首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Comparison of water status indicators for young peach trees   总被引:12,自引:1,他引:12  
We measured a series of physiological and physical indicators and compared them to xylem sap flow, to identify the most sensitive and reliable plant water status indicator. In the growing season of 1998, 4-year-old peach trees (Prunus persica Batsch cv. 'Suncrest', grafted on 'GF 677' rootstock) were studied under two irrigation treatments, 25 l dayу and no irrigation, and during recovery. Trials were conducted near Pisa (Italy) in a peach orchard situated on a medium clay loam soil and equipped with a drip-irrigation system (four 4 l hу drippers per tree). Measurements of leaf water potential (ƒW), stem water potential (ƒS), and leaf temperature (Tl) were taken over 5 days (from dawn to sunset) and analyzed in conjunction with climatic data, sap flow (SF), trunk diameter fluctuation (TDF) and soil water content (SWC). Physiological indicators showed substantial differences in sensitivity. The first indication of changes in water status was the decrease of stem radial growth. TDF and SF revealed significant differences between the two irrigation treatments even in the absence of differences in pre-dawn leaf water potential (pdƒW), up until now widely accepted as the benchmark of water status indicators. Irrigated trees showed a typical trend in SF rate during the day, while in non-irrigated plants the maximum peak of transpiration was anticipated. Measurements of water potential showed ƒS to be a better indicator of tree water status than ƒW. Tl was found to have poor sensitivity. In conclusion, we found the sensitivity of the indicators from the most to the least was: TDF >SF rate >SF cumulated = pdƒWS>mdƒW>Tl.  相似文献   

2.
Large areas of vineyards have been established in recent years in arid region of northwest China, despite limited water resources. Water to support these vineyards is mainly supplied by irrigation. Accurate estimation of vineyard evapotranspiration (ET) can provide a scientific basis for developing irrigation management. Transpiration and soil evaporation, as two main components of ET, were measured separately in a vineyard in this region by heat balance sap flow system and micro-lysimeters during the growing season of 2009. Diurnal and seasonal dynamics of sap flow and its environmental controls were analyzed. Daily sap flow rate (SRl) increased linearly with solar radiation (Rs), but showed an exponential increase to its maximum curve as a function of vapor pressure deficit (VPD). Residuals of the two regressions both depended on volumetric soil water content to a depth of 1.0 m (VWC). VWC also significantly influenced SRl. The relationship of them could be expressed by a piecewise regression with the turnover point of VWC = 0.188 cm3 cm−3, which was ∼60% of the field capacity. Conversely, soil evaporation (Es) increased exponentially with VWC. Thus, we recommended keeping VWC in such vineyards slightly above ∼60% of the field capacity to maintain transpiration while reducing soil evaporation. Vineyard transpiration (Ts) was scaled from sap flow by using leaf area (Al) as it explained 60% of the spatial variability of sap flow. Vine transpiration was 202.0 mm during the period from April 28 to October 5; while that of Es was 181.0 mm. The sum of these two components was very close to ET estimated by the Bowen ratio energy balance method (386.9 mm), demonstrating the applicability of sap flow for measuring grape water use in this region.  相似文献   

3.
The compensation heat-pulse method for measuring sap flow is tested here in olive trees (Olea europaea L.). We describe a rigorous three-way examination of the robustness of the technique for this species, and examine the potential of the technique for an automatic control of the irrigation system. Two tests were carried out using heat-pulse gear inserted into the stem of 12-year-old ‘Manzanilla’ olive trees. One test used forced-flow through a stem section, and the other involved measured water uptake by an excised tree. The measured sap flow in these two tests was in agreement with calculations from heat-pulse velocities when using a standard ‘wound correction’ to account for the presence of the probes and the disruption to the sap flow. Thus, this technique for monitoring transpiration can, we feel, be used with confidence in olives.The third experiment was carried out in the field, where we analysed sap flow data from two 29-year-old olive trees — one tree was under regular drip irrigation and the other was from dry-farming conditions. We use measurements of sap flow in the trunk to examine the hydraulic functioning of the tree, and to explore some diagnostics of water stress. Our heat-pulse measurements in the irrigated olive tree exhibited a profile of sap flow that was weighted towards the outer xylem of the tree trunk while the water-stressed trees in the field showed a profile of sap flow weighted towards the centre of the trunk. The loss of hydraulic functioning in the outermost section of the vascular system, as a result of water stress, we consider to be due both to stomatal control and to embolisms in the xylem vessels.The fourth experiment was also carried out in the field, in which sap flow measurements were made at three locations in the trunk as well as in two roots of another 29-year-old olive tree. The soil explored by each root, on opposite sides of the trunk, was differentially wetted by separate irrigation of each side. Our data showed that the surface roots were able to absorb water immediately after wetting, despite a reasonably prolonged period of moderate drought. Root activity quickly shifted to the regions where the soil had been wetted. A root in dry soil exhibited no flow at night, whereas sap flows of about 0.02 l h−1 were measured around midnight in the root drawing water from the wetter soil. Our observations suggest that the hydraulic behaviour of the trunk and surface roots might be used as a diagnostic of the onset, or severity, of water stress. Here there is not the imperative to replicate, for the prime goal is not transpiration estimation. Rather interpretation of the diurnal dynamics is used to infer the onset, or severity of water stress.The compensation heat-pulse seems a suitable technique for automatically controlling the irrigation system of olives, and probably other trees, based either on the estimation of the short-time dynamics of transpiration, or on changes in the hydraulic behaviour of the trees.  相似文献   

4.
[目的]探明热带桉树树干液流与环境因子间的时滞效应及其影响因素.[方法]运用Granier热扩散探针技术对海南省西北部儋州林场生长季(5-10月)桉树树干液流速率进行了实时监测,并同步监测了光合有效辐射(PAR)、大气温度(Ta)、相对湿度(Rh)和0~60 cm土壤含水率(SWC),运用错位相关法分析了液流速率与PA...  相似文献   

5.
Granier type sap flow gauges were used to estimate canopy transpiration from a 7-year-old sweet orange (Citrus sinensis L. Osbeck) orchard in Ghana, West Africa. The aim of the study was to use sap flow based transpiration estimates in modelling the stomatal control of water transport under rain-fed and subhumid tropical conditions. Canopy conductance (gc) of the sweet orange was calculated by inverting the Penman–Monteith equation. Both multiple linear regression and a Jarvis-type model, based on a set of environmental control functions, have been used to simulate half-hourly citrus canopy conductance. Both methods could adequately predict bulk stomatal conductance of the orchard and were suitable for use in the Penman–Monteith equation to estimate transpiration rates. In both models, the vapour pressure deficit was the dominant regulator of canopy transpiration as it explained about 80% of the variations in canopy conductance. A simple envelop function of canopy conductance as a function of the solar radiation and vapour pressure deficit was equally suitable for gc prediction. However, the Jarvis formulation provided the best estimation of conductance compared to other models. Validation with separate data sets confirmed the good performance of these models to investigate the response of citrus to changing environmental conditions.  相似文献   

6.
A short-term experiment was conducted to determine the effects of reducing tree size on peach tree water use (TWU). Tree size was progressively reduced by de-branching an individual isolated tree over a 15-day period. TWU was measured at 15-min intervals using heat pulse sap flow sensors located at eight positions in the trunk sapwood. Measures of TWU were compared with estimates derived from reference crop evapotranspiration (ETo) and the area of shade cast by the tree on the soil surface (A SH). A SH was estimated prior to each de-branching event using a combination of photographs of the tree taken from the direction of the sun, and measures of fractional radiation interception in the area of shade cast by the tree. TWU and ETo averaged 39.5 l/day and 4.7 mm/day, respectively, in the 6-day period prior to de-branching. Effective canopy cover (ECC; estimated as A SH measured at solar noon) was 5.8 m2 in that period. Five de-branching events reduced TWU and ECC by >95%. To account for the daytime variation in A SH, we used effective area of shade (EAS), calculated from estimates of A SH at solar noon and 3 h each side of solar noon. K cb, the basal crop coefficient defined by Allen et al. [Crop evapotranspiration: guidelines for computing crop water requirements (FAO irrigation and drainage paper 56). Food and Agriculture Organisation of the United Nations, Rome, 1998], was related to EAS by K cb = 1.05 EAS. These data for an isolated tree suggest that the transpiration component of orchard water use may be related to ETo using estimates of effective fraction of shade on the soil surface.  相似文献   

7.
In this paper, based on the analysis of a long-term energy balance monitoring programme, a Bowen ratio-based method (BR) was proposed to resolve the lack of closure of the eddy covariance technique to obtain reliable sensible (H) and latent heat fluxes (λE). Evapotranspiration (ET) values determined from the BR method (ETc,corr) were compared with the upscaled transpiration data determined by the sap flow heat pulse (HP) technique, evidencing the degree of correspondence between instantaneous transpirational flux at tree level and the micrometeorological measurement of ET at orchard level. Using the BR-corrected λE fluxes, a crop ET model implementing the Penman–Monteith approach, where the canopy surface resistance was determined from standard microclimatic variables, was applied to determine the crop coefficient values. The performance of the model was evaluated by comparing it with the sap flow HP data. The results of the comparison were satisfactory, and therefore, the proposed methodology may be considered valid for characterizing the ET process for orange orchards grown in a Mediterranean climate. By contrast to reports in the FAO 56 paper, the crop growth coefficient of the orange orchard being studied was not constant throughout the growing season.  相似文献   

8.
Using a correlation between trunk diameter fluctuation (TDF) and stem water potential (SWP) it appears possible to determine water deficit threshold values (WDTV) for young cherry trees. This correlation must be based on a significant effect between SWP and at least one variable associated with the vegetative or reproductive growth of the trees. The objectives of this study are: (1) to determine the effect of several irrigation treatments on vegetative and reproductive growth and the SWP of young cherry trees; (2) to determine the correlation between TDF and SWP, and; (3) to propose a first approximation of SWP and TDF water deficit threshold values for young cherry tree plants. The experiment was carried out between September and April of the 2005-2006 and 2006-2007 seasons, in Quillota, in the Valparaiso region, central Chile. The irrigation treatments consisted of applications of 50% (T50), 100% (T100) and 150% (T150) of potential evapotranspiration (ET0) over the two growing seasons, using a randomized complete block design (RCB). The effect of irrigation scheduling was observed on: apical shoot growth rate (GRAS), branch cross-sectional area (BCSA), canopy volume (CV), annual length of accumulated growth (ALAG) and productivity. This effect showed that the T50 treatment caused lower SWP (measured pre-dawn), vegetative growth and productivity. The fruit quality variables (cracking and size) were not affected by the different treatments. Combining the vegetative growth, productivity and SWP results shows that the water deficit threshold value, as a first approximation, is between 50% and 100% of ET0, and therefore the critical SWP for defining irrigation frequency should be close to −0.5 MPa. Upon applying a post-harvest drought period (14 days without irrigation), a linear correlation was determined both between SWP and maximum daily trunk shrinkage, MDS (R2 = 0.69) and between SWP and trunk growth rate, TGR (R2 = 0.57). Using these correlations and the SWP reference value, reference values were obtained for MDS (165 μm) and TGR (83 μm day−1), which would permit automated control of water status in young cherry trees.  相似文献   

9.
We used sap flow and trunk diameter measurements for assessing water stress in a high-density ‘Arbequina’ olive orchard with control trees irrigated to replace 100 % of the crop water needs, and 60RDI and 30RDI trees, in which irrigation replaced ca. 60 and 30 % of the control, respectively. We calculated the daily difference for both tree water consumption ( $ D_{{E_{\text{p}} }} $ ) and maximum trunk diameter (D MXTD) between RDI trees and control trees. The seasonal dynamics of $ D_{{E_{\text{p}} }} $ agreed reasonably well with that of the stem water potential. We identified peculiarities on the response $ D_{{E_{\text{p}} }} $ to changes in water stressing conditions, which must be taken into account when using the index. An analysis of the water stress variability in the orchard is required for choosing the instrumented trees. The reliability of the D MXTD index was poorer than that of $ D_{{E_{\text{p}} }} $ . The maximum daily shrinkage (MDS) was not a reliable water stress indicator.  相似文献   

10.
To quantify night-time (S n) and diurnal (S d) tree water uptake, two sets of sap flow sensors (heat-pulse compensated) were installed per tree in the north-east and south-west sides of the trunk in three trees per treatment. There were two treatments: (1) control, irrigated with 100 % ETc (T100), and (2) deficit, irrigated at 60 % ETc (T60) with daily irrigations at the peak atmospheric demand (December–January). Normalised S n by trees was in the range of 15–25 % throughout the season, compared to normalised S d, for T100 and T60, respectively. Furthermore, S n was parabolically correlated to plant water status from the previous day, measured as midday stem water potential. We also found strong correlations between S n and nocturnal vapour pressure deficit for T100 and T60, indicating that nocturnal transpiration was significant for both treatments. Differences in S n were observed for the NE and SW sensors for T60, being significantly less for the NE side (sunny side) compared to the SW side (more shaded). No differences were observed for T100 regarding probe positioning.  相似文献   

11.
Improved approaches for irrigation scheduling require specific protocols for adaptation to different growing conditions. We assessed crop intercepted radiation as the main factor for decision on irrigation scheduling. Over two growing seasons (2007-2008), apple trees growing in a large weighing lysimeter were used to measure daily canopy transpiration (Td). Seasonal patterns of daily canopy intercepted photosynthetically active radiation (IPARd) and midday stem water potential were also measured. In 2007, irrigation was withheld in two different times to study Td responses to midday stem water potential. Before harvest, under full irrigation, Td increased linearly with IPARd (R2 = 0.81 in 2007 and 0.84 in 2008). With the two year data combined, R2 increased from 0.74 to 0.80 when VPD was considered as a second variable. When irrigation was withheld in 2007 the ratio between Td and IPARd, which is defined here as transpiratory radiation use efficiency (TRUE), decreased linearly (R2 = 0.49) as midday stem water potential decreased. Due to the highly significant effect of IPARd and VPD on Td, TRUE showed potential applications in estimating the amount of irrigation water.  相似文献   

12.
Efficiently controlling soil water content with irrigation is essential for water conservation and often improves potato yield. Volumetric soil water content (θv) in relation to irrigation, plant uptake, and yield in potato hills and replicated plots was studied to evaluate four water management options. Measurements of θv using a hammer driven probe were used to derive a θv index representing the relative θv status of replicated plots positioned along a hill slope. Time series for θv were determined using time domain reflectometry (TDR) probes at 5 and 15 cm depths at the center, shoulder, and furrow locations in potato hills. Sap flow was determined using flow collars in replicated field plots for four treatments: un-irrigated, sprinkler, surface drip, and sub-surface drip irrigation (40 cm depth). Irrigated yields were high/low as the θv index was low/high suggesting θv excess was a production problem in the wetter portions of the study area. The diurnal pattern of sap flow was reflected in the θv fluctuation it induces at hill locations with appreciable uptake. Hill locations with higher plant uptake were drier as was the case for the 5 cm (dry) depth relative to the 15 cm (wet) depth and for locations in the hill (dry) relative to the furrow (wet). The surface drip system had the lowest water use requirement because it delivers water directly to the hill locations where uptake is greatest. The sub-surface drip system wetted the hill gradually (1-2 days). Measurement of the θv index prior to experimental establishment could improve future experimental design for treatment comparisons.  相似文献   

13.
Transpiration of well-watered and regulated deficit irrigated (RDI) citrus trees was determined by sap flow (SF) measurements using the compensation heat-pulse method. Its potential for detection of plant water stress was evaluated in comparison with measurements of midday stem water potential (ψstem). The study was carried out during 2 years in two commercial groves of Clementina de Nules (CN) and Navel Lane Late (NLL). SF measurements were taken in two trees per treatment instrumented with two identical gauges per tree in NLL and two different types of gauges (type 1 shorter than type 2) in CN. The absolute SF values underestimated the tree water use. Averaged over the entire period of water restrictions, a reduction of about 50 % in water application in the RDI trees of both species decreased tree transpiration compared to the control trees only by a 15 %. Both the nocturnal-to-diurnal SF ratio and the relative transpiration were in good agreement with differences in ψstem. Overall, results suggest that SF measurements should be preferentially used in relative terms. Sap flow sensors are useful for detecting plant water stress, but they also highlight some of the problems for accurately measuring transpiration.  相似文献   

14.
Plant age and size, seasonal growth patters and crop load, among other factors, have been reported to decrease the usefulness of trunk diameter variation (TDV) derived indices as water stress indicators in olive trees. Our hypothesis, however, is that indices derived from TDV records in old, big olive trees are sensitive enough to detect levels of water stress in trees of orchards under deficit irrigation that, although severe, are below the threshold for fruit shrivelling. This is of importance for the production of good quality oils, since fruit shrivelling may affect oil quality. The aim of this work was to assess different TDV-derived indices as water stress indicators in 40-year-old ‘Manzanilla’ olive trees with heavy crop load. We derived the maximum daily shrinkage (MDS), daily growth (DG) and daily recovery (DR) from TDV records taken during the 2008 dry season both in well-irrigated FAO trees and in deficit-irrigated RI trees. Measurements of volumetric soil water content (θv), leaf water potential (Ψl), stomatal conductance (gs), net CO2 assimilation rate (A), water and oil accumulation in the fruits and yield parameters were made for both treatments. The trunks did not grow during the experimental season, either in the FAO or RI trees, likely because of the heavy crop load. Therefore, DG was useless as water stress indicator. For MDS and DR, which were responsive to the increase of the trees’ water stress, we calculated the variability, quantified by the coefficient of variation (CV), the signal intensity (SI) and the sensitivity (SI/CV) values. In addition, we derived reference equations for irrigation scheduling from the relationships between MDS values in the FAO trees and main meteorological variables. Values both of SI-MDS and SI-DR were steady until September 9, despite of increasing differences in θv between treatments from early in the dry season. The Ψl vs θv values showed an outstanding capacity of the RI trees to take up water from the drying soil, and the Ψl vs gs values showed a near-isohydric behaviour of those deficit-irrigated trees. These results explain, at least in part, the lack of response of MDS and DR on that period. Both SI-MDS and SI-DR peaked for the first time on September 9, 16 days before the appearance of fruit shrivelling. Our results suggest that using TDV-derived indices as water stress indicators for irrigation scheduling in old olive orchards with medium to low plant densities, i.e. with large root zones, may be useless in case the irrigation strategy is aimed at keeping the soil close to field capacity. Nevertheless, the MDS and DR indices may be useful indicators for the avoidance of fruit shrivelling in deficit irrigated olive orchards for the production of good quality oil. Reliable reference equations for scheduling irrigation with the signal intensity approach were obtained from the regression of MDS values vs the daily maximum values of both the air temperature and the vapour pressure deficit of the air.  相似文献   

15.
The evapotranspiration of hedge-pruned olive orchards (Olea europaea L. cv. Arbequina) was measured under the semiarid conditions of the middle Ebro River Valley in a commercial olive orchard (57 ha) during 2004 and 2005. No measured ETc values for this type of olive orchards have previously been reported. An eddy covariance system (krypton hygrometer KH20 and 3D sonic anemometer CSAT3, Campbell Scientific) was used. The eddy covariance measurements showed a lack of the energy balance closure (average imbalance of 26%). Then sensible and latent heat (LE) flux values were corrected using the approach proposed by Twine et al. (2000) in order to get daily measured olive evapotranspiration (ETc) and crop coefficient (Kc) values. The highest measured monthly ETc averages were about 3.1-3.3 mm day−1, while the total seasonal ETc during the irrigation period (March-October) was about 585 mm (in 2004) and 597 mm (in 2005). Monthly Kc values varied from about 1.0 (Winter) to 0.4-0.5 (Spring and Summer). These Kc values were similar to Kc values reported for round-shape canopy olive orchards, adjusted for ground cover, particularly during late Spring and Summer months when differences among measured and published Kc values were about less than 0.1.  相似文献   

16.
【目的】探明热带桉树蒸腾耗水时间变化规律及其与环境因子的关系。【方法】通过热扩散探针法(TDP)于2016年1—12月对海南省儋州林场桉树树干液流进行实时监测,并同步监测气象、土壤水分等相关环境因子。【结果】①雨季桉树液流瞬时变化特征多为"双峰"型曲线,旱季为"单峰"型,雨季液流到达峰值时间在11:00—11:30之间,峰值平均为8.68 mL/(cm2·h),并在15:00—15:30出现第2个液流峰值,平均峰值为8.16 mL/(cm2·h),旱季液流达到峰值时间在13:00—13:30之间,峰值平均为7.45 mL/(cm2·h);②旱季和雨季桉树液流瞬时速率对相对湿度和大气温度的时滞均为30 min,对光合有效辐射的时滞均为-30 min;③日尺度上桉树平均液流速率为2.06 mL/(cm2·h),最大值出现在7月15日,为4.25 mL/(cm2·h);最小值出现在11月25日,为0.14 mL/(cm2·h),太阳有效辐射(PAR)、大气温度(Ta)、饱和水气压差(VPD)是影响桉树日均液流的主要环境因子,树木胸径大小与日均液流速率正相关;④桉树月均液流速率的变化特征为"单峰型"曲线,雨季液流速率均值为2.53 mL/(cm2·h),旱季为1.80 mL/(cm2·h),最大值出现于7月,为3.42 mL/(cm2·h),最小值在2月,为1.40 mL/(cm2·h),其中PAR、Ta、VPD是主要影响因子。【结论】热带桉树人工林液流存在明显昼夜与季节节律,不同观测尺度下影响桉树液流速率的主要环境因子均为PAR、Ta、VPD。  相似文献   

17.
Information on suspended sediment load is crucial to water management and environmental protection. Suspended sediment loads for three major rivers (Mississippi, Missouri and Rio Grande) in USA are estimated using artificial neural network (ANN) modeling approach. A multilayer perceptron (MLP) ANN with an error back propagation algorithm, using historical daily and weekly hydroclimatological data (precipitation P(t), current discharge Q(t), antecedent discharge Q(t−1), and antecedent sediment load SL(t−1)), is used to predict the suspended sediment load SL(t) at the selected monitoring stations. Performance of ANN was evaluated using different combinations of input data sets, length of record for training, and temporal resolution (daily and weekly data). Results from ANN model were compared with results from multiple linear regressions (MLR), multiple non-linear regression (MNLR) and Autoregressive integrated moving average (ARIMA) using correlation coefficient (R), mean absolute percent error (MAPE) and model efficiency (E). Comparison of training period length was also made (4, 3 and 2 years of training and 1, 2 and 3 years of testing, respectively). The model efficiency (E) and R2 values were slightly higher for the 4 years of training and 1 year of testing (4 * 1) for Mississippi River, indifferent for Missouri and slightly lower for Rio Grande River. Daily simulations using Input 1 (P(t), Q(t), Q(t−1), SL(t−1)) and three years of training and two years of testing (3 * 2) performed better (R2 and E of 0.85 and 0.72, respectively) than the simulation with two years of training and three years of testing (2 * 3) (R2 and E of 0.64 and 0.46, respectively). ANN predicted daily values using Input 1 and 3 * 2 architecture for Missouri (R2 = 0.97) and Mississippi (R2 = 0.96) were better than those of Rio Grande (R2 = 0.65). Daily predictions were better compared to weekly predictions for all three rivers due to higher correlation within daily than weekly data. ANN predictions for most simulations were superior compared to predictions using MLR, MNLR and ARIMA. The modeling approach presented in this paper can be potentially used to reduce the frequency of costly operations for sediment measurement where hydrological data is readily available.  相似文献   

18.
To understand the relations between water use and yield in response to crop load, two experiments were conducted in olive (cv. Morisca), during six consecutive years (2002-2007) in an experimental orchard located in Badajoz, Southwest Spain. Experiment 1, assessed the responses during the early years of the orchard (2002-2004) using four irrigation treatments that applied fractions of the estimated crop evapotranspiration (ETc) (125%, 100%, 75% and 0%) and three crop load levels (100%, 50% and 0% of fruit removal, termed Off, Medium and On treatments). Experiment 2 assessed the response of more mature trees (2005-2007) to three irrigation treatments (115%, 100%, and 60% of ETc) and the natural crop load which were Off, On, and Medium in 2005, 2006 and 2007, respectively. Yield was reduced by water deficits and so did the estimated tree transpiration which was linearly related to yield (y = 1.2302x − 21.15, R2 = 0.8864), showing the high sensitivity of cultivar Morisca to water deficits. The relations between fruit number and fruit weight showed that high crop loads had lower fruit weights and oil yield, a decrease that was more pronounced as water deficits increased. The yield response to water supply in the control and excess treatments, and the observations on the water relations of these two treatments suggest that the calculations made using the FAO method (Doorenbos and Pruit, 1974) with the crop coefficient proposed by Pastor et al. (1998) and the reduction coefficient (Fereres et al., 1982) to apply 100% of ETc in the control treatment, underestimated the ETc of the orchard. The results indicate that, although the absence of fruits lead to reduced water use as compared to situations of medium and high crop loads, canopy size was much more determinant of orchard water requirements than crop load.  相似文献   

19.
Water requirements of olive orchards are difficult to calculate, since they are influenced by heterogeneous factors such as age, planting density and irrigation systems. Here we propose a model of olive water requirements, capable of separately calculating transpiration (E p), intercepted rainfall evaporation (E pd) and soil evaporation (E s) from the wet and dry fraction of the soil surface under localized irrigation. The model accounts for the effects of canopy dimension on E p and of the wetted soil surface fraction on E s. The model was tested against actual measurements of olive evapotranspiration (ET) obtained by the eddy covariance technique in a developing olive orchard during 3 years. The predicted ET and crop coefficients showed good agreement with the measured data. The model was then used to simulate the average water requirements of two mature orchards using 20-year meteorological datasets of Cordoba (Spain) and Fresno (CA, USA). Average annual ET of a 300 trees ha−1 orchard at Cordoba was 1,025 mm, while the same orchard at Fresno had an average ET of 927 mm. Transpiration losses were 602 mm at Cordoba and 612 mm at Fresno. Evaporation from the soil can have a large effect on olive ET; thus, olive crop coefficients (K c) are very sensitive to the rainfall regime.  相似文献   

20.
Improving irrigation water management is becoming important to produce a profitable crop in South Texas as the water supplies shrink. This study was conducted to investigate grain yield responses of corn (Zea mays) under irrigation management based on crop evapotranspiration (ETC) as well as a possibility to monitor plant water deficiencies using some of physiological and environmental factors. Three commercial corn cultivars were grown in a center-pivot-irrigated field with low energy precision application (LEPA) at Texas AgriLife Research Center in Uvalde, TX from 2002 to 2004. The field was treated with conventional and reduced tillage practices and irrigation regimes of 100%, 75%, and 50% ETC. Grain yield was increased as irrigation increased. There were significant differences between 100% and 50% ETC in volumetric water content (θ), leaf relative water content (RWC), and canopy temperature (TC). It is considered that irrigation management of corn at 75% ETC is feasible with 10% reduction of grain yield and with increased water use efficiency (WUE). The greatest WUE (1.6 g m−2 mm−1) achieved at 456 mm of water input while grain yield plateaued at less than 600 mm. The result demonstrates that ETC-based irrigation can be one of the efficient water delivery schemes. The results also demonstrate that grain yield reduction of corn is qualitatively describable using the variables of RWC and TC. Therefore, it appears that water status can be monitored with measurement of the variables, promising future development of real-time irrigation scheduling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号