首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 492 毫秒
1.
【目的】研究促沉净化装置对稻田径流排水中主要面源污染物的去除效果,探寻适合农田径流排水的原位处理技术。【方法】于2015年在上海市奉贤区青村镇种源研发基地内选取5块稻田,在每块田的排水口处修建一套容积约为1.9 m3的促沉净化装置,内部用多面空心球和沸石按1∶2的体积比进行填充,在外围用沸石填充,分析每套装置进出水中的固体悬浮物、总氮和总磷的质量浓度。【结果】在整个稻季中,使用促沉净化装置对稻田径流排水中的固体悬浮物、总氮和总磷均具有较好的去除效果,其平均去除率分别达到61%、33%和34%。该装置对固体悬浮物或总磷的去除率与其质量浓度之间存在显著的对数正相关关系,即质量浓度越高,其去除率也越高;但对总氮的去除率与其质量浓度之间则呈一定程度的线性负相关关系。【结论】促沉净化装置对稻田径流排水中主要面源污染物均有较好的去除效果,使用促沉净化装置可在不影响流速的情况下,有效降低径流排水中污染物的质量浓度,改善周边水体环境,维护水体生态系统平衡稳定。  相似文献   

2.
The reduction of suspended solids, nutrients, and organic matter loads in drainage water from paddy fields is an important issue for water quality management in closed water areas in Japan. We evaluated the ability of cyclic irrigation to reduce the suspended solids load from paddy fields. In 2006 and 2007, we investigated water and mass balances during the irrigation period in a low-lying paddy-field district neighboring Lake Biwa, which is the largest lake in Japan. We confirmed that cyclic irrigation reduced effluent loads during the puddling season. With cyclic irrigation, 118 kg ha−1 of suspended solids was returned to the paddy fields in 2006 and 199 kg ha−1 in 2007. The effect of cyclic irrigation on the net suspended solids load can be represented by three ratios: the concentration ratio, which represents the ratio of the suspended solids concentration in drainage water to that in lake water; the cyclic irrigation ratio, which represents the ratio of the volume of reused water to that of irrigation water in cyclic irrigation; and the surplus irrigation water ratio, which represents the ratio of the volume of surplus irrigation water to that of irrigation water. The cyclic irrigation ratio and the surplus irrigation water ratio interact to determine the effect of cyclic irrigation on the net suspended solids load. Simultaneously increasing the cyclic irrigation ratio and decreasing the surplus irrigation water ratio will maximize the purification effect on drainage water from paddy fields.  相似文献   

3.
Excessive nutrient loadings from rice paddy fields has been a great concern in Korea as rice paddy area spans over 1,153,000 ha, which covers approximately 60% of the total agricultural land area in Korea. The principal tasks of this study included undertaking work to better identifying the scope of the nutrient loadings from paddy fields to assess their adverse effects. Hydro-meteorological factors, rainfall and surface discharge, were considered as the major driving forces of nutrients into the water. A Generalized Regression Neural Network (GRNN) model was applied and its capability evaluated to predict the nutrient loading into the neighboring water. The 15 ha paddy fields surrounded by drainage and irrigation channels were chosen as a study area. Field data, such as rainfall, quantities of irrigation and discharge water, and nutrient contents (total nitrogen (T-N) and total phosphorus (T-P)) from two different water sources, were obtained throughout the study period. Simulation results showed that surface discharge had a positive correlation with rainfall (R = 0.84). In addition, the resulting predictions for nutrient concentrations corresponding to surface discharge were varied (R = 0.72 and 0.40 in total nitrogen and total phosphorus, respectively). This study found that both natural and artificial variations of nutrient contents in irrigation streams were significantly influenced the model results of nutrient predictions. Therefore, the nutrient loadings into the neighboring water can be accurately described with a more comprehensive and sufficient representation of both environmental inputs and hydrological processes.  相似文献   

4.
Runoff nitrogen from a large sized paddy field during a crop period   总被引:2,自引:0,他引:2  
Nutrient load management is an important environmental issue because nutrient loads from farmlands degrade surface waters as a result of anthropogenic eutrophication. Nitrogen load from a large sized paddy field during the crop period was examined from the results of field measurements carried out in 2004. The 1.5 ha paddy field was located east of Biwa Lake. Irrigation water volume and ponded water depth were continuously observed. Field measurements were carried out at least once a week to analyze total nitrogen (TN) concentration in the irrigation water and ponded water. Daily inflow and outflow of nitrogen was obtained by multiplication of the nitrogen concentration and transported water volume, consisting of irrigation, precipitation, evapotranspiration, percolation and surface discharge. Water outflow volume was calculated by a tank model that consisted of three small tanks connected to represent ponded water depth differences in the large paddy field. The calculated nitrogen load was 18.8 kg ha−1, with 7.2 kg ha−1 from surface drainage and 11.6 kg ha−1 from percolation loss. The runoff nitrogen value of 18.8 kg ha−1 was within the range of the reported values investigated in a medium-sized paddy field. The observed value was close to the value for a low percolation flux paddy field where less irrigation water has been applied. These results suggest that less irrigation water keep runoff nitrogen low. This also indicates that irrigation water management can reduce nitrogen load from large sized paddy fields.  相似文献   

5.
为研究淹水稻田在排水条件下的氮肥流失规律,在上海青浦农田水利试验站进行了田间试验。试验资料分析表明,在淹水层中施肥后氮素(NH+4 - N 或NO-3 - N)浓度衰减呈指数消退。在稻、麦连作田块,水稻生长期内,氮的挥发损失较大,而通过暗管排水流失的氮素占全部损失量比例较小。当控制沟水位及田面水层的水位差,合理控制稻田渗漏量时,可减少氮肥流失量  相似文献   

6.
Irrigation return flows may induce salt and nitrate pollution of receiving water bodies. The objectives of this study were to perform a salt and nitrogen mass balance at the hydrological basin level and to quantify the salt and nitrate loads exported in the drainage waters of three basins located in a 15,500 ha irrigation district of the Ebro River Basin (Spain). The main salt and nitrogen inputs and outputs were measured or estimated in these basins along the 2001 hydrological year. Groundwater inflows in the three basins and groundwater outflow in one basin were significant components of the measured mass balances. Thus, the off-site impact ascribed solely to irrigation in these basins was estimated in the soil drainage water. Salt concentrations in soil drainage were low (TDS of around 400–700 mg/l, depending on basins) due to the low TDS of irrigation water and the low presence of salts in the geologic materials, and were inversely related to the drainage fractions (DF = 37–57%). However, due to these high DF, salt loads in soil drainage were relatively high (between 3.4 and 4.7 Mg/ha), although moderate compared to other areas with more saline geological materials. Nitrate concentrations and nitrogen loads in soil drainage were highest (77 mg NO3/l and 195 kg N/ha) in basin III, heavily fertilized (357 kg N/ha), with the highest percentage of corn and with shallow, low water retention flood-irrigated soils. In contrast, the lowest nitrate concentrations and nitrogen loads (21 mg NO3/l and 23 kg N/ha) were found in basin II, fertilized with 203 kg N/ha and preponderant in deep, alluvial valley soils, crops with low N requirements (alfalfa and pasture), the highest non-cropped area (26% of total) and with fertigation practices in the sprinkler-irrigated fields (36% of the irrigated area). Thus, 56% of the N applied by fertilization was lost in soil drainage in basin III, as compared to only 16% in basin II. In summary, a low irrigation efficiency coupled to an inadequate management of nitrogen fertilization are responsible for the low-salt, high-nitrate concentrations in soil and surface drainage outflows from the studied basins. In consequence, higher irrigation efficiencies, optimized nitrogen fertilization and the reuse for irrigation of the low-salt, high-nitrate drainage waters are key management strategies for a better control of the off-site pollution from the studied irrigation district.  相似文献   

7.
利用配有相对独立的供、排水系统的测坑研究间歇灌排、间歇灌连续排、灌排平衡3种水管理方式下稻田对养殖肥水的净化效果。研究结果表明:①3种水管理方式下稻田对养殖肥水中养分均有显著的去除率,其中,对不同形态的氮而言,NH4^+-N的去除率优于NO3^--N;对不同物质而言,对氮、磷的去除率优于CODMn;②对不同的水管理方式...  相似文献   

8.
[目的]研究不同灌排模式稻田水氮动态变化,为南方稻作区节水减排提供科学依据.[方法]基于实测的田间灌排水量及氮素变化数据,采用Morris方法检测DRAINMOD模型水氮运移相关参数的灵敏度,并利用DRAINMOD模型对传统灌排模式和控制灌排模式下稻田水氮动态进行模拟.[结果]20~40 cm 土层侧向饱和导水率对稻田...  相似文献   

9.
为了探索平原湖区渍害低产稻田的合理排灌模式,我们从1988~1990年连续三年采用了以明(沟)暗(沟、管)结合的排水方式和浅湿灌溉控制供水的灌溉方式进行治渍试验。本文对平原湖区渍害的低产田,田间排水系统的不同方式进行了比较,并在试区内推行水稻节水灌溉技术,取得了明显的治渍效果。  相似文献   

10.
生态沟-湿地系统对稻田排水中氮素的去除效果   总被引:1,自引:0,他引:1  
为研究灌排调控下生态沟-湿地系统对稻田排水中氮素的原位削减效果,探讨低碳氮比对于系统氮素去除效果的影响.依据大田试验观测资料,分析了控制灌排模式下生态沟-湿地系统水体中氮素质量浓度变化规律和碳氮比分布特征.结果表明,控制灌排模式下生态沟-湿地系统对稻田排水中氮素去除效果显著,施肥后排水中TN,NH4+-N和NO3--N质量浓度出现峰值,在农沟拦蓄后质量浓度大幅下降,氮素平均去除率分别为63.9%,67.8%和83.2%.进入湿地再次净化后,氮素质量浓度进一步降低,平均去除率分别为47.7%,44.3%和82.0%.控制灌排模式下系统水体中有机质对水环境影响较小,水体碳氮比水平总体偏低.控制灌排模式下生态沟-湿地系统很好地实现了对氮素的原位削减,低碳氮比对于系统氮素去除效果的影响不大.  相似文献   

11.
在南方渍害田地区,通常是稻麦连作区,为研究这些地区在排水条件下的氮肥流失规律,在上海青浦农田水利试验站进行了田间试验。试验表明,在小麦生长期,地下水埋深较小时,氮素在土壤中,在地下水位以下土壤剖面上的硝态氮含量很小,排水农田中氮自排水暗管流失量仅占总损失量中较小部分。表明地下水中氮素大部分以N2O 和N2 形态散失。这些试验结果将为排水条件下氮素运移转化模拟计算提供依据  相似文献   

12.
Rapid industrial development in the rice-growing regions has increased competition for the scarce water resources. Water reuse (surface and subsurface agriculture drainage water, storm runoff, sewerage effluent and industrial wastewater recycling) is in widespread use as a method of supplementing the paddy water supply, therefore, there is a need to clarify its effects on the paddy system water balance and riceland ecosystem. Field data and simulation results from a complex runoff model (created on a daily basis), were used to estimate the water balance and assess the effects on the irrigation system of a water shortage area in Niigata Prefecture, Japan. For three years (1991–1993), the average water reuse component was within the range 14∼ 15% of the total irrigation water supply. Apart from meeting the water needs at peak demand periods, water reuse is a quick-response water supply solution during dry spells, increasing both the water reliability and crop security. To understand the impact of water reuse on the riceland ecosystem, its effect on total phosphorus (T-P), total nitrogen (T-N), suspended solids (SS), and chemical oxygen demand (COD) was assessed. Blending of the drainage water was done to reduce the irrigation water concentrations, to approximate the traditional dual canal system and to increase farmer satisfaction with the water reuse system. Apart from the fact that the amount of return flow drained out of the irrigation system was reduced when drainage water was reused for irrigation, the effluent load reductions for SS and T-P owing to water reuse were consistently high. Hence, water reuse not only helps meet irrigation water needs, but also aids purification of the agricultural drainage water and preservation of the riceland ecosystem.  相似文献   

13.
【目的】探索水稻蓄雨间歇灌溉模式节水减排效益。【方法】以鄱阳湖区双季早晚稻为试验材料,采用大田和测坑试验,研究了水稻蓄雨间歇灌溉模式对灌溉定额、排水定额、降雨有效利用率、产量、稻田水分生产率,以及氮、磷排放量的影响,并与间歇灌溉和常规淹水灌溉试验进行了分析比较。【结果】与淹水灌溉、间歇灌溉相比,蓄雨间歇灌溉灌排水量、灌排次数明显减少。双季早晚稻年平均灌水量分别减少975m^3/hm^2和1251m^3/hm^2,年平均灌水次数分别减少8次和7.5次;年平均排水量分别减少729 m^3/hm^2和893 m^3/hm^2,年平均排水次数分别减少5.8次和3.1次;蓄雨间歇灌溉降雨有效利用率明显提高。早稻降雨利用率分别提高12.40%和9.14%,晚稻分别提高6.84%和6.42%;蓄雨间歇灌溉模式下,双季早晚稻总氮排放量年平均减排7.64 kg/hm^2和3.12 kg/hm^2,减排幅度34.93%和14.26%;双季早晚稻总磷排放量0.180kg/hm^2和0.095kg/hm^2,减排幅度37.25%和70.59%。【结论】蓄雨间歇灌溉模式具有明显的节水、减排和提高降雨有效利用率的效果,在我国南方多雨地区具有较强的推广应用空间。  相似文献   

14.
Evaluation of the flood mitigation effect of a Paddy Field Dam project   总被引:1,自引:0,他引:1  
To mitigate flood damage due to a recent increase in the frequency and magnitude of heavy rainfall events, the Kamihayashi district in Niigata prefecture, Japan, has undertaken flood mitigation measures using paddy fields by installing runoff control devices in drainage boxes of paddy field plots. The purpose of this study is to evaluate the flood mitigation performance of the Paddy Field Dam project in terms of a decrease in discharge volume, drop in channel water level and reduction of inundation damage using combined hydrologic analyses and flood routing. The model constructed for runoff analysis is composed of three modules: a hilly/residential area module in which the overland flow is estimated using the kinematic wave method, a paddy field module in which runoff from paddy fields is calculated using water balance analysis, and a channel network module in which flood routing is performed using a one-dimensional unsteady flow model. The outputs of the first two modules are the input of the third module. The result of the simulation shows the main channel discharge decreased by 26% and the water level dropped by 0.17 m in the case of the largest observed rainfall event. The simulated effect was larger for larger rainfall events. In terms of flood water volume, the runoff control devices have the effect of reducing the flood damage due to the 50-year return period rainfall event to almost that due to the 10-year return period rainfall event.  相似文献   

15.
以农田水位作为水稻旱涝交替胁迫调控指标,在蒸渗测坑进行水稻拔节孕穗期和抽穗开花期的旱涝交替胁迫试验,研究了旱涝交替胁迫下稻田水NH+4-N,NO-3-N的流失规律.结果表明:NH+4-N是稻田地表水、地下水氮素的主要形式;旱涝交替胁迫对稻田水NH+4-N,NO-3-N浓度变化影响明显,FDTF较FFTD的稻田水平均NH+4-N、平均NO-3-N浓度都高,FDTF和FFTD均能降低地表水NH+4-N,NO-3-N浓度,FDTF和FFTD涝水胁迫下的地下水平均NH+4-N、平均NO-3-N浓度高于干旱胁迫下;此外,在干旱胁迫后进行涝水胁迫可以显著增加地下水NH+4-N,NO-3-N浓度.因此,应避免旱后复水稻田的排水.  相似文献   

16.
A field experimental project was set up in southern Sweden to assess the effects of controlled drainage on hydrology and environment. Controlled drainage makes it possible to vary the drainage intensity with the variation in drainage requirement during season by controlling the height of a riser in the drain outlet and thus to a certain degree control the amount of outflow of solutes via the drainage system. During periods with low drainage demand, the riser in the drain outlet can be raised and the groundwater level in field will rise up to the level of the riser before the discharge takes place. Three plots, each with an area of 0.2 ha (40 m×50 m) were installed on a loamy sand. One plot was drained by conventional subsurface drainage (CD) and two plots were drained by controlled drainage (CWT). The plots contained four lateral drain tubes, at 10 m spacing and placed at 1 m depth. Each plot was isolated by a double layer of plastic sheeting placed in the back-filled trenches to a depth of 1.6 m to prevent lateral leakage and subsurface interactions. Measurements of precipitation, drain outflow and soil and air temperatures were carried out hourly. Groundwater levels were measured and samples of drain outflow were collected twice a month for nitrogen and phosphorous analyses. Mineral nitrogen contents in soil were measured three times a year.Controlled drainage had a significant hydrological and environmental effect during the 2 years of measurement (1996–1998). Compared with CD, the total drain outflow from CWT was 79% less in Year 1 and 94% in Year 2. The total reduction in nitrate losses with CWT corresponded to the reduced outflow rates. Compared with CD, the total amounts of nitrate in drain outflow were 78% less in Year 1 and 94% in Year 2. The highest concentrations of nitrate were measured at the time of the largest outflow rates. The phosphorous losses were 58% less for CWT as compared to the CD values in Year 1 and 85% less in Year 2. The reduction in nitrogen content in the soil profile during the winter season was 60–70% less in CWT than in CD.  相似文献   

17.
Tile drainage is a common water management practice in many agricultural landscapes in the Midwestern United States. Drainage ditches regularly receive water from agricultural fields through these tile drains. This field-scale study was conducted to determine the impact of tile discharge on ambient nutrient concentration, nutrient retention and transport in drainage ditches. Grab water samples were collected during three flow regimes for the determination of soluble phosphorus (SP), ammonium nitrogen (NH4+-N), nitrate nitrogen (NO3-N) concentrations and their retention in three drainage ditches. Measured nutrient concentration indicated lower SP and NH4+-N, and greater NO3-N concentrations in tile effluents compared to the ditch water. Net uptake lengths were relatively long, especially for NO3-N, indicating that nutrients were generally not assimilated efficiently in these drainage systems. Results also indicated that the study reaches were very dynamic showing alternating increases or decreases in nutrient concentration across the flow regimes. The drainage ditches appeared to be nutrient-rich streams that could potentially influence the quality of downstream waters.  相似文献   

18.
为探究节水灌溉模式下黑土稻田NH3、N2O排放及氮肥吸收利用对减施氮肥的响应规律,以黑龙江省黑土稻田为研究对象,于2021年进行了大田试验,试验设置常规淹灌(F)和控制灌溉(C)2种灌溉模式,全生育期施氮量设置常规施氮水平(N,110 kg/hm2)、减氮10%(N1,99 kg/hm2)和减氮20%(N2,88 kg/hm2) 3个水平,并在F和C灌溉模式下分别设置不施氮肥处理(CK1和CK2)作为对照组,共8个处理。分析了不同灌溉模式下减施氮肥对水稻全生育期NH3挥发速率和N2O排放的影响,计算了氮肥气态损失量和损失率,并基于同位素示踪技术进一步估算了水稻对氮肥的吸收利用量及水稻收获后土壤中的氮肥残留量。结果表明:2种灌溉模式下的氮肥气态损失量及损失率均随着施氮量的减少而降低。控制灌溉模式的应用增加了黑土稻田氮肥气态损失,其各处理的氮肥气态损失量及损失率均高于常规淹灌模式下相同施氮量处理。然而同位素示踪结果表明,采用控制灌溉模式能...  相似文献   

19.
稻田排水中携带的大量氮、磷元素造成水稻灌区严重的农业面源污染。提出运用稻田节水灌溉-田间排水草沟-塘堰湿地-生态骨干排水沟“四道防线”系统净化稻田排水水质,在湖北漳河灌区进行了对此系统的净化效果试验。试验结果表明,“四道防线”模式下的各子系统不仅在单独环节具有消减污染物效果,而且每道防线子系统协同运行,综合系统对改善水...  相似文献   

20.
通过实地调查和计算分析,水稻生长过程中稻田地表长期存水这一特性对地下水循环的影响是:增加了地下水的补给,减小了其排泄。以豫北沿黄水稻种植区为例,在总结以往均衡计算成果和计算方法的基础上,定量计算和分析了水稻种植区对均衡计算的影响程度。结果表明在进行地下水资源均衡计算时如果考虑水稻种植的影响,资源量将比以往的计算结果增加8%左右,而且增加量均为可采资源量。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号