首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Evaluation of the flood mitigation effect of a Paddy Field Dam project   总被引:1,自引:0,他引:1  
To mitigate flood damage due to a recent increase in the frequency and magnitude of heavy rainfall events, the Kamihayashi district in Niigata prefecture, Japan, has undertaken flood mitigation measures using paddy fields by installing runoff control devices in drainage boxes of paddy field plots. The purpose of this study is to evaluate the flood mitigation performance of the Paddy Field Dam project in terms of a decrease in discharge volume, drop in channel water level and reduction of inundation damage using combined hydrologic analyses and flood routing. The model constructed for runoff analysis is composed of three modules: a hilly/residential area module in which the overland flow is estimated using the kinematic wave method, a paddy field module in which runoff from paddy fields is calculated using water balance analysis, and a channel network module in which flood routing is performed using a one-dimensional unsteady flow model. The outputs of the first two modules are the input of the third module. The result of the simulation shows the main channel discharge decreased by 26% and the water level dropped by 0.17 m in the case of the largest observed rainfall event. The simulated effect was larger for larger rainfall events. In terms of flood water volume, the runoff control devices have the effect of reducing the flood damage due to the 50-year return period rainfall event to almost that due to the 10-year return period rainfall event.  相似文献   

2.
Long-term hydrologic simulations are presented predicting the effects of drainage water management on subsurface drainage, surface runoff and crop production in Iowa's subsurface drained landscapes. The deterministic hydrologic model, DRAINMOD was used to simulate Webster (fine-loamy, mixed, superactive, mesic) soil in a Continuous Corn rotation (WEBS_CC) with different drain depths from 0.75 to 1.20 m and drain spacing from 10 to 50 m in a combination of free and controlled drainage over a weather record of 60 (1945-2004) years. Shallow drainage is defined as drains installed at a drain depth of 0.75 m, and controlled drainage with a drain depth of 1.20 m restricts flow at the drain outlet to maintain a water table at 0.60 m below surface level during the winter (November-March) and summer (June-August) months. These drainage design and management modifications were evaluated against conventional drainage system installed at a drain depth of 1.20 m with free drainage at the drain outlet. The simulation results indicate the potential of a tradeoff between subsurface drainage and surface runoff as a pathway to remove excess water from the system. While a reduction of subsurface drainage may occur through the use of shallow and controlled drainage, these practices may increase surface runoff in Iowa's subsurface drained landscapes. The simulations also indicate that shallow and controlled drainage might increase the excess water stress on crop production, and thereby result in slightly lower relative yields. Field experiments are needed to examine the pathways of water movement, total water balance, and crop production under shallow and controlled drainage in Iowa's subsurface drained landscapes.  相似文献   

3.
The Chiyoda basin is located in the Saga Prefecture of the Kyushu Island, Japan, and lies next to the tidal compartment of the Chikugo River, into which excess water in the basin is drained away. This basin has a total area of approximately 1100 ha and is a typical flat and low-lying agricultural area. The estimation of the water levels at the gates and along the main drainage canal is a crucial issue that has recently been the subject of much research. At these locations farmers and managers need to control the operation of the irrigation and drainage systems during periods of cultivation. An attempt has been made to apply a feed-forward artificial neural network (FFANN) to model and estimate the water levels in the main drainage canal. The study indicated that the artificial neural network (ANN) could successfully model the complex relationship between rainfall and water levels in this flat and low-lying agricultural area. Input variables and the model structure were selected and optimized by trial and error, and the accuracy of the model was then evaluated by comparing the simulated water levels with the observed ones during an irrigation period in July 2007. The water levels at two locations, located upstream and downstream of a main drainage canal, were investigated by using a time series at intervals of 20, 30, and 60 min. At these intervals, rainfall and tide water levels in the Chikugo River were measured, and the backward time-step numbers of the input variables of rainfall and tide water level were searched. For the upstream location, the optimal combination yielding good agreement between the observed and estimated water levels was obtained when the interval of the time series was 60 min. The number of backward time-steps of the input variables of rainfall and tide water level were 5 and 4, respectively. In contrast to the downstream location, the optimal combination was obtained for the interval time series of 20 min with 4 backward time-steps for both the input variables of rainfall and tide water level. The present study could provide farmers and managers with a useful tool for controlling water distribution in the drainage basin, and reduce the cost of installing water level observation points at many locations in the main drainage canal.  相似文献   

4.
A plastic-covered ridge and furrow rainfall harvesting (PRFRH) system combined with mulches was designed to increase water availability to crops for improving and stabilizing agricultural production in the semiarid Loess region of northwest China. The system was built by shaping the soil surface with alternate ridges and furrows along the contour. The plastic-covered ridges served as a rainfall harvesting zone and furrows as a planting zone. Some materials were also used to mulch the furrows to increase the effectiveness of the harvested water. This system can make better utilization of light rain by harvesting rainwater through the plastic-covered ridge. The field experiment (using corn as an indicator crop) showed that grain yields in the PRFRH system with mulches in 1998 and 1999 were significantly higher than the controls, with an increase of 4010–5297 kg per ha (108–143%). In most treatments, the water use efficiencies (WUE) were in excess of 2.0 kg m−3. The WUE values of corn in this system were 1.9 times greater than the controls in 1998 and 1.4 times greater than the controls in 1999. The plastic-covered ridge led to a yield increase of 3430 kg per ha (92%) in 1998 and of 1126 kg per ha (21%) in 1999 compared with the uncovered ridge. On average, the additional mulches in the furrow brought about a yield increase of 8–25%. Based on the results of this study and other researches, this technique can increase corn grain yield by 60–95% in drought and average years, 70–90% in wet years, and 20–30% in very wet years. The PRFRH system had the potential to increase crop yield and produced greater economic benefit, therefore it could be used in regions dominated by light rainfall of low intensity where crops generally fail due to water stress.  相似文献   

5.
The Southeast U.S. receives an average of 1300 mm annual rainfall, however poor seasonal distribution of rainfall often limits production. Irrigation is used during the growing season to supplement rainfall to sustain profitable crop production. Increased water capture would improve water use efficiency and reduce irrigation requirements. Furrow diking has been proposed as a cost effective management practice that is designed to create a series of storage basins in the furrow between crop rows to catch and retain rainfall and irrigation water. Furrow diking has received much attention in arid and semi-arid regions with mixed results, yet has not been adapted for cotton production in the Southeast U.S. Our objectives were to evaluate the agronomic response and economic feasibility of producing cotton with and without furrow diking in conventional tillage over a range of irrigation rates including no irrigation. Studies were conducted at two research sites each year from 2005 to 2007. Irrigation scheduling was based on Irrigator Pro for Cotton software. The use of furrow diking in these studies periodically reduced water consumption and improved yield and net returns. In 2006 and 2007, when irrigation scheduling was based on soil water status, an average of 76 mm ha−1 of irrigation water was saved by furrow diking, producing similar cotton yield and net returns. Furrow diking improved cotton yield an average of 171 kg ha−1 and net return by $245 ha−1 over multiple irrigation rates, in 1 of 3 years. We conclude that furrow diking has the capability to reduce irrigation requirements and the costs associated with irrigation when rainfall is periodic and drought is not severe.  相似文献   

6.
Simulation of nitrate-N movement in southern Ontario,Canada with DRAINMOD-N   总被引:1,自引:0,他引:1  
DRAINMOD-N, a mathematical model to predict nitrate-N concentrations in surface runoff and drain outflows from subsurface-drained farmlands, has been tested against field data collected in southern Ontario. The data was collected in a corn field from 16 conventional drainage and subirrigation plots in Woodslee, Ontario, from 1992 to 1994. The model performance was evaluated by comparing the observed and simulated nitrate-N concentrations in surface runoff and drain outflows. A precise calculation of water-table depth is an essential prerequisite for a model to obtain a proper prediction of nitrate-N movement. For the simulation of water-table depth, the lowest root mean square error and the highest correlation coefficient of linear regression were 173 mm and 0.51 for the subirrigation plots; and 178 mm and 0.84 for the subsurface drainage plots. Therefore, the performance of DRAINMOD-N for soil hydrologic simulations was satisfactory and it could be used for assessing nitrogen fate and transport. For the simulation of nitrate-N losses in the subirrigation plots, the lowest root mean square error and the highest correlation coefficient of linear regression were 0.74 kg/ha and 0.98 for surface runoff; and 6.53 kg/ha and 0.91 for drain outflow. For the simulation in the subsurface drainage plots, the lowest root mean square error and the highest correlation coefficient of linear regression were 0.70 kg/ha and 0.96 for surface runoff; and 6.91 kg/ha and 0.92 for drain outflow. The results show that DRAINMOD-N can perform satisfactory simulation of soil hydrology and nitrate-N losses in surface runoff under various water-table management practices. The model can, therefore, be used to evaluate different water pollution scenarios and help in the development and testing of various pollution control strategies for fields in cold weather such as that in southern Canada.  相似文献   

7.
The use of peatlands in the humid tropics requires drainage to remove excess rainfall. The design principles for the drainage systems currently being implemented on peatlands are the same as for mineral soils. The objective of such systems is the timely removal of excess rainfall by surface runoff. For peatlands, with their different soil-hydraulic characteristics, these systems have resulted in poor watertable control and high rates of irreversible subsidence. Concerns about this rate of subsidence and the level of sustainability of the present land use have prompted a study to develop a new water management system. This new system includes a shift from a drainage system that focuses on discharge of excess water towards a system that combines drainage and water conservation. In the new two-step design, the drain spacing and corresponding drain discharges are obtained with a steady-state approach. These outputs are used to calculate the capacity of the drains, including control structures, using an unsteady-state approach. The new system results in a shallower but more narrowly spaced drainage system and maintains a more constant but relatively high watertable and reduces subsidence. It should be remembered however, that even with the improved water management, subsidence cannot be arrested; it is the price one has to pay for the use of tropical peatlands.  相似文献   

8.
The objective of this work was to measure and model the runoff for different soils classes at different rainfall intensities (30, 60 and 120 mm h−1) in Southern Brazil. A portable rainfall simulator with multiple nozzles was used to simulate these rainfall intensities. For each soil, the initial time and runoff rate, rainfall characteristics (total, duration and intensities), surface slope, crop residue amount and cover percentage, soil densities (bulk and particle), soil porosity (bulk, macro and micro), textural fractions (clay, silt and sand), and the initial and saturated soil water content were measured. The runoff measured was compared to Smith's modified and Curve Number (USDA-SCS) models. The cumulative runoff losses were 67, 45 and 27% of the total rainfall, for a Rhodic Paleudalf, Typic Quartzipsamment and Rhodic Hapludox, respectively. An inverse relationship was observed between initial runoff and the runoff rate, independently of the soil surface and rainfall conditions. Increasing rainfall intensity decreased the time to runoff and increased runoff rate. The Smith's modified model overestimated the cumulative runoff by about 4%. The Smith's modified model presented a better estimate for both higher and lower rainfall intensities (120 and 30 mm h−1). The SCS Curve Number model overestimated the cumulative runoff by about 34%. This large overestimate is probably due to that the model did not take into account the soil tillage system used in the field by farmers, particularly for irrigated conditions. The combination of high porosity, low bulk density and presence of crop residue on soil surface decreased runoff losses, independently of the soil texture class. Smith's modified model better estimated the surface runoff for soil with a high soil water content, and it was considered satisfactory for Southern Brazil runoff estimations. The SCS Curve Number model overestimated the cumulative runoff and its use needs adjustments particularly for no-tillage management system.  相似文献   

9.
Improved water capture and erosion reduction through furrow diking   总被引:2,自引:0,他引:2  
Crop production in Georgia and the Southeastern U.S. can be limited by water; thus, supplemental irrigation is often needed to sustain profitable crop production. Increased water capture would efficiently improve water use and reduce irrigation amounts and other input costs, thus improving producer's profit margin. We quantified water capturing and erosional characteristics of furrow diking by comparing runoff (R) and soil loss (E) from furrow diked (DT) and non-furrow diked tilled (CT) systems. A field study (Faceville loamy sand, Typic Kandiudult) was established (2006 and 2007) near Dawson, GA with DT and CT systems managed to irrigated cotton (Gossypium hirsutum L.). Treatments included: DT vs. CT; DT with and without shank (+/− S); and rainfall simulation performed (0, 60 days after tillage, DAT). Simulated rainfall (50 mm h−1 for 1 h) was applied to all 2 m × 3 m plots (n = 3). All runoff and E were measured from each flat, level sloping 6-m2 plot (slope = 1%). Compared to CT, DT decreased R and E by 14-28% and 2.0-2.8 times, respectively. Compared to DT − S, DT + S decreased R and E by 17-56% and 26% to 2.1 times, respectively. Compared to sealed/crusted soil conditions at 60 DAT, simulating rainfall on a freshly tilled seedbed condition (DAT = 0) decreased R by 69% to 3.4 times and increased E by 27%. DT0 + S + RF0 plots (best-case scenario) had 2.8 times less R, and 2.6 times less E than CT − S + RF60 plots (worst-case). Based on $1.17 ha-mm−1 to pump irrigation water and $18.50 ha−1 for DT, a producer in the Coastal Plain region of Georgia would recover cost of DT by saving the first 16 ha-mm of water. The DT + S system is a cost-effective management practice for producers in Georgia and the Southeastern U.S. that positively impacts natural resource conservation, producer profit margins, and environmental quality.  相似文献   

10.
For sustainable crop production in semi-arid environments with low and erratic rainfall (<800 mm), runoff must be minimized and water conserved. However, little is known about how soils in semi-arid southern Africa respond to cultivation. This study investigated the hydrological and physical responses of a fersiallitic soil to conventional (flat) and improved (tied ridge) tillage practices over four seasons under natural and simulated rainfall conditions in Zimbabwe. Changes in soil surface roughness and the development of crusts were investigated and related to variation in the runoff ratio (total volume of runoff/total volume of rain). Relationships between runoff, rainfall intensity and antecedent precipitation index (API is an indicator of soil moisture content based on daily rainfall) were established for both systems. For the tied ridge system, API showed no significant contribution to runoff prediction. This reflects the greater and more stable depression storage capacity of the furrow in the tied ridge system. By comparison, the depression storage capacity of the flat system is temporary in nature and, as the micro relief of the soil surface weathers and crusts develop, its capacity declines, as does the time to ponding and runoff generation.  相似文献   

11.
The Australian greenhouse industry is primarily dominated by low-cost hydroponic greenhouses for delivery of water and nutrients to plants to grow a variety of vegetable crops including cucumber and tomato. The nutrient rich drainage water from these greenhouses is generally released into the local environment causing pollution concerns. This study was initiated to investigate the opportunities in recycling drainage water to increase water and nutrient-use efficiency of hydroponic greenhouses and reduce the environmental impact of the drainage water discharge. Results indicated that a total of 4.15 ML/ha of irrigation water was applied during the 13 weeks crop growing period of which 2.56 ML/ha was drained off and 1.59 ML/ha was used to meet the crop evapotranspiration demand. The study showed that the recycling of the drainage water resulted in a 33% reduction in potable water used for irrigation in cucumber production. The drainage water contained 59% applied N, 25% applied P and 55% applied K and illustrated the potential for nutrient recovery and production cost savings through the reuse of drainage water. This case study demonstrates that some relatively simple changes in irrigation practices within greenhouse systems to recycle drainage water can considerably improve sustainability of low-cost hydroponic greenhouses and help minimise the environmental footprint of the greenhouse industry.  相似文献   

12.
Annual carbon and nitrogen loadings for a furrow-irrigated field   总被引:1,自引:0,他引:1  
Evaluations of agricultural management practices for soil C sequestration have largely focused on practices, such as reduced tillage or compost/manure applications, that minimize soil respiration and/or maximize C input, thereby enhancing soil C stabilization. Other management practices that impact carbon cycling in agricultural systems, such as irrigation, are much less understood. As part of a larger C sequestration project that focused on potential of C sequestration for standard and minimum tillage systems of irrigated crops, the effects of furrow irrigation on the field C and N loading were evaluated. Experiments were conducted on a laser-leveled 30 ha grower's field in the Sacramento valley near Winters, CA. For the 2005 calendar year, water inflow and runoff was measured for all rainfall and irrigation events. Samples were analyzed for C and N associated with both sediment and dissolved fractions. Total C and N loads in the sediment were always higher in the incoming irrigation water than field runoff. Winter storms moved little sediment, but removed substantial amounts of dissolved organic carbon (DOC), or about one-third of the total C balance. Despite high DOC loads in runoff, the large volumes of applied irrigation water with sediment and DOC resulted in a net increase in total C for most irrigation events. The combined net C input and N loss to the field, as computed from the field water balance, was 30.8 kg C ha−1 yr−1 and 5.4 kg N ha−1 yr−1 for the 2005 calendar year. It is concluded that transport of C and N by irrigation and runoff water should be considered when estimating the annual C field balance and sequestration potential of irrigated agro-ecosystems.  相似文献   

13.
Micro-catchment water harvesting (MCWH) requires development of small structures across mild land slopes, which capture overland flow and store it in soil profile for subsequent plant uses. Water availability to plants depends on the micro-catchment runoff yield and water storage capacity of both the plant basin and the soil profile in the plant root zone. This study assessed the MCWH potential of a Mediterranean arid environment by using runoff micro-catchment and soil water balance approaches. Average annual rainfall and evapotranspiration of the studied environment were estimated as 111 and 1671 mm, respectively. This environment hardly supports vegetation without supplementary water. During the study period, the annual rain was 158 mm in year 2004/2005, 45 mm in year 2005/2006 and 127 mm in year 2006/2007. About 5000 MCWH basins were developed for shrub raising on a land slope between 2 and 5% by using three different techniques. Runoff at the outlets of 26 micro-catchments with catchment areas between 13 and 50 m2 was measured. Also the runoff was indirectly assessed for another 40 micro-catchments by using soil water balance in the micro-catchments and the plant basins. Results show that runoff yield varied between 5 and 187 m3 ha−1 for various rainfall events. It was between 5 and 85% of the incidental rainfall with an average value of 30%. The rainfall threshold for runoff generation was estimated about 4 mm. Overall; the soil water balance approach predicted 38-57% less water than micro-catchment runoff approach. This difference was due to the reason that the micro-catchment runoff approach accounted for entire event runoff in the tanks; thus showed a maximum water harvesting potential of the micro-catchments. Soil water balance approach estimated water storage in soil profile and did not incorporate water losses through spillage from plant basins and deep percolation. Therefore, this method depicted water storage capacity of the plant basins and the root zone soil profile. The different between maximum water harvesting potential and soil-water storage capacity is surplus runoff that can be better utilized through appropriate MCWH planning.  相似文献   

14.
Potato production accounts for ∼24% of the cultivated land-use in Prince Edward Island, Canada. The island often experiences prolonged dry periods interspersed with excessive rainfall events throughout the growing season. Thus, water retention is important for maximum crop production while sediment and nutrient loading to surface water systems are also concerns. Therefore, agronomic practices that reduce the environmental impact of potato production are being sought. Basin tillage (BT) is a potential option in which small dams are created in the furrows (row middles), resulting in basins that enhance infiltration, reduce runoff, minimize contaminant loads, and increase yields.This on-farm study compared BT against two types of ‘conventional’ hilling treatments with replicated plots on four field sites over two growing seasons. Field sites had sandy loam soils with topography slopes ranging from 3% to 5%. Within each field, nine 25 m long and 3.66 m wide (4 rows) plots were established, including three plots of each hilling treatment (CT = conventional tillage; RS = row shaper tillage; BT = basin tillage). Runoff volume, nutrient (phosphate, ammonium, nitrate) and suspended solids loads were measured using collection barrels on the down slope end of each furrow.Basin tillage had 78% and 75% less runoff than CT and RS, respectively (P < 0.05). Runoff differences between BT and CT were significant at all sites while runoff differences between BT and RS were significant at three of four sites. Reductions for each parameter (on a mass basis) averaged across all sites were: sediment 89%, nitrate 45%, ammonium 38%, and phosphate 15%; although, treatment effect was not significant for some mass loads in some fields. No significant effect on marketable potato yield was observed at any site; soil water was not limiting in either growing season. Overall, basin tillage was effective at reducing runoff and nutrient losses without affecting yield and appears to be an effective tool for decreasing environmental risks.  相似文献   

15.
城市降雨径流污染因素与防治   总被引:1,自引:0,他引:1  
城市降水径流污染中的污染物主要来自降水、城市地表和排水系统。根据武汉不透水区、透水区和森林覆盖区的不同区域的采样试验分析得出,降水径流污染除了受大气质量影响外,还受到降水强度、降水量、降水历时、降水间隔时间和汇水面等因素的影响;屋面径流污染物的来源具有多样性、复杂性和不确定性,除了大气湿沉降带来各种不同类型的污染物外,还受到屋面材料、屋面年限、材料腐蚀、管道腐蚀和污染残留物等因素的影响。一般规律是降水径流初始污染物浓度高,随着降水历时的延长,降水径流污染物浓度逐渐降低。在合流制排水系统的城市,有20%~60%的径流污染(SS、COD和BOD5)来自排水系统。因此,改造排水系统、控制径流污染,可以维持生态平衡和保护城市水环境。  相似文献   

16.
A combination of high input management systems, high annual rainfall and deep, permeable soils in northern Tasmania create conditions that are conducive to high drainage and nitrogen losses below the root zone. An understanding of the extent and mechanism of such losses will enable farm managers and their consultants to identify and implement more sustainable management practices that minimise potential adverse financial and environmental consequences. Analysing the fate of water and nutrients in farming systems is complex and influenced by a wide range of factors including management, soil characteristics, seasonal climate variability and management history of the paddock/farm in question. This paper describes a novel farm system modelling approach based on the model APSIM, for analysing the fate of nitrogen and water in mixed vegetable-based farming enterprises. The study was based on seven case farms across the Panatana catchment in northern Tasmania. Substantial simulated drainage losses (>100 mm average seasonal loss) were apparent for all crop and rotation elements across all farms in response to the surplus between crop water supply and crop water use. Crop nitrogen demand was found to be close to crop nitrogen supply for all crop and pasture rotation elements with the exception of potato, which had an average surplus nitrogen supply of 89 kg N/ha. This resulted in potato having much higher nitrate nitrogen leaching losses (32 kg N/ha) compared to other crops (<10 kg N/ha). Simulations suggest that practicable management options such as deficit-based irrigation and reduced N fertiliser rates will maintain current levels of productivity while reducing potential offsite N loss and generating significant financial savings via reduced input costs.  相似文献   

17.
陈晓东  寇传和 《节水灌溉》2006,(4):32-33,36
稻田排水是南方地区氮磷损失和面源污染的主要途径。农田氮磷通过降雨击溅侵蚀、排水沟坡面和沟底冲刷进入地表径流。控制排水可减少地面排水量和排水中氮磷浓度,尤其是降低径流中氮磷浓度,从而减少稻田氮磷损失。土壤颗粒沉淀、硝化、反硝化反应以及作物吸收是排水中氮磷浓度降低的主要原因。通过控制涝水在稻田和排水沟中的滞留时间,增加排水沟口溢流堰高度,降低径流水力坡度和抉沙能力是控制排水的主要手段。最后提出了稻田控制排水需要进一步研究的问题。  相似文献   

18.
Droughts, resulting in low crop yields, are common in the semi-arid areas of Ethiopia and adversely influence the well-being of many people. The objective of this study was to assess the benefit that in-field rainwater harvesting (IRWH) would have, compared to conventional tillage, on maize yields on a semi-arid ecotope at Dera situated on the eastern part of the Rift Valley. Rainfall-runoff measurements were made during 2003 and 2004 on 2 m × 2 m plots provided with a runoff measuring system and replicated three times for each treatment. There were two treatments: conventional tillage (CT) and no-till (NT), the latter with a flat surface that promotes runoff and therefore IRWH. Rainfall intensity was measured at 1 min intervals with an automatic tipping bucket instrument, and runoff was measured after each rain event. Measured runoff as a function of rainfall intensity and duration from half the rainfall-runoff events was used to determine the critical parameters of a appropriate runoff model. The calibrated model was found to be capable of predicting runoff in a satisfactory way.Rainfall-runoff measurements were made during the rain seasons in 2003 and 2004 during which there were 25 rain events with >9 mm of rain. There was no statistical difference between the runoff on the two treatments. The measured runoff (R) for the two rain seasons, expressed as a fraction of the rainfall during the measuring period (P), i.e. R/P, gave values of 0.46 and 0.39 for the NT and CT treatments, respectively.Results from 7 years of field experiments with IRWH at Glen in South Africa were used to estimate the yield benefit of NT for Dera compared to CT. The results were 696 and 494 kg ha−1 for 2003 and 2004, respectively. Based on the estimated average long-term maize yield of 2000 kg ha−1 at Dera, this was an estimated yield increase ranging from 25% to 35%.  相似文献   

19.
The design and management of drainage systems should consider impacts on drainage water quality and receiving streams, as well as on agricultural productivity. Two simulation models that are being developed to predict these impacts are briefly described. DRAINMOD-N uses hydrologic predictions by DRAINMOD, including daily soil water fluxes, in numerical solutions to the advective-dispersive-reactive (ADR) equation to describe movement and fate of NO3-N in shallow water table soils. DRAINMOD- CREAMS links DRAINMOD hydrology with submodels in CREAMS to predict effects of drainage treatment and controlled drainage losses of sediment and agricultural chemicals via surface runoff. The models were applied to analyze effects of drainage intensity on a Portsmouth sandy loam in eastern North Carolina. Depending on surface depressional storage, agricultural production objectives could be satisfied with drain spacings of 40 m or less. Predicted effects of drainage design and management on NO3-N losses were substantial. Increasing drain spacing from 20 m to 40 m reduced predicted NO3-N losses by over 45% for both good and poor surface drainage. Controlled drainage further decreases NO3-N losses. For example, predicted average annual NO3-N losses for a 30 m spacing were reduced 50% by controlled drainage. Splitting the application of nitrogen fertilizer, so that 100 kg/ha is applied at planting and 50 kg/ha is applied 37 days later, reduced average predicted NO3-N losses but by only 5 to 6%. This practice was more effective in years when heavy rainfall occurred directly after planting. In contrast to effects on NO3-N losses, reducing drainage intensity by increasing drain spacing or use of controlled drainage increased predicted losses of sediment and phosphorus (P). These losses were small for relatively flat conditions (0.2% slope), but may be large for even moderate slopes. For example, predicted sediment losses for a 2% slope exceeded 8000 kg/ha for a poorly drained condition (drain spacing of 100 m), but were reduced to 2100 kg/ha for a 20 m spacing. Agricultural production and water quality goals are sometimes in conflict. Our results indicate that simulation modeling can be used to examine the benefits of alternative designs and management strategies, from both production and environmental points-of-view. The utility of this methodology places additional emphasis on the need for field experiments to test the validity of the models over a range of soil, site and climatological conditions.  相似文献   

20.
Excessive nutrient loadings from rice paddy fields has been a great concern in Korea as rice paddy area spans over 1,153,000 ha, which covers approximately 60% of the total agricultural land area in Korea. The principal tasks of this study included undertaking work to better identifying the scope of the nutrient loadings from paddy fields to assess their adverse effects. Hydro-meteorological factors, rainfall and surface discharge, were considered as the major driving forces of nutrients into the water. A Generalized Regression Neural Network (GRNN) model was applied and its capability evaluated to predict the nutrient loading into the neighboring water. The 15 ha paddy fields surrounded by drainage and irrigation channels were chosen as a study area. Field data, such as rainfall, quantities of irrigation and discharge water, and nutrient contents (total nitrogen (T-N) and total phosphorus (T-P)) from two different water sources, were obtained throughout the study period. Simulation results showed that surface discharge had a positive correlation with rainfall (R = 0.84). In addition, the resulting predictions for nutrient concentrations corresponding to surface discharge were varied (R = 0.72 and 0.40 in total nitrogen and total phosphorus, respectively). This study found that both natural and artificial variations of nutrient contents in irrigation streams were significantly influenced the model results of nutrient predictions. Therefore, the nutrient loadings into the neighboring water can be accurately described with a more comprehensive and sufficient representation of both environmental inputs and hydrological processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号