首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 686 毫秒
1.
The aim of the present investigation was to simulate the uptake concentrations (weights of ion per volume of water absorbed) of Na+ and Cl in hydroponic tomato crops as a function of the NaCl concentration in the root zone. An empirical model was calibrated and validated, which can be incorporated into on-line operating decision support systems aimed at optimizing the nutrient supply and minimizing the discharge of drainage solution in tomato crops grown in closed-cycle hydroponic systems. Three experiments were conducted, of which one was carried out to calibrate the model using irrigation water with NaCl concentration ranging from 0 to 14.7 mol m−3 while the other two experiments were commissioned to validate the model within either a low (0.5-2 mol m−3) or a high (1.2-12 mol m−3) concentration range. The model could successfully predict the uptake concentration of Na+, but Cl could not be simulated by this model at external Cl concentrations lower than 10 mol m−3. The results indicate that Na+ is excluded actively and effectively by the tested tomato cultivar even at low external Na+ concentrations, while Cl is readily taken up at low concentrations, particularly during the initial growing stages. Due to the efficient exclusion of Na+ by tomato, the Na+ concentration in the root environment increased rapidly to extremely high levels even when the Na+ concentration in the irrigation water was relatively low. These results indicate that tomato genotypes characterized by high salt-exclusion efficiency, require irrigation water with a very low NaCl concentration, if they are grown in closed hydroponic systems and the drainage water is not flushed periodically. To maintain Na+ at levels lower than 19 mol m−3 in the root zone of the tomato hybrid ‘Formula’ in closed hydroponics, a maximum acceptable Na+ concentration of 0.53 mol m−3 was estimated for the irrigation water.  相似文献   

2.
In the spring-summer season of 2005 and 2006, we explored the influence of three fertigation strategies (A-C) on the water and nitrogen use efficiency of semi-closed rockwool culture of greenhouse tomato conducted using saline water (NaCl concentration of 9.5 mol m−3). The strategies under comparison were the following: (A) crop water uptake was compensated by refilling the mixing tank with nutrient solution at full strength (with the concentrations of macronutrients equal or close to the corresponding mean uptake concentrations as determined in previous studies) and the recirculating nutrient solution was flushed out whenever its electrical conductivity (EC) surpassed 4.5 dS m−1 due to the accumulation of NaCl; (B) the refill nutrient solution had a variable EC in order to maintain a target value of 3.0 dS m−1; due to the progressive accumulation of NaCl, the EC and macronutrient concentrations of the refill nutrient solution tended to decrease with time, thus resulting in a progressive nutrient depletion in the recycling water till N-NO3 content dropped below 1.0 mol m−3, when the nutrient solution was replaced; (C) likewise Strategy A, but when EC reached 4.5 dS m−1, crop water uptake was compensated with fresh water only in order to reduce N-NO3 concentration below 1.0 mol m−3 before discharge. In 2005 an open (free-drain) system (Strategy D), where the plants were irrigated with full-strength nutrient solution without drainage water recycling, was also tested in order to verify the possible influence of NaCl accumulation and/or nutrient depletion in the root zone on crop performance. In the semi-closed systems conducted following strategies A, B or C, the nutrient solution was replaced, respectively, 10, 14 and 7 times in 2005, and in 19, 24 and 14 times in 2006, when the cultivation lasted 167 days instead of 84 days in 2005. In both years, there were no important differences in fruit yield and quality among the strategies under investigation. Strategy C produced the best results in terms of water use and drainage, while Strategy B was the most efficient procedure with regard to nitrogen use. In contrast to strategies A and D, the application of strategies B and C minimized nitrogen emissions and also resulted in N-NO3 concentrations in the effluents that were invariably lower than the limit (approximately 1.42 mol m−3) imposed to the N-NO3 concentration of wastewater discharged into surface water by the current legislation associated to the implementation of European Nitrate Directive in Italy.  相似文献   

3.
Crops grown in semiarid rainfed conditions are prone to water stress which could be alleviated by improving cultural practices. This study determined the effect of cropping system, cultivar, soil nitrogen status and Rhizobium inoculation (Rz) on water use and water use efficiency (WUE) of chickpea (Cicer arietinum L.) in semiarid environments. The cultivars Amit, CDC Anna, CDC Frontier, and CDC Xena were grown in no-till barley, no-till wheat, and tilled-fallow systems and under various rates of N fertilizer (0, 28, 56, 84, and 112 kg N ha−1) coupled with or without Rz. The study was conducted at Swift Current and Shaunavon, Saskatchewan, from 2004 to 2006. On average, chickpea used about 10 mm of water from the top 0-15 cm soil depth. In the tilled-fallow system, chickpea extracted 20% more water in the 15-30 cm depth, 70% more in the 30-60 cm depth, and 156% more in the 60-120 cm depth than when it was grown in the no-till systems. CDC Xena had WUE of 5.3 kg ha−1 mm−1 or 20% less than the average WUE (6.6 kg ha−1 mm−1) of the three other cultivars, even though these cultivars used the same amounts of water. Water use efficiency increased from 4.7 to 6.8 kg ha−1 mm−1 as N fertilizer rate was increased from 0 to 112 kg N ha−1 when chickpea was grown in the no-till barley or wheat systems, but chickpea grown in the tilled-fallow system did not respond to changes in the fertilizer N rates averaging WUE of 6.5 kg ha−1 mm−1. In the absence of N fertilizer, the application of Rz increased WUE by 33% for chickpea grown in the no-till barley system, 30% in the no-till wheat system, and 9% in the tilled-fallow system. Chickpea inoculated with Rhizobium achieved a WUE value similar to the crop fertilized at 84 kg N ha−1. Without the use of Rz, chickpea increased WUE in a linear fashion with increasing fertilizer N rates from 0 to 84 kg N ha−1. Cropping system, cultivar, and inoculation all had greater impact on WUE than on the amount of water extracted by the crop from the soil. The improvement of cultural practices to promote general plant health along with the development of cultivars with improved crop yields will be keys for improving water use efficiency of chickpea in semiarid environments.  相似文献   

4.
Water demand for irrigation is increasing in olive orchards due to enhanced yields and profits. Because olive trees are considered moderately tolerant to salinity, irrigation water with salt concentrations that can be harmful for many of fruit tree crops is often used without considering the possible negative effects on olive tree growth and yield. We studied salt effects in mature olive trees in a long term field experiment (1998-2006). Eighteen-year-old olive trees (Olea europaea L.) cv. Picual were cultivated under drip irrigation with saline water composed of a mixture of NaCl and CaCl2. Three irrigation regimes (i. no irrigation; ii. water application considering soil water reserves, short irrigation; iii. water application without considering soil water reserves and adding a 20% more as a leaching fraction, long irrigation) and three salt concentrations (0.5, 5 or 10 dS m−1) were applied. Treatments were the result of the combination of three salt concentrations with two irrigation regimes, plus the non-irrigated treatment. Growth parameters, leaf and fruit nutrition, yield, oil content and fruit characteristics were annually studied. Annual leaf nutrient analyses indicate that all nutrients were within the adequate levels. After 8 years of treatment, salinity did not affect any growth measurement and leaf Na+ and Cl concentration were always below the toxicity threshold of 0.2 and 0.5%, respectively. Annual and accumulated yield, fruit size and pulp:stone ratio were also not affected by salts. However, oil content increased linearly with salinity, in most of the years studied. Soil salinity measurements showed that there was no accumulation of salts in the upper 30 cm of the soil (where most of the roots are present) because of leaching by rainfall at the end of the irrigation period. Results suggest that a proper management of saline water, supplying Ca2+ to the irrigation water, using drip irrigation until winter rest and seasonal rainfall typical of the Mediterranean climate leach the salts from the first 0-60 cm depth, and growing a tolerant cultivar, can allow using high saline irrigation water (up to 10 dS m−1) for a long time without affecting growth and yield in olive trees.  相似文献   

5.
Canopy water use efficiency of winter wheat in the North China Plain   总被引:4,自引:0,他引:4  
Canopy water use efficiency (W), the ratio of crop productivity to evapotranspiration (ET), is critical in determining the production and water use for winter wheat (Triticum aestivum L.) in the North China Plain, where winter wheat is a major crop and rainfall is scarce and variable. With the eddy covariance (EC) technique, we estimated canopy W of winter wheat at gross primary productivity (WG) and net ecosystem productivity (WN) levels from revival to maturing in three seasons of 2002/2003, 2003/2004 and 2004/2005 at Yucheng Agro-ecosystem Station. Meanwhile we also measured the biomass-based water use efficiency (WB). Our results indicate that WG, WN and WB showed the similar seasonal variation. Before jointing (revival-jointing), WG, WN and WB were obviously lower with the values of 2.09-3.54 g C kg−1, −0.71 to 0.06 g C kg−1 and 1.37-4.03 g kg−1, respectively. After jointing (jointing-heading), the winter wheat began to grow vigorously, and WG, WN and WB significantly increased to 5.26-6.78 g C kg−1, 1.47-1.86 g C kg−1 and 6.41-7.03 g kg−1, respectively. The maximums of WG, WN and WB occurred around the stage of heading. Thereafter, WG, WN and WB began to decrease. During the observed periods, three levels of productivity: GPP, NEP and aboveground biomass (AGB) all had fairly linear relationships with ET. The slopes of GPP-ET, NEP-ET and AGB-ET were 4.67-6.12 g C kg−1, 1.50-2.08 g C kg−1 and 6.87-11.02 g kg−1, respectively. Generally, photosynthetically active radiation (PAR) and daytime vapor pressure deficit (D) had negative effects on WG, WN and WB except for on some cloudy days with low PAR and D. In many cases, WG, WN and WB showed the similar patterns. While there were still some obvious differences between them besides in magnitude, such as their significantly different responses to PAR and D on cloudy and moist days.  相似文献   

6.
Winter wheat (Triticum aestivum L. cv. Kenong9204) was grown in open top chambers with either ambient or elevated CO2 concentrations (358 ± 19 μmol mol−1 or 712 ± 22 μmol mol−1, respectively) in well-watered or drought conditions. Although elevated CO2 did not significantly affect the height of the plants at harvest, it significantly increased the aboveground biomass by 10.1% and the root/shoot ratio by 16.0%. Elevated CO2 also significantly increased the grain yield (GY) by 6.7% when well-watered and by 10.4% when drought stressed. Specifically, in the well-watered condition, this increase was due to a greater number of ears (8.7% more) and kernels (8.6). In the drought condition, it was only due to a greater number of spikes (17.1% more). In addition, elevated CO2 also significantly increased the water use efficiency (WUE) of the plants by 9.9% when well-watered and by 13.8% under drought conditions, even though the evapotranspiration (ET) of the plants did not change significantly. Elevated CO2 also significantly increased the root length in the top half of the soil profile by 35.4% when well-watered and by 44.7% under drought conditions. Finally, elevated CO2 significantly increased the root water uptake by 52.9% when well-watered and by 10.1% under drought conditions. These results suggest that (1) future increases in atmospheric CO2 concentration may have a significant effect on wheat production in arid and semiarid areas where wheat cultivation requires upland cropping or deficit irrigation; (2) wheat cultivars can be developed to have more tillers and kernels through selective breeding and field management; and (3) fertilizer and water management in topsoil will become increasingly important as atmospheric CO2 concentration rises.  相似文献   

7.
Expected yield losses as a function of quality and quantity of water applied for irrigation are required to formulate guidelines for the effective utilisation of marginal quality waters. In an experiment conducted during 2004-2006, double-line source sprinklers were used to determine the separate and interactive effects of saline and alkali irrigation waters on wheat (Triticum aestivum L.). The study included three water qualities: groundwater (GW; electrical conductivity of water, ECw 3.5 dS m−1; sodium adsorption ratio, SAR 9.8 mmol L−1; residual sodium carbonate, RSC, nil) available at the site, and two synthesized waters, saline (SW; ECw 9.4 dS m−1, SAR 10.3 mmol L−1; RSC nil) and alkali (AW; ECw 3.7 dS m−1, SAR 15.1 mmol L−1; RSC 9.6 meq. L−1). The depths of applied SW, AW, and GW per irrigation ranged from 0.7 to 3.5 cm; the depths of applied mixtures of GW with either SW (MSW) or AW (MAW) ranged from 3.2 to 5 cm. Thereby, the water applied for post-plant irrigations using either of GW, SW or AW ranged between 15.2 and 34.6 cm and 17.1 and 48.1 cm during 2004-2005 and 2005-2006, respectively and the range was 32.1-37.0 and 53.1-60.0 cm for MSW or MAW. Grain yields, when averaged for two years, ranged between 3.08 and 4.36 Mg ha−1, 2.57 and 3.70 Mg ha−1 and 2.73 and 3.74 Mg ha−1 with various quantities of water applied using GW, SW and AW, respectively, and between 3.47 and 3.75 Mg ha−1 and 3.63 and 3.77 Mg ha−1 for MSW and MAW, respectively. The water production functions developed for the two sets of water quality treatments could be represented as: RY = 0.528 + 0.843(WA/OPE) − 0.359(WA/OPE)2 − 0.027ECw + 0.44 × 10−2(WA/OPE) × ECw for SW (R2 = 0.63); RY = 0.446 + 0.816(OPE/WA) − 0.326(WA/OPE)2 − 0.0124RSC − 0.55 × 10−4(WA/OPE) × RSC for AW (R2 = 0.56). Here, RY, WA and OPE are the relative yields in reference to the maximum yield obtained with GW, water applied for pre- and post-plant irrigations (cm), and open pan evaporation, respectively. Crop yield increased with increasing amount of applied water for all of the irrigation waters but the maximum yields as obtained with GW, could not be attained even with increased quantities of SW and AW. Increased frequency of irrigation with sprinklers reduced the rate of yield decline with increasing salinity in irrigation water. The sodium contents of plants increased with salinity/alkalinity of sprinkled waters as also with their quantities. Simultaneous decrease in potassium contents resulted in remarkable increase in Na:K ratio.  相似文献   

8.
Irrigated agriculture is threatened by soil salinity in numerous arid and semiarid areas of the Mediterranean basin. The objective of this work was to quantify soil salinity through electromagnetic induction (EMI) techniques and relate it to the physical characteristics and irrigation management of four Mediterranean irrigation districts located in Morocco, Spain, Tunisia and Turkey. The volume and salinity of the main water inputs (irrigation and precipitation) and outputs (crop evapotranspiration and drainage) were measured or estimated in each district. Soil salinity (ECe) maps were obtained through electromagnetic induction surveys (ECa readings) and district-specific ECa-ECe calibrations. Gravimetric soil water content (WC) and soil saturation percentage (SP) were also measured in the soil calibration samples. The ECa-ECe calibration equations were highly significant (P < 0.001) in all districts. ECa was not significantly correlated (P > 0.1) with WC, and was only significantly correlated (P < 0.1) with soil texture (estimated by SP) in Spain. Hence, ECa mainly depended upon ECe, so that the maps developed could be used effectively to assess soil salinity and its spatial variability. The surface-weighted average ECe values were low to moderate, and ranked the districts in the order: Tunisia (3.4 dS m−1) > Morocco (2.2 dS m−1) > Spain (1.4 dS m−1) > Turkey (0.45 dS m−1). Soil salinity was mainly affected by irrigation water salinity and irrigation efficiency. Drainage water salinity at the exit of each district was mostly affected by soil salinity and irrigation efficiency, with values very high in Tunisia (9.0 dS m−1), high in Spain (4.6 dS m−1), moderate in Morocco (estimated at 2.6 dS m−1), and low in Turkey (1.4 dS m−1). Salt loads in drainage waters, calculated from their salinity (ECdw) and volume (Q), were highest in Tunisia (very high Q and very high ECdw), intermediate in Turkey (extremely high Q and low ECdw) and lowest in Spain (very low Q and high ECdw) (there were no Q data for Morocco). Reduction of these high drainage volumes through sound irrigation management would be the most efficient way to control the off-site salt-pollution caused by these Mediterranean irrigation districts.  相似文献   

9.
The evapotranspiration of hedge-pruned olive orchards (Olea europaea L. cv. Arbequina) was measured under the semiarid conditions of the middle Ebro River Valley in a commercial olive orchard (57 ha) during 2004 and 2005. No measured ETc values for this type of olive orchards have previously been reported. An eddy covariance system (krypton hygrometer KH20 and 3D sonic anemometer CSAT3, Campbell Scientific) was used. The eddy covariance measurements showed a lack of the energy balance closure (average imbalance of 26%). Then sensible and latent heat (LE) flux values were corrected using the approach proposed by Twine et al. (2000) in order to get daily measured olive evapotranspiration (ETc) and crop coefficient (Kc) values. The highest measured monthly ETc averages were about 3.1-3.3 mm day−1, while the total seasonal ETc during the irrigation period (March-October) was about 585 mm (in 2004) and 597 mm (in 2005). Monthly Kc values varied from about 1.0 (Winter) to 0.4-0.5 (Spring and Summer). These Kc values were similar to Kc values reported for round-shape canopy olive orchards, adjusted for ground cover, particularly during late Spring and Summer months when differences among measured and published Kc values were about less than 0.1.  相似文献   

10.
The objective of this investigation was to study effects of nitrogen on drought resistance in terms of changes in cotton (Gossypium hirsutum L.) root dry matter accumulation, N concentration, antioxidant enzyme activities and root vigor during short-duration water stress (withholding water for 8 days and then permitting to 10 days recover by re-watering). Cotton plants were grown in pots with three N levels (0, 240, and 480 kg N ha−1). Soil-relative water content decreased with increasing N supply during the soil water stress period, while leaf area, dry matter production and N accumulation were enhanced. The root/shoot ratio and root-N/shoot-N ratio increased with water stress, and were smallest at 240 kg N ha−1. Application of N increased the activities of peroxidase (POD) and catalase (CAT) of cotton root, but decreased superoxide dismutase (SOD) activity during water stress as well as during recovery. Malondialdehyde (MDA) content was significantly (p < 0.05) increased, and was lowest in the 240 kg N ha−1 N treatment during water stress. At the 10th day after soil re-watering, MDA content of 240 kg N ha−1 was similar to that of 480 kg N ha−1, but less than that of 0 kg N ha−1. The root vigor, which was debased by water stress, was the highest at 240 kg N ha−1. After soil re-watering, N application promoted root vigor. The trends of net photosynthetic rate were the same as that of root vigor during water stress. These results suggest that appropriate N supply (240 kg N ha−1 in this investigation) may contribute to drought resistance of cotton plants by adjusting the antioxidant enzyme activities of root, debasing lipid peroxidation and boosting root vigor during short-duration water stress (withholding water for 8 days in this investigation), however, excessive N supply (480 kg N ha−1) had a deleterious effect on plant drought resistance.  相似文献   

11.
One-year-old carob (Ceratonia siliqua L.) rootstock was grown in fertilised substrate to evaluate the effects of NaCl salinity stress. The experiment consisted of seven treatments with different concentrations of NaCl in the irrigation water: 0 (control), 15, 30, 40, 80, 120 and 240 (mmol L−1), equivalent to electrical conductivities of 0.0, 1.5, 2.9, 3.9, 7.5, 10.9 and 20.6 dS m−1, respectively. Several growth parameters were measured throughout the experimental period. At the end of the experiment, pH, extractable P and K, and the electrical conductivity of the substrate were assessed in each salinity level. On the same date, the mineral composition of the leaves was compared. The carob rootstock tolerated 13.4 dS m−1 for a period of 30 days but after 60 days the limit of tolerance was only 6.8 dS m−1. Salt tolerance indexes were 12.8 and 4.5 for 30 and 60 days, respectively. This tolerance to salinity resulted from the ability to function with concentrations of Cl and Na+ in leaves up to 24.0 and 8.5 g kg−1, respectively. Biomass allocation to shoots and roots was similar in all treatments, but after 40 days the number of leaves was reduced, particularly at the larger concentrations (120 and 240 mmol NaCl L−1). Leaves of plants irrigated with 240 mmol NaCl L−1 became chlorotic after 30 days exposure. However, concentrations of N, P, Mg and Zn in leaves were not affected significantly (P > 0.05) by salinity. Apparently, K+ and Ca2+ were the key nutrients affected in the response of carob rootstocks to salinity. Plants grown with 80 and 120 mmol L−1 of NaCl contained the greatest K+ concentration. Na+/K+ increased with salinity, due to an elevated Na+ content but K+ uptake was also enhanced, which alleviated some Na+ stress. Ca2+ concentration in leaves was not reduced under salinity. Salinization of irrigation water and subsequent impacts on agricultural soils are now common problems in the Mediterranean region. Under such conditions, carob seems to be a salt as well as a drought tolerant species.  相似文献   

12.
Gas exchange was measured in potatoes (cv. Folva) grown in lysimeters (4.32 m2) in coarse sand, loamy sand, and sandy loam and subjected to full (FI), deficit (DI), and partial root-zone drying (PRD) irrigation strategies. PRD and DI as water-saving irrigation treatments received 65% of FI and started after tuber bulking and lasted for six weeks until final harvest. Midday photosynthesis rate (An) and stomatal conductance (gs) of fully irrigated (FI) plants were lowest in coarse sand and mean An of diurnal measurements in FI, PRD and DI tended to be lower in this soil as compared with the loamy sand and sandy loam. The results revealed that diurnal values of An and gs in PRD and DI were consistently lower than FI without reaching significant differences in accordance with findings that xylem [ABA] in PRD was significantly higher than FI, and tended to be higher than in DI. Diurnal measurements showed that An reached peak values during mid-morning and midday, while gs were highest during the morning. Intrinsic water use efficiency (An/gs) correlated linearly well with the leaf to air vapor pressure deficit (VPD) and the slope of the line revealed the rate of An/gs increase per each kPa increase in VPD, i.e. approximately 10 μmol mol−1. Transpiration efficiency (An/T) of PRD was higher than DI, which shows slightly better efficient water use than DI. The slope of the linear relationship between transpiration efficiency and VPD decreased from −2.03 to −1.04 during the time course of the growing season, indicating the negative effect of leaf ageing on photosynthesis and thus on plant water use efficiency. This fact shows the possibility to save water during last growth stages through applying water-saving irrigations without much effect on transpiration efficiency.  相似文献   

13.
In this paper, we discuss the effect of elevated CO2 concentration, irrigation and nitrogenous fertilizer application on the growth and yield of spring wheat in semi-arid areas. A field experiment was conducted at the Dingxi Agricultural Experiment Station during 2000–2002. According to the experimental design, the CO2 concentration increased to 14.5, 40 and 54.5 μmol mol−1, respectively, by NH4HCO3 (involving CO2) application, direct application of CO2 gas and combination of fertilizer NH4HCO3 plus CO2 application, which are equal to CO2 concentration of the Earth's atmosphere in the next 5, 15 and 20 years. The fertilizer application was divided into three levels: application of NH3NO3 (250 kg h m−2), NH4HCO3 (500 kg h m−2) and no fertilizer. Irrigation was divided into two levels: with 90 mm irrigation in the growth period and without irrigation. They can be combined as eight treatments. Each treatment was replicated three times. The results showed that elevated CO2 concentration owing to CO2 application leads to remarkable increase in leaf area index (LAI) and shoot biomass, and also generates the higher value of leaf area duration (LAD) that can benefit the photosynthesis in the growth stage and yield increase in crop compared than the no CO2 application treatment. When CO2 concentration elevated by 14.5, 40 and 54.5 μmol mol−1 with irrigation and fertilization, correspondingly, the grain yield increased by 6.3, 13.1 and 19.8%, respectively, whereas without irrigation and fertilization, the grain yield increased by only 4.2% when CO2 concentration increased to 40 μmol mol−1. Meanwhile, irrigation and fertilization can result in larger and deeper root system and have significantly positive influences on higher value of root/shoot (R/S) and water use efficiency. The grain yields in irrigation, irrigation plus NH3NO3 application and irrigation plus application of NH4HCO3 treatments are 73.4, 148.0 and 163.6% higher than that of no-irrigated and no-fertilized treatment, suggesting that both irrigation and fertilizer application contribute to remarkable increase of crop yield. In all treatments, the highest water use efficiency (WUE, 7.24 kg h m−2 mm−1) and grain yield (3286 kg h m−2) consistently occurred in the treatment with 90 mm irrigation plus fertilizer NH4HCO3 and elevated CO2 concentration (54.5 μmol mol−1), suggesting that this combination has an integrated beneficial effect on improving WUE and grain yield of spring wheat. These results may offer help to maintain and increase the crop yields in semi-arid areas.  相似文献   

14.
Studies on irrigation scheduling for soybean have demonstrated that avoiding irrigation during the vegetative growth stages could result in yields as high as those obtained if the crop was fully irrigated during the entire growing season. This could ultimately also lead to an improvement of the irrigation water use efficiency. The objective of this study was to determine the effect of different irrigation regimes (IRs) on growth and yield of four soybean genotypes and to determine their irrigation water use efficiency. A field experiment consisting of three IR using a lateral move sprinkler system and four soybean genotypes was conducted at the Bledsoe Research Farm of The University of Georgia, USA. The irrigation treatments consisted of full season irrigated (FSI), start irrigation at flowering (SIF), and rainfed (RFD); the soybean genotypes represented maturity groups (MGs) V, VI, VII, and VIII. A completely randomized block design in a split-plot array with four replicates was used with IR as the main treatment and the soybean MGs as the sub-treatment. Weather variables and soil moisture were recorded with an automatic weather station located nearby, while rainfall and irrigation amounts were recorded with rain gauges located in the experimental field. Samplings for growth analysis of the plant and its components as well as leaf area index (LAI) and canopy height were obtained every 12 days. The irrigation water use efficiency (IWUE) or ratio of the difference between irrigated and rainfed yield to the amount of irrigation water applied was estimated. The results showed significant differences (P < 0.05) between IR for dry matter of the plant and its components, canopy height, and maximum leaf area index as well as significant differences (P < 0.05) between MGs due to IR. Differences for the interaction between IR and MG were significant (P < 0.05) only for dry matter of pods and seed yield. In general, seed yield increased at a rate of 7.20 kg for each mm of total water received (rainfall + irrigation) by the crop. Within IR, significant differences (P < 0.05) on IWUE were found between maturity groups with values as low as 0.55 kg m−3 for MG V and as high as 1.14 kg m−3 for MG VI for the FSI treatment and values as low as 0.48 kg m−3 for maturity group V and as high as 1.02 kg m−3 for maturity group VI for the SIF treatment. We also found that there were genotypic differences with respect to their efficiency to use water, stressing the importance of cultivar selection as a key strategy for achieving optimum yields with reduced use of water in supplemental irrigation.  相似文献   

15.
Tieguanyin Oolong tea (Camellia sinensis (L.) O. Kuntze) is a name brand important commodity for Anxi county, Fujian province in China. Four-year-old tea plants at a tea plantation in Anxi were subjected to six different irrigation treatments (i.e. 5, 10, 15, 20, and 25 d irrigation intervals for T1 to T5 with a rate of 3.5 kg water per plant, plus a non-irrigated control). After 50 d of irrigation treatments, leaf water potential was −1.70, −2.34, −2.48, −2.89, −3.55, and −4.92 MPa for treatment T1, T2, T3, T4, T5, and control, respectively. Leaf biomass yield increased by 32.8%, 21.9%, and 21.3% for T1, T2, and T3, respectively, compared to control. The net photosynthesis (Pn), stomatal conductance (gs) and transpiration (E) decreased with irrigation interval increasing. Tea polyphenol (TP) and free amino acid (AA) decreased when the irrigation intervals were increased, but caffeine (CA) content apparently increased as the irrigation intervals were increased. To balance irrigation water demand and tea yield and quality, it is recommended that the irrigation interval should be set at 10 d with a rate of 3.5 kg water per plant for the optimal production in Anxi, Fujian province of China.  相似文献   

16.
17.
The hypothesis was tested, whether soil wetness and phosphorus status could regulate the evapotranspiration rate (ETR), which is of special interest in the lower Gangetic Plain. Rajmash was grown during November-February of 2003-2004 and 2004-2005 on a sandy loam soil, and was irrigated when cumulative pan evaporation (CPE) attained the value of 33 mm (CPE33); 44 mm (CPE44) and 66 mm (CPE66). Four levels of phosphate application were 0 kg P2O5 ha−1 (P0); 30 kg P2O5 ha−1 (P30); 60 kg P2O5 ha−1 (P60) and 90 kg P2O5 ha−1 (P90). Seed yield under CPE33 was 1.37 Mg ha−1 and reduced by 18% and 35%, respectively under CPE44 and CPE66. Continuous increasing trend in yield was recorded with an increase in phosphate level (PL). Irrespective of growth stages, similar trends were recorded for leaf area index (LAI). Maximum variation in LAI among the treatments was recorded at 60 days after sowing. On average, actual ETR was 1.37 mm day−1 under CPE33 and declined by 13% and 16% under CPE44 and CPE66, respectively. Variation in ETR under different PL was highest under CPE33 and lowest under CPE44. Except P90, irrespective of PL, highest value of water use efficiency (WUE) was obtained under CPE44. However, magnitude of net evapotranspiration efficiency (WUEET) and irrigation efficiency (WUEI) attained the highest level under CPE33 regime. All water use indices showed an increasing trend with the increase in phosphate level from 0 to 90 kg ha−1. Impact of phosphorus on various parameters was pronounced under CPE33.  相似文献   

18.
The experiment aimed at evaluating the yield and quality response of broccoli (Brassica oleracea L. var. italica) to applied irrigation water and nitrogen by drip irrigation method during the spring and autumn cultivation periods of 2007. Irrigation water was applied based on a ratio of Class A pan evaporation (kcp = 0.50, 0.75, 1.00 and 1.25) with 7 days interval. Also, the effect of four nitrogen levels (0 kg ha−1, 150 kg ha−1, 200 kg ha−1 and 250 kg ha−1) was compared with each treatment. The seasonal evapotranspiration in the treatments varied from 233 mm to 328 mm during the spring period and from 276 mm to 344 mm during the autumn period. The highest broccoli yield was obtained in the spring period as 11.02 t ha−1 and in the autumn period as 4.55 t ha−1. In general, there were statistical differences along nitrogen does with respect to yield and yield components while there were no statistically significant differences in the yield and yield components among irrigation regimes. Both yield and yield parameters in the spring period were found to be higher than that of the autumn period due to the low temperature and high rainy days in autumn. Irrigation water use efficiency (IWUE) ranged from 3.78 kg m−3 to 14.61 kg m−3 during the spring period and from 1.89 kg m−3 to 5.93 kg m−3 during the autumn period. On the other hand, nitrogen use efficiency (NUE) changed as 37.32-73.13% and 13.08-22.46% for spring and autumn season, respectively.  相似文献   

19.
During 2 years, a melon crop (Cucumis melo L. cv. Sancho) was grown under field conditions to investigate the effects of different nitrogen (N) and irrigation (I) levels on fruit yield, fruit quality, irrigation water use efficiency (IWUE) and nitrogen applied efficiency (NAE). The statistical design was a split-plot with four replications, where irrigation was the main factor of variation and N was the secondary factor. In 2005, irrigation treatments consisted of applying daily a moderate water stress equivalent to 75% of ETc (crop evapotranspiration), a 100% ETc control and an excess irrigation of 125% ETc (designated as I75, I100 and I125), while the N treatments were 30, 85, 112 and 139 kg N ha−1 (designated as N30, N85, N112 and N139). In 2006, both the irrigation and N treatments applied were: 60, 100 and 140% ETc (I60, I100 and I140) and 93, 243 and 393 kg N ha−1 (N93, N243 and N393). Moderate water stress did not reduce melon yield and high IWUE was obtained. Under severe deficit irrigation, the yield was reduced by 22% mainly due to decrease fruit weight. The relative yield (yield/maximum yield) was higher than 95% when the irrigation depth applied was in the range of 87-136% ETc. In 2006, the interaction between irrigation and N was significant for yield, fruit weight and IWUE. The best yield, 41.3 Mg ha−1, was obtained with 100% ETc at N93. The flesh firmness and the placenta and seeds weight increased when the irrigation level was reduced by 60% ETc. The highest NAE was obtained with quantities of water close to 100% ETc and increased as the N level was reduced. The highest IWUE was obtained with applications close to 90 kg N ha−1. The I243 and I393 treatments produced inferior fruits due to higher skin ratios and lower flesh ratios. These results suggest that it is possible to apply moderate deficit irrigation, around 90% ETc, and reduce nitrogen input to 90 kg ha−1 without lessening quality and yields.  相似文献   

20.
Water availability is a major constraint to crop production in sub-Saharan Africa (SSA) where agriculture is predominantly rain-fed. This study aimed to investigate the effect of the nitrogen-fixing legume tree Leucaena (Leucaena leucocephala) and inorganic fertilizer on rain use efficiency (RUE), a robust measure of productivity and land degradation, in three long-term (11-12 years) experiments conducted in Zambia and Nigeria. On the two Zambian sites, sole maize (Zea mays) grown continuously (for 11-12 years) with the recommended fertilizer achieved the highest RUE (3.9-4.6 kg ha−1 mm−1) followed by maize intercropped with Leucaena (2.5-3.4 kg ha−1 mm−1). This translated to 192-383% increase in RUE over the control (maize grown without nutrient inputs), which is the de facto resource-poor farmers’ practice. RUE was more stable in fully fertilized sole maize on the first Zambian site and not statistically different from the maize-Leucaena associations on the second site. On the Nigerian site, RUE was higher in maize planted between Leucaena hedgerows supplemented with 50% of the recommended fertilizer (3.9 kg ha−1 mm−1), maize grown between Leucaena hedgerows without fertilizer (3.0 kg ha−1 mm−1) and sole maize receiving the recommended fertilizer (2.8 kg ha−1 mm−1), which translated to increases in RUE of 202%, 139% and 85%, respectively, over the control. RUE was more stable in the maize grown between Leucaena hedgerows than in the fully fertilized maize. On all sites RUE was least stable in the control. Yield stability in the maize-Leucaena association was not significantly different from the fully fertilized maize on the Zambian sites. On the Nigerian site, maize yields were more stable in maize grown in Leucaena hedgerows than in fully fertilized sole maize. Supplementation of maize grown in Leucaena hedgerows with 50% of the recommended fertilizers resulted in greater yield stability. It is concluded that intercropping cereals with legume trees and supplementation with inorganic fertilizer can increase rain use efficiency and yield stability in rain-fed agriculture in SSA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号