mg ha−1). The onset of significant dry-matter and yield reduction started at the least irrigation treatment in both seasons. The amount of water required to avoid production losses was 272 mm in the summer-sown maize during the autumn growing season, and 407 mm for the spring-sown maize in the summer season, when the evaporative demand of the atmosphere was +27% higher. Water use efficiency (WUEET), normalized by vapour pressure deficit, of the summer-sown maize which was 10.0 kg kPa m−3, was +15% higher compared to the spring-sown crop; while the irrigation water productivity (2.9 kg m−3) was +11% more. WUEET increased over the whole range of applied water deficits for summer-sown maize, while the spring-sown crop showed a decreasing WUEET in the less irrigated treatment. Due to the higher efficiency in summer-sown maize, the potential in irrigation reduction without production losses (129 mm) was higher compared to the spring-sown maize (57 mm). Our results showed that in Pakistan water saving irrigation practices can be applied without yield loss mainly during the cooler growing season when the crop can efficiently compensate a lower total water uptake by increased use efficiency. For spring-sown maize the increasing evaporative demand of the atmosphere towards summer implies a higher risk of yield losses and narrows the range to exploit higher irrigation water productivity under moderate water deficit conditions.  相似文献   

8.
Actual measurements of water uptake and use, and the effect of water quality considerations on evapotranspiration (ET), are indispensable for understanding root zone processes and for the development of predictive plant growth models. The driving hypothesis of this research was that root zone stress response mechanisms in perennial fruit tree crops is dynamic and dependent on tree maturity and reproductive capability. This was tested by investigating long-term ET, biomass production and fruit yield in date palms (Phoenix dactylifera L., cv. Medjool) under conditions of salinity. Elevated salinity levels in the soil solution were maintained for 6 years in large weighing-drainage lysimeters by irrigation with water having electrical conductivity (EC) of 1.8, 4, 8 and 12 dS m−1. Salinity acted dynamically with a long-term consequence of increasing relative negative response to water consumption and plant growth that may be explained either as an accumulated effect or increasing sensitivity. Sensitivity to salinity stabilized at the highest measured levels after the trees matured and began producing fruit. Date palms were found to be much less tolerant to salinity than expected based on previous literature. Trees irrigated with low salinity (EC = 1.8 dS m−1) water were almost twice the size (based on ET and growth rates) than trees irrigated with EC = 4 dS m−1 water after 5 years. Fruit production of the larger trees was 35-50% greater than for the smaller, salt affected, trees. Long term irrigation with very high EC of irrigation water (8 and 12 dS m−1) was found to be commercially impractical as growth and yield were severely reduced. The results raise questions regarding the nature of mechanisms for salinity tolerance in date palms, indicate incentives to irrigate dates with higher rather than lower quality water, and present a particular challenge for modelers to correctly choose salinity response functions for dates as well as other perennial crops.  相似文献   

9.
Wheat is the most important cereal crop in the semi-arid eastern Mediterranean region that includes northern Syria. Knowledge of wheat root depth and the vertical distribution during the winter growing season is needed for sound scheduling of irrigation and efficient use of water. This article reports evaluation of root development for three winter-grown bread (Triticum aestivum L.) and durum (Triticum turgidum L.) wheat under four soil water regimes (rainfed and full irrigation with two intermediate levels of 33 and 66% of full irrigation). Roots were sampled by soil coring to a depth of 0.75 m at four occasions during 2005-2006 growing season. Two distinct phases of root development were identified, a rapid downward penetration from emergence to end tillering phase, followed by a substantial root mass growth along the profile from tillering to mid-stem-elongation phase. Roots were detected as deep as 0.75 m during the initial rapid penetration, yet only 29% of the total seasonal root mass was developed. This downward penetration rate averaged 7 mm d−1 and produced 10.8 kg ha−1 d−1 of root dry-biomass. The bulging of root mass from tillering to mid-stem-elongation coincided with vigorous shoot growth, doubling root dry-biomass at a rate of 52 kg ha−1 d−1, compared to the seasonal root growth rate of 18.3 kg ha−1 d−1. A second-degree equation described the total root dry-biomass as a function of days after emergence (r2 = 0.85), whereas a simpler equation predicted it as a function of cumulative growing degree days (r2 = 0.85). The final grain yield was a strong function of irrigation regimes, varying from 3.0 to 6.5 t ha−1, but showed no correlation with root biomass which remained similar as soil water regimes changed. This observation must be viewed with care as it lacks statistical evidence. Results showed 90% of root mass at first irrigation (15 April) confined in the top 0.60-0.75 m soil in bread wheat. Presence of shallow restricting soil layers limited root depth of durum wheat to 0.45 m, yet total seasonal root mass and grain yield were comparable with non-restricted bread wheat. Most root growth occurred during the cool rainy season and prior to the late irrigation season. The root sampling is short of rigorous, but results complement the limited field data in literature collectively suggesting that irrigation following the rainy season may best be scheduled assuming a well developed root zone as deep as the effective soil depth within the top meter of soil.  相似文献   

10.
The effects of pre-anthesis water deficit and cycle length were examined in Papaver somniferum L., cultivated for alkaloid production, in two locations in southern Spain. The vegetative period was shortened by extending the photoperiod through supplemental lighting in the field, while water deficit in pre-anthesis was induced by avoiding irrigations and installing rain shelters. The treatments were: IN (irrigated-normal photoperiod), IL (irrigated-hastened flowering), DN (water deficit in pre-anthesis-normal photoperiod) and DL (water deficit in pre-anthesis and hastened flowering). The artificial photoperiod hastened the flowering by 15 and 21 days, for irrigated and deficit treatments respectively. Seasonal evapotranspiration (ET) ranged from 398 (DN) to 505 mm (IN). There was evidence of root water uptake deeper than 1.5 m. Stomatal conductance was reduced (16%) during water stress, and did not recover in post-anthesis after resuming irrigation. Head yields (capsule + seeds + 7 cm stem) ranged between 3.8 and 4.3 t ha−1; water deficit and short vegetative period both reduced the biomass accumulated, although the effect on yields in these treatments was counterbalanced by a higher harvest index. Early flowering had a detrimental effect on alkaloid concentration in the capsule. Alkaloids yield ranged between 27 and 37 kg ha−1. Water use efficiency (WUE) ranged between 0.78 and 0.96 kg m−3 ET for yield and between 63.4 and 73.7 g m−3 ET for alkaloids. Water stress increased slightly the Water Use Efficiency. A shorter vegetative phase had no effect on WUE for biomass or yield, but decreased the WUE for alkaloids production.  相似文献   

11.
A package of water management practices including pitcher irrigation method and water conserving techniques of manure application and mulching is experimented for sustainable growth and improved production of cucumber crop in Makanya village in North Eastern Tanzania. The increase in total yield due to package of water management practices is 203 per cent and water use efficiency obtained is 12.06 kg m−3. The seasonal water requirement of cucumber crop under package of water management practices ranges from 146.30 to 198.10 mm, which is on an average 4.19 times less as compared to control treatment of can irrigation. The irrigation interval in package of water management practices is 4.9 times higher than the can irrigation method. The water and labour uses are reduced by 75.9 and 73 per cent, respectively in package of water management practices. The results showed that the self-regulative nature of pitchers and moisture retention by water conserving techniques is helpful in mitigating water stress in crop root zone. The moisture retention period in soil is increased assisting reduction of labour hours required in irrigation. In local context, the water management practices included in the package are easy to understand, adopt, operate and maintain.  相似文献   

12.
The newly developed SoilClim model is introduced as a tool for estimates of reference (ETo) and actual (ETa) evapotranspiration, presence of snow cover, soil temperature at 0.5 m depth and the soil moisture course within two defined layers. It enables one to determine the soil moisture and temperature regimes according to the United States Department of Agriculture (USDA) soil taxonomy. SoilClim works with daily time steps and requires maximum and minimum air temperature, global solar radiation, precipitation, vapor pressure and wind speed as meteorological inputs as well as basic information about the soil properties and vegetation cover. The behavior of SoilClim was assessed using observations at 5 stations in central Europe and 15 stations in the central U.S. The modeled ETo was compared with atmometers so that the coefficient of determination (R2) was 0.91 and root mean square error (RMSE) was 0.53 mm. The estimated ETa was compared against eddy-covariance and Bowen ratio measurements (R2 varied from 0.74 to 0.80; RMSE varied from 0.49 to 0.58 mm). The soil temperature (at 0.5 m depth) was estimated with good accuracy (R2 varied from 0.94 to 0.97; RMSE varied from 1.23 °C to 2.95 °C). The ability of the SoilClim model to mimic the observed soil water dynamics was carefully investigated (relative root mean square error rRMSE varied from 2.8% to 34.0%). The analysis conducted showed that SoilClim gives reasonable estimates of evaluated parameters at a majority of the included stations. Finally, a spatial analysis of soil moisture and temperature regimes (according to USDA) within the region of the Czech Republic and the northern part of Austria under present conditions was conducted and diagnosed the appearance of Perudic, Subhumid Udic, Dry Tempudic (the highest frequency), Wet Tempustic and Typic Tempustic. The simulated mean soil temperature (0.5 m depth) varied from less than 7.0 °C to 11.0 °C throughout this region. Based on these results, the SoilClim model is a useful and suitable tool for water balance and soil climate assessment on local and regional scales.  相似文献   

13.
Water conservation strategies are being developed in regions of the world expected to experience decreases in water resources due to changing climates. Strategies advocated for improving water-use efficiency may increase the incidence of soil water repellency in sandy-textured soils. We evaluated the effect of soil wetting agent formulation, and application frequency, on water repellency in sandy soil with two contrasting organic matter (OM) contents under kikuyugrass [Pennisetum clandestinum (Holst. Ex Chiov)], and irrigated at 60% replacement of net evaporation in a climate subject to hot, dry summers. The randomized plot design included two turfgrass ages [established from 20 week (7.7% OM) or 20 year old (30% OM) turfgrass in 2005, the latter included a 50 mm ‘mat’ layer], two soil wetting agent formulations (granular or liquid); two application frequencies (one or two applications per irrigation season); and plots of both turfgrass ages that did not receive any wetting agent (nil control). Both wetting agent formulations contained the same active ingredient (propylene oxide-ethylene oxide block polymer), and all wetting agent treatments received the same rate (69 L active ingredient ha−1). Water repellency in the surface soil (0-5 mm), measured using the molarity of ethanol droplet test (MED), ranged from 1.09 M to 4.32 M during the irrigation season, and was more severe in the soil with high OM (average MED, 3.3 M) than low OM content (average MED, 2.7 M). Applying one application of either granular or liquid soil wetting agent at the commencement of the irrigation season decreased the severity of soil water repellency by up to 30% in the high OM soil and by up to 60% in the low OM soil during the summer, and without the need for a second application. The decline in soil water repellency in response to soil wetting agent application was not matched by an increase in soil VWC in summer, and turfgrass quality was considered acceptable throughout the study. The soil wetting agents were less effective at treating water repellent sand containing a significant amount of OM than sand with low OM content.  相似文献   

14.
Dynamics and modeling of soil water under subsurface drip irrigated onion   总被引:3,自引:0,他引:3  
Subsurface drip irrigation provides water to the plants around the root zone while maintaining a dry soil surface. A problem associated with the subsurface drip irrigation is the formation of cavity at the soil surface above the water emission points. This can be resolved through matching dripper flow rates to the soil hydraulic properties. Such a matching can be obtained either by the field experiments supplemented by modeling. Simulation model (Hydrus-2D) was used and tested in onion crop (Allium cepa L.) irrigated through subsurface drip system during 2002-2003, 2003-2004 and 2004-2005. Onion was transplanted at a plant to plant and row to row spacing of 10 cm × 15 cm with 3 irrigation levels and 6 depths of placement of drip lateral. The specific objective of this study was to assess the effect of depth of placement of drip laterals on crop yield and application of Hydrus-2D model for the simulation of soil water. In sandy loam soils, it was observed that operating pressures of up to 1.0 kg cm−2 did not lead to the formation of cavity above the subsurface dripper having drippers of 2.0 l h−1 discharge at depths up to 30 cm. Wetted soil area of 60 cm wide and up to a depth of 30 cm had more than 18% soil water content, which was conducive for good growth of crop resulting in higher onion yields when drip laterals were placed either on soil surface or placed up to depths of 15 cm. In deeper placement of drip lateral (20 and 30 cm below surface), adequate soil water was found at 30, 45 and 60 cm soil depth. Maximum drainage occurred when drip lateral was placed at 30 cm depth. Maximum onion yield was recorded at 10 cm depth of drip lateral (25.7 t ha−1). The application of Hydrus-2D confirmed the movement of soil water at 20 and 30 cm depth of placement of drip laterals. The model performance in simulating soil water was evaluated by comparing the measured and predicted values using three parameters namely, AE, RMSE and model efficiency. Distribution of soil water under field experiment and by model simulation at different growth stages agreed closely and the differences were statistically insignificant. The use of Hydrus-2D enabled corroborating the conclusions derived from the field experimentation made on soil water distribution at different depths of placement of drip laterals. This model helped in designing the subsurface drip system for efficient use of water with minimum drainage.  相似文献   

15.
Northeast Thailand has a semi-humid tropical climate which is characterized by dry and rainy seasons. In order to stabilize crop production, it may be necessary to develop new water resources, such as soil moisture and groundwater, instead of rainfed resources. This is because rainfed agriculture has already been unsuccessfully tried in many areas of this region. In this study, we investigate the soil water content in rainfed fields in Khon Kaen in Northeast Thailand, where rice and sugarcane were planted, over a 1-year period that contained both dry and rainy seasons, and estimate the actual evapotranspiration (ETa) using micrometeorological data. In addition, we assess the water balance from the results of the soil water content investigation and the actual evapotranspiration. Although the soil water content at depths above 0.6 m in both the lower and the sloping fields gradually decreased during the dry season, the soil water content at a depth of 1.0 m was under almost constant wet conditions. Two-dimensional profiles of the soil water content demonstrated that at the end of the dry season, the soil layers below a depth of 0.4 m showed a soil water content of more than 0.10-0.15 m3 m−3, thus suggesting that water was supplied to the sugarcane from those layers. The range in ETa rates was almost the same as that in the previous study. The average ETa rates were 3.7 mm d−1 for the lower field and 4.2 mm d−1 for the sloping field. In the dry season, an upward water flow of 373 mm (equivalent to a flux of 1.9 mm d−1) was estimated from outside the profile. The source of this upward water flow was the sandy clay (SC) layer below a depth of 1 m. It was this soil water supply from the SC layer that allowed the sugarcane to grow without irrigation.  相似文献   

16.
In Georgia and many other southeastern states in the USA, the amount of water used by agriculture for irrigation is largely unknown due to the lack of reporting requirements. Recent droughts and a water dispute with the neighboring states that include Alabama and Florida have highlighted the need for an accurate estimate of water use by agriculture. The goal of this study was to evaluate the use of a crop simulation model combined with kriging for estimating the spatial distribution of the monthly irrigation water use for cotton in the Coastal Plain region of Georgia. Farmers’ monthly irrigation applications for cotton during the 2002 and 2003 growing seasons were obtained from selected sites of the Agricultural Water Pumping program. We selected 80 fields for 2002 and 51 fields for 2003. For each of these fields, we used the Cropping System Model-CROPGRO-Cotton to simulate farmers’ irrigation applications. Ordinary kriging was used to estimate the spatial distribution of monthly total irrigation in the region. We then compared the spatial and temporal distribution of irrigation amounts predicted by the Cropping System Model-CROPGRO-Cotton with the amount of water that the farmers actually applied. The Cropping System Model-CROPGRO-Cotton simulated the temporal pattern of irrigation applications very well during the growing season. The root mean square error (RMSE) between observed and simulated total irrigation for different months ranged from 5 to 23 mm in 2002 and from 2 to 14 mm in 2003. The RMSE values were generally higher in 2002 when the irrigation applications across the region were more variable when compared with 2003. Consequently, a better agreement on the spatial distribution of monthly total irrigation for the observed and simulated was obtained for 2003 than for 2002.  相似文献   

17.
Water is the most important limiting factor of wheat (Triticum aestivum L.) and maize (Zea mays L.) double cropping systems in the North China Plain (NCP). A two-year experiment with four irrigation levels based on crop growth stages was used to calibrate and validate RZWQM2, a hybrid model that combines the Root Zone Water Quality Model (RZWQM) and DSSAT4.0. The calibrated model was then used to investigate various irrigation strategies for high yield and water use efficiency (WUE) using weather data from 1961 to 1999. The model simulated soil moisture, crop yield, above-ground biomass and WUE in responses to irrigation schedules well, with root mean square errors (RMSEs) of 0.029 cm3 cm−3, 0.59 Mg ha−1, 2.05 Mg ha−1, and 0.19 kg m−3, respectively, for wheat; and 0.027 cm3 cm−3, 0.71 Mg ha−1, 1.51 Mg ha−1 and 0.35 kg m−3, respectively, for maize. WUE increased with the amount of irrigation applied during the dry growing season of 2001-2002, but was less sensitive to irrigation during the wet season of 2002-2003. Long-term simulation using weather data from 1961 to 1999 showed that initial soil water at planting was adequate (at 82% of crop available water) for wheat establishment due to the high rainfall during the previous maize season. Preseason irrigation for wheat commonly practiced by local farmers should be postponed to the most sensitive growth stage (stem extension) for higher yield and WUE in the area. Preseason irrigation for maize is needed in 40% of the years. With limited irrigation available (100, 150, 200, or 250 mm per year), 80% of the water allocated to the critical wheat growth stages and 20% applied at maize planting achieved the highest WUE and the least water drainage overall for the two crops.  相似文献   

18.
The North China Plain (NCP) is one of the most water stressed areas in the world. The water consumption of winter wheat accounts for more than 50% of the total water consumption in this region. An accurate estimate of the evapotranspiration (ET) and crop water productivity (CWP) at regional scale is therefore key to the practice of water-saving agriculture in NCP. In this research, the ET and CWP of winter wheat in 83 counties during October 2003 to June 2004 in NCP were estimated using the remote sensing data. The daily ET was calculated using SEBAL model with NOAA remote sensing data in 17 non-cloud days whereas the reference daily crop ET was estimated using meteorological data based on Hargreaves approach. The daily ET and the total ET over the entire growing season of winter wheat were obtained using crop coefficient interpolation approach. The calculated average and maximum water consumption of winter wheat in these 83 counties were 424 and 475 mm, respectively. The calculated daily ET from SEBAL model showed good match with the observed data collected in a Lysimeter. The error of ET estimation over the entire growing stage of winter wheat was approximately 4.3%. The highest CWP across this region was 1.67 kg m−3, and the lowest was less than 0.5 kg m−3. We observed a close linear relationship between CWP and yield. We also observed that the continuing increase of ET leads to a peaking and subsequent decline of CWP, which suggests that the higher water consumption does not necessarily lead to a higher yield.  相似文献   

19.
Micro-catchment water harvesting (MCWH) requires development of small structures across mild land slopes, which capture overland flow and store it in soil profile for subsequent plant uses. Water availability to plants depends on the micro-catchment runoff yield and water storage capacity of both the plant basin and the soil profile in the plant root zone. This study assessed the MCWH potential of a Mediterranean arid environment by using runoff micro-catchment and soil water balance approaches. Average annual rainfall and evapotranspiration of the studied environment were estimated as 111 and 1671 mm, respectively. This environment hardly supports vegetation without supplementary water. During the study period, the annual rain was 158 mm in year 2004/2005, 45 mm in year 2005/2006 and 127 mm in year 2006/2007. About 5000 MCWH basins were developed for shrub raising on a land slope between 2 and 5% by using three different techniques. Runoff at the outlets of 26 micro-catchments with catchment areas between 13 and 50 m2 was measured. Also the runoff was indirectly assessed for another 40 micro-catchments by using soil water balance in the micro-catchments and the plant basins. Results show that runoff yield varied between 5 and 187 m3 ha−1 for various rainfall events. It was between 5 and 85% of the incidental rainfall with an average value of 30%. The rainfall threshold for runoff generation was estimated about 4 mm. Overall; the soil water balance approach predicted 38-57% less water than micro-catchment runoff approach. This difference was due to the reason that the micro-catchment runoff approach accounted for entire event runoff in the tanks; thus showed a maximum water harvesting potential of the micro-catchments. Soil water balance approach estimated water storage in soil profile and did not incorporate water losses through spillage from plant basins and deep percolation. Therefore, this method depicted water storage capacity of the plant basins and the root zone soil profile. The different between maximum water harvesting potential and soil-water storage capacity is surplus runoff that can be better utilized through appropriate MCWH planning.  相似文献   

20.
In the spring-summer season of 2005 and 2006, we explored the influence of three fertigation strategies (A-C) on the water and nitrogen use efficiency of semi-closed rockwool culture of greenhouse tomato conducted using saline water (NaCl concentration of 9.5 mol m−3). The strategies under comparison were the following: (A) crop water uptake was compensated by refilling the mixing tank with nutrient solution at full strength (with the concentrations of macronutrients equal or close to the corresponding mean uptake concentrations as determined in previous studies) and the recirculating nutrient solution was flushed out whenever its electrical conductivity (EC) surpassed 4.5 dS m−1 due to the accumulation of NaCl; (B) the refill nutrient solution had a variable EC in order to maintain a target value of 3.0 dS m−1; due to the progressive accumulation of NaCl, the EC and macronutrient concentrations of the refill nutrient solution tended to decrease with time, thus resulting in a progressive nutrient depletion in the recycling water till N-NO3 content dropped below 1.0 mol m−3, when the nutrient solution was replaced; (C) likewise Strategy A, but when EC reached 4.5 dS m−1, crop water uptake was compensated with fresh water only in order to reduce N-NO3 concentration below 1.0 mol m−3 before discharge. In 2005 an open (free-drain) system (Strategy D), where the plants were irrigated with full-strength nutrient solution without drainage water recycling, was also tested in order to verify the possible influence of NaCl accumulation and/or nutrient depletion in the root zone on crop performance. In the semi-closed systems conducted following strategies A, B or C, the nutrient solution was replaced, respectively, 10, 14 and 7 times in 2005, and in 19, 24 and 14 times in 2006, when the cultivation lasted 167 days instead of 84 days in 2005. In both years, there were no important differences in fruit yield and quality among the strategies under investigation. Strategy C produced the best results in terms of water use and drainage, while Strategy B was the most efficient procedure with regard to nitrogen use. In contrast to strategies A and D, the application of strategies B and C minimized nitrogen emissions and also resulted in N-NO3 concentrations in the effluents that were invariably lower than the limit (approximately 1.42 mol m−3) imposed to the N-NO3 concentration of wastewater discharged into surface water by the current legislation associated to the implementation of European Nitrate Directive in Italy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号