首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Containment basins (CB) are an integral part of recycling irrigation systems that foster agricultural sustainability through water resource conservation. However, little is known regarding this aquatic ecosystem and the lack of water quality data has become an increasingly serious liability in crop health management. Here we report on four distinct seasonal and two diurnal patterns of change in water quality in the CBs. The four seasonal patterns are (a) periodic fluctuation in chlorophyll a, pH, and dissolved oxygen (DO), (b) oxidation–reduction potential (ORP) rises with decreasing DO, (c) tendency for increase in electrical conductivity, salinity, and total dissolved solids, and (d) weather-dependent changes in turbidity and temperature. The two diurnal patterns are (1) chlorophyll a, pH, DO, and temperature consistently peak between 16:00 and 17:00 hours and bottom out around 08:00 hours, and (2) ORP peaks in the morning and bottoms in the evening. Eight of the nine parameters excluding temperature were correlated; and algal blooms appear to be a major driving force for changes in the other seven parameters. These results underscore the importance of water quality monitoring in irrigation management and provide a framework for better understanding of pathogen aquatic ecology and how changes in water quality might be employed in a manner that suppresses plant pathogens and improves crop quality and productivity.  相似文献   

2.
为了研究农业区面污染造成的河流水体污染和富营养化等问题,以离子型为主的硝态氮污染物的质量浓度与径流大小的变化关系为河流水体含氮量预报的基础,选择农业区密集的美国密西西比河下游为研究对象,观测干流上控制性水文站维克斯堡站,对收集到的相关径流和水体硝态氮资料进行分析;运用Baseflow基流分割程序对径流序列分别进行日、月基流分割,将所分割的基流运用耶鲁大学Loadrunner程序,延伸和补全所选站点水体硝态氮的逐日质量浓度序列,并进一步建立逐月数据序列;运用神经网络方法,对研究对象的水体月硝态氮质量浓度进行了验证预报,建立了相应的预报步骤与预报公式.预报结果显示:对密西西比河下游水体月硝态氮质量浓度预报平均误差为7.5%.由此可见所提出的步骤和方法的准确性与适用性,可用于实际的河流水体月硝态氮质量浓度预报.  相似文献   

3.
Periodic opening of one-way tidal floodgates was undertaken on two coastal flood mitigation drains to promote exchange with estuarine water and improve drain water quality. The drains were located in areas with acid sulphate soils and their drainage water frequently had high acidity and low dissolved oxygen (DO). Tidal exchange via floodgate opening generally raised drain water pH levels through dilution and/or neutralisation of acidity. Increases in DO and moderation of extreme diurnal DO fluctuations were also observed. The magnitude and stability of the improved physico-chemical conditions was highly dependant on the volume and quality of tidal ingress water. Relatively rapid reversion (hours to days) in drain water pH and DO was observed once floodgates were closed again. The rate of reversion following floodgate closure was strongly related to outflow volumes, antecedent drain water quality conditions and groundwater levels. Floodgate opening caused changes in longitudinal drain water gradients and has potential to slow net drainage rates during non-flood periods. However, complex site specific interactions between drain water and adjacent groundwater can also occur. At one location, a 4-day floodgate opening event caused recharge of adjacent acid groundwater during the opening phase, raising the potentiometric groundwater level above local low tide minima. This was followed by tidally modulated draw down of acid groundwater and enhanced acid export in the period immediately following floodgate closure. There are also practical considerations, which limit the efficacy of floodgate opening as an acid management strategy. The low elevation (close to mean sea level) of some acid sulphate soil backswamps, combined with seasonal migration of the estuarine salt wedge, means there is considerable potential for saline overtopping of what is currently agricultural land. This constrains the magnitude and duration of controlled tidal exchange. Also, it is during wet periods that acid drainage outflow to the estuary is greatest. At such times the salinity and acid buffering capacity of estuarine water is often low, thus reducing the capacity of tidal exchange waters to neutralise acidity.  相似文献   

4.
When the soil water balance method is applied at a field scale, estimation of the spatial variability and confidence interval of actual evapotranspiration is rare, although this method is sensitive to the spatial variability of the soil, and thus to the sampling strategy. This work evaluated the effect of soil sampling strategies for soil water content and water flux at the bottom of the soil profile on the estimation of the daily and cumulative evapotranspirations. To do that, according to the statistical properties of daily measurements in a field experiment with a soybean crop, the water content and flux through the base to the soil profile in space (field scale) and time (daily scale) were simulated. Four different sampling strategies were then compared, and their effects on daily and seasonal cumulative evapotranspirations quantified. Strategy 1 used ten theoretical sites randomly located in the field. The daily water content estimates were assumed to be available each day from these same ten locations, which were located from 0.15 m to 1.55 m in depth, with space steps of 0.10 m. Strategy 2 assumed that daily water content estimates combined two sources: in the 0.00–0.20 m soil layer, ten theoretical sites were selected but changed every day, with thin soil layers for soil moisture sampling, from 1 to 5 cm in thickness. In the 0.20–1.60 m soil layer, the daily water content estimates were assumed to come from the same ten locations (the first soil moisture estimate was located at 0.25 m, and the others were located every 0.10 m until 1.55 m). Strategy 3 used ten theoretical sites located in the field, as in strategy 1, however the water content estimates in the 0.00–0.20-m soil layer were assumed to come from accurate water content measurements (soil layers from 1 to 5 cm in thickness), while for the 0.20–1.60 m soil layer, the strategy was similar to strategies 1 and 2. Strategy 4 used 10 new theoretical locations of measurement every day. Precise water content estimates for thin layers were assumed to be available in the 0.00–0.20 m soil layer as in strategy 2. The layers for water content estimates in the 0.20–1.60 m were similar to those of strategies 1, 2, and 3. Results showed that the spatial variability of the daily actual evapotranspiration may not be negligible, and differences from approximately ±1.0 mm d –1 to ±3.0 mm d –1 were calculated between the four sampling strategies. Strategy 1 gave the worst results, because variations in the water content of the top soil layers were neglected, and thus the daily evapotranspiration was underestimated. Strategy 2 led to a considerable variability for estimating daily evapotranspiration which was explained by the effect of the spatial variability due to the daily site sampling for the top soil layers (0 to 0.2 m). Strategy 3 appeared to be the best practical compromise between practical field considerations and the necessity to obtain accurate evapotranspiration measurements. The accuracy of daily evapotranspiration could reach ± 0.5 mm d–1, and could be further improved by increasing the number of measurement sites. The best results were obtained with strategy 4, although such a destructive and time-consuming strategy is not likely to be practical.  相似文献   

5.
The retention of nutrients in farm ponds has many potential benefits, including reduction of nitrogen and phosphorus (promoters of eutrophication) in receiving streams. The aim of this study was to evaluate the efficacy of a commercial subsurface pond outflow control device (Pond Management System™) on nutrient retention in farm ponds. Four ponds of similar size and water chemistry in the upper Tar River basin of North Carolina, USA were studied; three were equipped with the pond outflow control device and one was retained without a device (normal surface outflow) that served as a reference site. Water samples were collected monthly from each pond at 0.3 m intervals from the surface to 2.1 m at a fixed station adjacent to the pond standpipe and from the pond outflow pipe from March to October 2005. The water samples were analyzed for total Kjeldahl nitrogen (N), total phosphorus (P), chlorophyll a, and a suite of other physicochemical variables. In ponds with the subsurface outflow device, the mean N concentrations in the outflow were substantially less (6.2–20.7%) than concentrations at the pond surface. Concentrations of N in the outflow were similar to N concentrations at intermediate pond depths (0.9–1.5 m), the depth of the outflow devices, indicating water was drawn from these depths and that N was being retained in the surface layers of the pond. Also, mean water temperatures were 1.1–1.9 °C cooler at intermediate depths compared to the surface, suggesting potential application of the outflow device for minimizing warm water outflows to receiving streams. These results provide evidence that under these conditions a subsurface pond outflow device can reduce nutrient release to receiving streams, thereby increasing overall stream water quality.  相似文献   

6.
Irrigated agriculture in (semi-)arid regions may exert serious pressures on groundwater resources and jeopardise further agricultural and socio-economical developments. For assessing these pressures, we present in this paper results from a groundwater quality survey performed in 2005 within the irrigated agricultural Triffa plain in north-east Morocco. The study focuses on the physico-chemical and bacteriological quality of the groundwater body within the plain and exploits the correlation and spatial dependency of the quality parameters. It is demonstrated that the water quality in this region is critical. Nitrate levels are situated between 2 and 153 mg/l, with 73% of the observations exceeding the critical level of 50 mg/l. Nitrite, ammonia, orthophosphate and dissolved organic matter content do not exceed existing norms. Bacteriological residues (faecal, total coliforms, faecal streptococcus and clostridium sulfido-reductants), however, are retrieved in nearly all water samples. Bacteriological contamination is merely correlated with nitrite and ammonia content rather than with nitrate content, indicating a possible contribution of local pollution sources to groundwater deterioration. The variability of the nitrate and bacteriological pollution is important and spatially correlated. The spatially dependency is modelled using spherical and Gaussian semi-variograms and is used to map the nitrate and bacteriological contamination using ordinary kriging techniques. The results shown are significantly different as compared to earlier studies on groundwater quality for the studied aquifer. The differences may be explained partially by modified but inappropriate fertilizer management practices in combination with intensive irrigation. Given the agricultural developments in this area, further deterioration of the groundwater quality is expected if no mitigation strategies are developed.  相似文献   

7.
Seasonally managed wetlands in the Grasslands Basin on the west-side of California’s San Joaquin Valley provide food and shelter for migratory wildfowl during winter months and sport for waterfowl hunters during the annual duck season. Surface water supply to these wetlands contain salt which, when drained to the San Joaquin River (SJR) during the annual drawdown period, can negatively impact water quality and cause concern to downstream agricultural riparian water diverters. Recent environmental regulation, limiting discharges salinity to the SJR and primarily targeting agricultural non-point sources, now also targets return flows from seasonally managed wetlands. Real-time water quality management has been advocated as a means of continuously matching salt loads discharged from agricultural, wetland and municipal operations to the assimilative capacity of the SJR. Past attempts to build environmental monitoring and decision support systems (EDSS’s) to implement this concept have enjoyed limited success for reasons that are discussed in this paper. These reasons are discussed in the context of more general challenges facing the successful implementation of a comprehensive environmental monitoring, modelling and decision support system for the SJR Basin.  相似文献   

8.
The design and management of drainage systems should consider impacts on drainage water quality and receiving streams, as well as on agricultural productivity. Two simulation models that are being developed to predict these impacts are briefly described. DRAINMOD-N uses hydrologic predictions by DRAINMOD, including daily soil water fluxes, in numerical solutions to the advective-dispersive-reactive (ADR) equation to describe movement and fate of NO3-N in shallow water table soils. DRAINMOD- CREAMS links DRAINMOD hydrology with submodels in CREAMS to predict effects of drainage treatment and controlled drainage losses of sediment and agricultural chemicals via surface runoff. The models were applied to analyze effects of drainage intensity on a Portsmouth sandy loam in eastern North Carolina. Depending on surface depressional storage, agricultural production objectives could be satisfied with drain spacings of 40 m or less. Predicted effects of drainage design and management on NO3-N losses were substantial. Increasing drain spacing from 20 m to 40 m reduced predicted NO3-N losses by over 45% for both good and poor surface drainage. Controlled drainage further decreases NO3-N losses. For example, predicted average annual NO3-N losses for a 30 m spacing were reduced 50% by controlled drainage. Splitting the application of nitrogen fertilizer, so that 100 kg/ha is applied at planting and 50 kg/ha is applied 37 days later, reduced average predicted NO3-N losses but by only 5 to 6%. This practice was more effective in years when heavy rainfall occurred directly after planting. In contrast to effects on NO3-N losses, reducing drainage intensity by increasing drain spacing or use of controlled drainage increased predicted losses of sediment and phosphorus (P). These losses were small for relatively flat conditions (0.2% slope), but may be large for even moderate slopes. For example, predicted sediment losses for a 2% slope exceeded 8000 kg/ha for a poorly drained condition (drain spacing of 100 m), but were reduced to 2100 kg/ha for a 20 m spacing. Agricultural production and water quality goals are sometimes in conflict. Our results indicate that simulation modeling can be used to examine the benefits of alternative designs and management strategies, from both production and environmental points-of-view. The utility of this methodology places additional emphasis on the need for field experiments to test the validity of the models over a range of soil, site and climatological conditions.  相似文献   

9.
This paper describes a multi-level drainage system, designed to improve drainage water quality. Results are presented from a field scale land reclamation experiment implemented in the Murrumbidgee Irrigation Area of New South Wales, Australia. A traditional single level drainage system and a multi-level drainage system were compared in the experiment in an irrigated field setting. The single level drainage system consisted of 1.8 m deep drains at 20 m spacing. This configuration is typical of subsurface drainage system design used in the area. The multi-level drainage system consisted of shallow closely spaced drains (3.3 m spacing at 0.75 m depth) underlain by deeper widely spaced drains (20 m spacing at 1.8 m depth). Data on drainage flows and salinity, water table regime and soil salinity were collected over a 2-year period.  相似文献   

10.
In this study, the ADAPT (Agricultural Drainage and Pesticide Transport) model was calibrated and validated for monthly flow and nitrate-N losses, for the 2000-2004 period, from two minor agricultural watersheds in Seven Mile Creek (SMC-1 and SMC-2) in south-central Minnesota. First, the model was calibrated and validated using the water quality data from the SMC-1 and again independently validated with the SMC-2 dataset. The predicted monthly flow and associated nitrate-N losses agreed reasonably with the measured trends for both calibration (r2 = 0.81 and 0.70 for flow and nitrate-N losses, respectively) and validation (r2 = 0.85 and 0.78 for flow and nitrate-N losses from SMC-1, and 0.89 and 0.78 for flow and nitrate-N losses from SMC-2, respectively) periods. The model performed less satisfactorily for the snowmelt periods than it did for the entire simulation period. Using the calibrated model, long-term simulations were performed using climatic data from 1955 to 2004 to evaluate the effects of climatic variability and N application rates and timing on nitrate-N losses. The predicted nitrate-N losses were sensitive to N application rates and timing. A decrease in the fall N application rate from 179.3 to 112 kg/ha decreased nitrate-N losses by 23%. By changing application timing from fall to spring at a rate of 112 N kg/ha, nitrate-N losses decreased by 12%. The predicted nitrate-N losses showed a linear response to precipitation with larger losses generally associated with wet years. A 25% increase in mean annual precipitation would offset reductions in nitrate-N loss achieved using better N fertilizer management strategies described above.  相似文献   

11.
Unrestricted cattle access to streams in traditionally pastoral regions has been linked to increased concentrations of bacteria, suspended sediments and associated contaminants in streams. However, there is a dearth of data available regarding the impact of cattle access to streams in poorly drained landscapes of the Midwest. In this study, we investigate changes in water quality on a 1005 m long stream section impacted by cattle grazing on the upper 130 m. We monitor discharge, water quality [nitrate, ammonium, total Kjeldahl nitrogen (TKN), total phosphorus (TP), total suspended sediments (TSS), turbidity, Escherichia coli] and chloride, atrazine, silica and major cation concentrations over a 12-month period. Cattle access to the stream does not significantly affect nitrate concentration but leads to large increases in TKN (fourfold increase), TP (fivefold increase), ammonium (fourfold increase), TSS (11-fold increase), turbidity (13-fold increase) and E. coli (36-fold increase) in the summer/fall period. In particular, E. coli concentration in the stream in the summer/fall period exceeds 235 colony forming unit (CFU)/100 ml 64% of the time upstream from the section impacted by cattle, but exceeds this same threshold 89% of the time immediately downstream. Despite the negative impact of cattle access to the stream on water quality, data indicate that dilution, in-stream processes, and natural stream geometry downstream from the impacted section help mitigate this pollution. We expect that this study will be an incentive for policy makers to promote stream rehabilitation and develop more stringent guidelines limiting cattle access to streams in many Midwestern states and other regions with poorly drained soils where the impact of cattle access to streams on water quality is often ignored.  相似文献   

12.
Tile drainage is a common water management practice in many agricultural landscapes in the Midwestern United States. Drainage ditches regularly receive water from agricultural fields through these tile drains. This field-scale study was conducted to determine the impact of tile discharge on ambient nutrient concentration, nutrient retention and transport in drainage ditches. Grab water samples were collected during three flow regimes for the determination of soluble phosphorus (SP), ammonium nitrogen (NH4+-N), nitrate nitrogen (NO3-N) concentrations and their retention in three drainage ditches. Measured nutrient concentration indicated lower SP and NH4+-N, and greater NO3-N concentrations in tile effluents compared to the ditch water. Net uptake lengths were relatively long, especially for NO3-N, indicating that nutrients were generally not assimilated efficiently in these drainage systems. Results also indicated that the study reaches were very dynamic showing alternating increases or decreases in nutrient concentration across the flow regimes. The drainage ditches appeared to be nutrient-rich streams that could potentially influence the quality of downstream waters.  相似文献   

13.
Agricultural activities are the main sources of water pollution to surface water and groundwater in rural areas. Extensive soil disturbance and application of fertilizer and manure in agriculture cause nonpoint source losses of soil and nutrients such as nitrogen and phosphorus. How to generate preferred decision schemes for agricultural activities that cause such nonpoint source water pollution is a critical issue for the decision makers. In this study, an inexact agricultural water quality management (IAWQM) model is developed and applied to a case study to generate optimal decision schemes for integrated water quality management within an agricultural system. The model is based on a hybrid fuzzy possibilistic robust programming approach, which improves upon the existing fuzzy possibilistic programming and fuzzy robust programming methods by allowing fuzzy information in the model's objective and constraints to be directly communicated into the optimization processes and resulting solutions. Optimal decision schemes for agricultural activities can be generated, including cropping area, manure/fertilizer applied, and livestock husbandry size, where implications of water quality/quantity restrictions for achieving regional economic development objectives are studied. The results of the case study indicate that useful information can be obtained through the proposed IAWQM model for providing feasible decision schemes, which reflect tradeoffs between economic and environmental considerations. The decision variables are useful for the decision makers to justify and/or adjust the decision schemes for agricultural activities through incorporation of their implicit knowledge on water quality management.  相似文献   

14.
针对农田分区灌溉需水量模拟过程中普遍存在的求解过程易陷入局部最小化、出现过度拟合,以及过度依赖历史用水数据,导致最终模拟结果存在显著误差的问题,研究基于贝叶斯神经网络的农田分区灌溉需水量模拟分析方法。以前一周需水量、年内月需水量占比、日内温度上限值及日降雨量为指标,通过聚类分析获取指标数据均值,对农田分区灌溉历史用水的样本数据进行聚类分析。构建贝叶斯神经网络模型,将指标数据均值输入模型,根据BP神经网络原理与贝叶斯规则训练指标数据,然后输出农田分区灌溉需水量模拟结果。试验结果显示数据聚类结果中数据间关联度高于95%,数据拟合效果较好,模拟需水量时具有更高的精度与稳定性。   相似文献   

15.
Use of low quality water for irrigation of food crops is an important option to secure crop productivity in dry regions, alleviate water scarcity and recycle nutrients, but it requires assessment of adverse effects on health and environment. In the EU-project “SAFIR1” a model system was developed that combines irrigation management with risk evaluation, building on research findings from the different research groups in the SAFIR project. The system applies to field scale irrigation management and aims at assisting users in identifying safe modes of irrigation when applying low quality water. The cornerstone in the model system is the deterministic “Plant-Soil-Atmosphere” model DAISY, which simulates crop growth, water and nitrogen dynamics and if required heavy metals and pathogen fate in the soil. The irrigation and fertigation module calculates irrigation and fertigation requirements based on DAISY's water and nitrogen demands. A Water Source Administration module keeps track of water sources available and their water quality, as well as water treatments, storage, and criteria for selection between different sources. At harvest, the soil concentrations of heavy metals and pathogens are evaluated and the risk to consumers and farmers assessed. Crop profits are calculated, considering fixed and variable costs of input and output. The user can run multiple “what-if” scenarios that include access to different water sources (including wastewater), water treatments, irrigation methods and irrigation and fertilization strategies and evaluate model results in terms of crop yield, water use, fertilizer use, heavy metal accumulation, pathogen exposure and expected profit. The management model system can be used for analysis prior to investments or when preparing a strategy for the season.  相似文献   

16.
Wesseling (1964) stated that standing water above drains as a result of submerged outlets creates a radial flow in the vicinity of the drains which promotes flow conditions so that a smaller rise of the water table height midway between drains results. Wesseling (1979) concluded the same for standing water above drains as the result of too high entrance resistance. Standing water above drains may also be due to overpressure in the drains as a result of too small pipe diameter or to irregular drain slopes. With the exception of submerged outlets the resulting water table rise midway between drains is however in the same order of the water table rise above the drain as can be derived from theoretical analysis. This conclusion was confirmed by measurements at an experimental field where the standing water above drains, as a result of overpressure, and the water table midway between drains were monitored in a field located at the northwest of the Nile Delta. In spite of the low discharge rates, overpressure was observed in the drains. It was mainly attributed to irregular drain slopes. The analysis of field data showed that the water table midway between drains rises at least the same as the water table height above the drains. Since overpressure in drains causes a decrease of the dewatering zone, a careful and accurate installation is of utmost importance for the proper functioning of a drainage system.  相似文献   

17.
The reuse of treated wastewater (reclaimed water) for irrigation is a valuable strategy to maximise available water resources, but the often marginal quality of the water can present agricultural challenges. Semi-structured interviews were held with Jordanian farmers to explore how they perceive the quality of reclaimed water. Of the 11 farmers interviewed who irrigate with reclaimed water directly near treatment plants, 10 described reclaimed water either positively or neutrally. In contrast, 27 of the 39 farmers who use reclaimed water indirectly, after it is blended with fresh water, viewed the resource negatively, although 23 of the indirect reuse farmers also recognised the nutrient benefits. Farmer perception of reclaimed water may be a function of its quality, but consideration should also be given to farmers’ capacity to manage the agricultural challenges associated with reclaimed water (salinity, irrigation system damage, marketing of produce), their actual and perceived capacity to control where and when reclaimed water is used, and their capacity to influence the quality of the water delivered to the farm.  相似文献   

18.
19.
Northeast of Brazil is a semi-arid region, where water is a key strategic resource in the development of all sectors of the economy. Irrigation agriculture is the main water consumer in this region. Therefore, policy directives are calling for tools to aid operational monitoring in planning, control and charging of irrigation water. Using Landsat imagery, this study evaluates the utility of a process that measures the level of water use in an irrigated area of the state of Ceará. The experiment, which models evapotranspiration (ET), was carried out within the Jaguaribe-Apodi irrigation scheme (DIJA) during two months of the agricultural season. The ET was estimated with the model Mapping Evapotranspiration at High Resolution and with Internalized Calibration (METRIC). The model uses the residual of the energy balance equation to estimate ET for each pixel in the image. The results of the estimates were validated using measurements of ET from a micrometeorological tower installed within a banana plantation located near the irrigation scheme. After evaluating the ET estimates, the average fraction of depleted water for a set of agricultural parcels combined with the monthly ET mapping estimates by METRIC provided a method for predicting the total water use in DIJA for the study period. The results were then compared against the monthly accumulated flow rates for all the pumping stations provided by the district manager. Finally, this work discusses the potential use of the model as an alternative method to calculate water consumption in irrigated agriculture and the implications for water resource management in irrigated perimeters.  相似文献   

20.
为了科学合理、简便有效地评价灌溉水质,提出了一个灌溉水质评价的指数公式,并采用粒子群算法优化公式中的参数,得出优化后适用于多指标的灌溉水质评价公式.以新疆阿拉尔垦区、尉犁县和宁夏平罗县的水质资料为例进行验证.结果表明,该公式与综合危害系数法、模糊综合评价、突变理论的评价结果基本一致.新疆阿拉尔垦区和宁夏平罗的地下水适合农业灌溉,而尉犁县平原灌区浅层地下水不宜长期直接灌溉.灌溉水质评价公式具有简单便捷的优点,可以快速地得出灌溉水质评价结果,为灌溉水质评价提供了新的有效途径.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号