首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到3条相似文献,搜索用时 0 毫秒
1.
In the irrigated western U.S. disposal of drainage water has become a significant economic and environmental liability. Development of irrigation water management practices that reduce drainage water volumes is essential. One strategy combines restricted drainage outflow (by plugging the drains) with deficit irrigation to maximize shallow groundwater consumption by crops, thus reducing drainage that needs disposal. This approach is not without potential pitfalls; upward movement of groundwater in response to crop water uptake may increase salt and sodium concentrations in the root zone. The purposes for this study were: to observe changes in the spatial and temporal distributions of SAR (sodium adsorption ratio) and salt in a field managed to minimize drainage discharge; to determine if in situ drainage reduction strategy affects SAR distribution in the soil profile; and to identify soil or management factors that can help explain field wide variability. We measured SAR, soil salinity (EC1:1) and soil texture over 3 years in a 60-ha irrigated field on the west side of the San Joaquin Valley, California. At the time we started our measurements, the field was beginning to be managed according to a shallow groundwater/drainage reduction strategy. Soil salinity and SAR were found to be highly correlated in the field. The observed spatial and temporal variability in SAR was largely a product of soil textural variations within the field and their associated variations in apparent leaching fraction. During the 3-year study period, the percentage of the field in which the lower profile (90-180 cm) depth averaged SAR was above 10, increased from 20 to 40%. Since salinity was increasing concomitantly with SAR, and because the soil contained gypsum, sodium hazard was not expected to become a limiting factor for long term shallow groundwater management by drain control. It is anticipated that the technology will be viable for future seasons.  相似文献   

2.
In this study deterministic, multivariate and stochastic methods are applied to a combined temporal and spatial monitoring data set, in order to assess nitrate and pesticide levels and contamination risk in shallow groundwater. The case study involves an area in the Mondego River alluvial body in central Portugal, where agriculture is the main land use, with predominantly maize, rice and some vegetable crops supported by river water irrigation. Factorial correspondence analysis (FCA), reducing the original data matrix to a small number of independent orthogonal factors, is applied to detect associations between nitrate levels, land use (crop type), lithology and groundwater depth. Indicator-geostatistical techniques are used to create maps indicating the probability of nitrate concentrations in groundwater exceeding predetermined threshold values, including the drinking water standard (98/83/EC) and vulnerable zone designation criterion (91/676/EEC) of 50 mg/l NO3. For pesticides the leaching potential is determined by calculating the Groundwater Ubiquity Score (GUS), based on the sorption coefficient and soil half-life for each pesticide compound. Results for nitrate show an overall very low risk of exceeding 50 or 25 mg/l, whereas the risk of exceeding 9.5 mg/l (third data quartile) is particularly high in areas where FCA shows correlation of nitrate contamination with vegetable and maize crops, aerobic conditions, lower groundwater levels and to some extent, coarser grained sediments. On the contrary, nitrate levels under rice are lowest and correlated to a reduced environment, finer-grained sediments and a higher water table. Denitrification is found to be an important attenuation process, as well as dilution by surface water irrigation and precipitation. Crop type and irrigation source are seen to have a large influence on the nitrate contamination potential of groundwater. Total concentrations of the analysed pesticide compounds above the regulatory limit of 0.5 μg/l are observed in 32% of the analysed water samples, with a maximum value of 16.09 μg/l. The probability maps provide a particularly interesting example of how multiple-well monitoring results over a certain period can be condensed into single maps and used by water engineers, managers and policy-makers.  相似文献   

3.
为查明沽源县浅层地下水水化学特征及水质状况,选取52组样品进行水化学组成分析.运用Piper三线图,确定研究区地下水水化学类型.在此基础上采用了不同的评价方法对该研究区水质现状进行评价.结果表明:该区浅层地下水化学类型主要以HCO3-Ca型为主;地下水质量综合评价结果显示研究区内18组地下水化学组分是比较高的,适用于农业用水,也可适当处理后作为生活饮用水;16组地下水化学组分高,质量标准评价为Ⅴ类水,不宜作为生活饮用水饮用.为了水资源利用效率,对其进行灌溉用水适宜性评价.通过对16组地下水作为灌溉用水评价,评价结果是DX-39处水质较差,不宜或不太适用于灌溉.研究成果可为该区浅层地下水资源的合理开发和利用提供科学依据,对保证灌溉当地农作物安全有着重要意义.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号