首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Runoff nitrogen from a large sized paddy field during a crop period   总被引:2,自引:0,他引:2  
Nutrient load management is an important environmental issue because nutrient loads from farmlands degrade surface waters as a result of anthropogenic eutrophication. Nitrogen load from a large sized paddy field during the crop period was examined from the results of field measurements carried out in 2004. The 1.5 ha paddy field was located east of Biwa Lake. Irrigation water volume and ponded water depth were continuously observed. Field measurements were carried out at least once a week to analyze total nitrogen (TN) concentration in the irrigation water and ponded water. Daily inflow and outflow of nitrogen was obtained by multiplication of the nitrogen concentration and transported water volume, consisting of irrigation, precipitation, evapotranspiration, percolation and surface discharge. Water outflow volume was calculated by a tank model that consisted of three small tanks connected to represent ponded water depth differences in the large paddy field. The calculated nitrogen load was 18.8 kg ha−1, with 7.2 kg ha−1 from surface drainage and 11.6 kg ha−1 from percolation loss. The runoff nitrogen value of 18.8 kg ha−1 was within the range of the reported values investigated in a medium-sized paddy field. The observed value was close to the value for a low percolation flux paddy field where less irrigation water has been applied. These results suggest that less irrigation water keep runoff nitrogen low. This also indicates that irrigation water management can reduce nitrogen load from large sized paddy fields.  相似文献   

2.
This paper presents a water and nitrogen balance model for the surface ponded water and soil profile system of rice (Oryza sativa L.) fields. The model estimates the daily water balance components, as well as, the daily losses and transformations of nitrogen. Data from two neighbouring rice fields during the growing season of 2005 in the Thessaloniki plain of Northern Greece were used for the application of the model. The data set of field A was used for the calibration of the model, while the data set from the field B for validation of model. Simulation results of total inorganic nitrogen in the soil and runoff water exhibited reasonable agreement with the measured data during calibration and verification of the model. Significant amounts of applied irrigation water were lost through surface runoff and deep percolation into the groundwater. The sum of nitrogen inputs from fertilization, mineralization and irrigation water were 292.7 and 280.4 kg ha−1 for field A and B, respectively. Nitrogen uptake by algae in ponding water and plants was one of the main processes of nitrogen reduction in the rice field systems with an amount of 125.7 and 131.8 kg ha−1 for field A and B, respectively. Leaching through percolated water was the other significant process with 118.3 and 120.8 kg ha−1, respectively. Gaseous losses of nitrogen (via volatilization and denitrification) were also substantial processes of nitrogen reduction in the flooded compartment. The study showed that the simple model presents important results for the water and nitrogen management in rice fields. This information can be used for irrigation water saving and prevention of water resources contamination in rice-based agroecosystems.  相似文献   

3.
Carbon (C) and nitrogen (N) dynamics in agro-systems can be altered as a consequence of treated sewage effluent (TSE) irrigation. The present study evaluated the effects of TSE irrigation over 16 months on N concentrations in sugarcane (leaves, stalks and juice), total soil carbon (TC), total soil nitrogen (TN), NO3-N in soil and nitrate (NO3) and dissolved organic carbon (DOC) in soil solution. The soil was classified as an Oxisol and samplings were carried out during the first productive crop cycle, from February 2005 (before planting) to September 2006 (after sugarcane harvest and 16 months of TSE irrigation). The experiment was arranged in a complete block design with five treatments and four replicates. Irrigated plots received 50% of the recommended mineral N fertilization and 100% (T100), 125% (T125), 150% (T150) and 200% (T200) of crop water demand. No mineral N and irrigation were applied to the control plots. TSE irrigation enhanced sugarcane yield but resulted in total-N inputs (804-1622 kg N ha−1) greater than exported N (463-597 kg N ha−1). Hence, throughout the irrigation period, high NO3 concentrations (up to 388 mg L−1 at T200) and DOC (up to 142 mg L−1 at T100) were measured in soil solution below the root zone, indicating the potential of groundwater contamination. TSE irrigation did not change soil TC and TN.  相似文献   

4.
A field experiment was conducted for 2 years to investigate the effects of deficit irrigation, nitrogen and plant growth minerals on seed cotton yield, water productivity and yield response factor. The treatment comprises six levels of deficit irrigation (Etc 1.0, 0.9, 0.8, 0.7, 0.6 and 0.5) and four levels of nitrogen (80, 120, 160 and 200 kg N ha−1). These were treatments superimposed with and without plant growth mineral spray. Furrow irrigation treatments were also kept. Cotton variety Ankur-651 Bt was grown during 2006 and 2007 cotton season. Drip irrigation at 1.0 Etc saved 26.9% water and produced 43.1% higher seed cotton yield over conventional furrow irrigation (1.0 Etc). Imposing irrigation deficit of 0.8 Etc caused significant reduction in seed cotton yield to the tune of 9.3% of the maximum yield. Further increase in deficit irrigation from 0.7 Etc to 0.5 Etc significantly decreased seed cotton yield over its subsequent higher irrigation level. Decline in the yield under deficit irrigation was associated with reduction in number of bolls plant−1 and boll weight. Nitrogen at 200 kg ha−1 significantly increased mean seed cotton yield by 36.3% over 80 kg N ha−1. Seed cotton yield tended to increase linearly up to 200 kg N ha−1 with drip Etc 0.8 to drip Etc 1.0. With drip Etc 0.6-0.5, N up to 160 kg ha−1 provided the highest yield, thereafter it had declined. Foliar spray of plant growth mineral (PGM) brought about significant improvement in seed cotton yield by 14.1% over control. The water productivity ranged from 0.331 to 0.491 kg m−3 at different irrigation and N levels. On pooled basis, crop yield response factor of 0.87 was calculated at 20% irrigation deficit.  相似文献   

5.
Field experiments were conducted for 2 years to investigate the effects of various levels of nitrogen (N) and methods of cotton planting on yield, agronomic efficiency of N (AEN) and water use efficiency (WUE) in cotton irrigated through surface drip irrigation at Bathinda situated in semi-arid region of northwest India. Three levels of N (100, 75 and 50% of recommended N, 75 kg ha−1) were tested under drip irrigation in comparison to 75 kg of N ha−1 in check-basin. The three methods of planting tried were; normal sowing of cotton with row to row spacing of 67.5 cm (NS), normal paired row sowing with row to row spacing of 35 and 100 cm alternately (NP) and dense paired row sowing with row to row spacing of 35 and 55 cm alternately resulting in total number rows and plants to be 1.5 times (DP) than NS and NP. In NS there was one lateral along each row, but in paired sowings there was one lateral between each pair of rows. Consequently the number of laterals and quantity of water applied was 50 and 75% in NP and DP, respectively, as compared with NS in which irrigation water applied was equivalent to check-basin.Drip irrigation under NS resulted in an increase of 258 and 453 kg ha−1 seed cotton yield than check-basin during first and second year, respectively, when same quantity of water and N was applied. Drip irrigation under dense paired sowing (DP) in which the quantity of irrigation water applied was 75% as compared with NS, further increased the yield by 84 and 101 kg ha−1 than NS during first and second year, respectively. Drip irrigation under NP, in which the quantity of water applied and number of laterals used were 50% as compared with drip under NS, resulted in a reduction in seed cotton yield of 257 and 112 kg ha−1 than NS during first and second year, respectively. However, the yield obtained in NP under drip irrigation was equivalent to yield obtained in NS under check-basin during first year but 341 kg ha−1 higher yield was obtained during second year. The decrease in N applied, irrespective of methods of planting, caused a significant decline in seed cotton yield during both the years. Water use efficiency (WUE) under drip irrigation increased from 1.648 to 1.847 and from 0.983 to 1.615 kg ha−1 mm−1 during first and second year, respectively, when the same quantity of N and water was applied. The WUE further increased to 2.125 and 1.788 kg ha−1 mm−1 under DP during first and second year, respectively. The agronomic efficiency of nitrogen was higher in drip than check-basin during both the years when equal N was applied. The WUE decreased with decrease in the rate of N applied under fertigation but reverse was true for AEN. It is evident that DP under drip irrigation resulted in higher seed cotton yield, WUE and AEN than NS and also saved 25% irrigation water as well as cost of laterals.  相似文献   

6.
Water scarcity and nitrate contamination in groundwater are serious problems in desert oases in Northwest China. Field and 15N microplot experiments with traditional and improved water and nitrogen management were conducted in a desert oasis in Inner Mongolia Autonomous Region. Water movement, nitrogen transport and crop growth were simulated by the soil-plant system with water and solute transport model (SPWS). The model simulation results, including the water content and nitrate concentration in the soil profile, leaf area index, dry matter weight, crop N uptake and grain yield, were all in good agreement with the field measurements. The water and nitrogen use efficiency of the improved treatment were better than those of the traditional treatment. The water and nitrogen use efficiency under the traditional treatment were 2.0 kg m−3 and 21 kg kg−1, respectively, while under the improved treatment, they were 2.2 kg m−3 and 26 kg kg−1, respectively. Water drainage accounted for 24-35% of total water input (rainfall and irrigation) for the two treatments. Nitrogen loss by ammonia volatilization and denitrification was less than 5% of the total N input (including the N comes from irrigation). However, 32-61% of total nitrogen input was lost through nitrate leaching, which agreed with the 15N isotopic result. It is impetrative to improve the water and nitrogen management in the desert oasis.  相似文献   

7.
The increasing scarcity of water for irrigation is becoming the most important problem for producing forage in all arid and semi-arid regions. Pearl millet is a key crop in these regions which needs relatively less water than other crops. In this research, a field study was conducted to identify the best combination of irrigation and nitrogen (N) management to achieve acceptable pearl millet forage both in quantity and quality aspects. Pearl millet was subjected to four irrigation treatments with interaction of N fertilizer (0, 75, 150 and 225 kg ha−1). The irrigation treatments were 40%, 60%, 80% and 100% of total available soil water (I40, I60, I80 and I100, respectively). The results showed that increasing moisture stress (from I40 to I100) resulted in progressively less total dry matter (TDM), leaf area index (LAI), and nitrogen utilization efficiency (NUzE), while water use efficiency (WUE) and the percentage of crude protein (CP%) increased. The highest TDM and LAI were found to be 21.45 t ha−1 and 8.65, in I40 treatment, respectively. TDM, WUE, CP% and profit responses to N rates were positive. The maximum WUE of 4.19 kg DM/m3 was achieved at I100 with 150 kg N ha−1. The results of this research indicate that the maximum profit of forage production was obtained in plots which were fully irrigated (I40) and received 225 kg N ha−1. However, in the situation which water is often limited and not available, application of 150 kg N ha−1 can produce high forage quality and guaranty acceptable benefits for farmers.  相似文献   

8.
Wheat (Triticum durum L.) yields in the semi-arid regions are limited by inadequate water supply late in the cropping season. Planning suitable irrigation strategy and nitrogen fertilization with the appropriate crop phenology will produce optimum grain yields. A 3-year experiment was conducted on deep, fairly drained clay soil, at Tal Amara Research Station in the central Bekaa Valley of Lebanon to investigate the response of durum wheat to supplemental irrigation (IRR) and nitrogen rate (NR). Three water supply levels (rainfed and two treatments irrigated at half and full soil water deficit) were coupled with three N fertilization rates (100, 150 and 200 kg N ha−1) and two cultivars (Waha and Haurani) under the same cropping practices (sowing date, seeding rate, row space and seeding depth). Averaged across N treatments and years, rainfed treatment yielded 3.49 Mg ha−1 and it was 25% and 28% less than half and full irrigation treatments, respectively, for Waha, while for Haurani the rainfed treatment yielded 3.21 Mg ha−1, and it was 18% and 22% less than half and full irrigation, respectively. On the other hand, N fertilization of 150 and 200 kg N ha−1 increased grain yield in Waha by 12% and 16%, respectively, in comparison with N fertilization of 100 kg N ha−1, while for cultivar Haurani the increases were 24% and 38%, respectively. Regardless of cultivar, results showed that supplemental irrigation significantly increased grain number per square meter and grain weight with respect to the rainfed treatment, while nitrogen fertilization was observed to have significant effects only on grain number per square meter. Moreover, results showed that grain yield for cultivar Haurani was less affected by supplemental irrigation and more affected by nitrogen fertilization than cultivar Waha in all years. However, cultivar effects were of lower magnitude compared with those of irrigation and nitrogen. We conclude that optimum yield was produced for both cultivars at 50% of soil water deficit as supplemental irrigation and N rate of 150 kg N ha−1. However, Harvest index (HI) and water use efficiency (WUE) in both cultivars were not significantly affected neither by supplemental irrigation nor by nitrogen rate. Evapotranspiration (ET) of rainfed wheat ranged from 300 to 400 mm, while irrigated wheat had seasonal ET ranging from 450 to 650 mm. On the other hand, irrigation treatments significantly affected ET after normalizing for vapor pressure deficit (ET/VPD) during the growing season. Supplemental irrigation at 50% and 100% of soil water deficit had approximately 26 and 52 mm mbar−1 more ET/VPD, respectively, than those grown under rainfed conditions.  相似文献   

9.
Quantification of the interactive effects of nitrogen (N) and water on nitrate (NO3) loss provides an important insight for more effective N and water management. The goal of this study was to evaluate the effect of different irrigation and nitrogen fertilizer levels on nitrate-nitrogen (NO3-N) leaching in a silage maize field. The experiment included four irrigation levels (0.7, 0.85, 1.0, and 1.13 of soil moisture depletion, SMD) and three N fertilization levels (0, 142, and 189 kg N ha−1), with three replications. Ceramic suction cups were used to extract soil solution at 30 and 60 cm soil depths for all 36 experimental plots. Soil NO3-N content of 0-30 and 30-60-cm layers were evaluated at planting and harvest maturity. Total N uptake (NU) by the crop was also determined. Maximum NO3-N leaching out of the 60-cm soil layer was 8.43 kg N ha−1, for the 142 kg N ha−1 and over irrigation (1.13 SMD) treatment. The minimum and maximum seasonal average NO3 concentration at the 60 cm depth was 46 and 138 mg l−1, respectively. Based on our findings, it is possible to control NO3 leaching out of the root zone during the growing season with a proper combination of irrigation and fertilizer management.  相似文献   

10.
The use of treated sewage effluent in agriculture has been a current practice in several countries. However, in Brazil, there are few studies about this subject. This research work aimed at evaluating the potential utilization of secondary-treated sewage effluent (STSE) as an alternative source of water and nitrogen (N) for Tifton 85 bermudagrass pasture. A field experiment was carried out at Lins, State of São Paulo, Brazil, for 2 years, using a randomized complete block design, with four replications and five treatments, as follows: (i) T1 (control) – irrigation with potable water and addition of mineral-N fertilizer (MNF) – 520 kg N ha−1 year−1; (ii) T2–T5 – irrigation with STSE (31.9 mg total-N L−1) and addition of MNF – 0, 171.6, 343.2 and 520 kg N ha−1 year−1, respectively. Potable water and STSE characteristics were monitored monthly; above ground grass dry matter yield (DM) and crude protein content (CP) were determined bimonthly. Increases in DM and CP were observed for the high MNF rates associated with irrigation with STSE. STSE irrigation can efficiently substitute potable water for irrigation of Tifton 85 bermudagrass pasture and, simultaneously, save 32.2–81.0% of the recommended N rate without loss of grass DM and CP yield.  相似文献   

11.
Excessive amounts of irrigation water and fertilizers are often utilized for early potato cultivation in the Mediterranean basin. Given that water is expensive and limited in the semi-arid areas and that fertilizers above a threshold level often prove inefficacious for production purposes but still risk nitrate and phosphorous pollution of groundwater, it is crucial to provide an adequate irrigation and fertilization management. With the aim of achieving an appropriate combination of irrigation water and nutrient application in cultivation management of a potato crop in a Mediterranean environment, a 2-year experiment was conducted in Sicily (South Italy). The combined effects of 3 levels of irrigation (irrigation only at plant emergence, 50% and 100% of the maximum evapotranspiration - ETM) and 3 levels of mineral fertilization (low: 50, 25 and 75 kg ha−1, medium: 100, 50 and 150 kg ha−1 and high: 300, 100 and 450 kg ha−1 of N, P2O5 and K2O) were studied on the tuber yield and yield components, on both water irrigation and fertilizer productivity and on the plant source/sink (canopy/tubers dry weight) ratio. The results show a marked interaction between level of irrigation and level of fertilization on tuber yield, on Irrigation Water Productivity and on fertilizer productivity of the potato crop. We found that the treatments based on 50% ETM and a medium level of fertilization represent a valid compromise in early potato cultivation management. Compared to the high combination levels of irrigation and fertilization, this treatment entails a negligible reduction in tuber yield to save 90 mm ha−1 year−1 of irrigation water and 200, 50 and 300 kg ha−1 year−1 of N, P2O5 and K2O, respectively, with notable economic savings for farmers compared to the spendings that are usually made.  相似文献   

12.
Cotton (Gossypium hirsutum L.) is the most important industrial and summer cash crop in Syria and many other countries in the arid areas but there are concerns about future production levels, given the high water requirements and the decline in water availability. Most farmers in Syria aim to maximize yield per unit of land regardless of the quantity of water applied. Water losses can be reduced and water productivity (yield per unit of water consumed) improved by applying deficit irrigation, but this requires a better understanding of crop response to various levels of water stress. This paper presents results from a 3-year study (2004-2006) conducted in northern Syria to quantify cotton yield response to different levels of water and fertilizer. The experiment included four irrigation levels and three levels of nitrogen (N) fertilizer under drip irrigation. The overall mean cotton (lint plus seed, or lintseed) yield was 2502 kg ha−1, ranging from 1520 kg ha−1 under 40% irrigation to 3460 kg ha−1 under 100% irrigation. Mean water productivity (WPET) was 0.36 kg lintseed per m3 of crop actual evapotranspiration (ETc), ranging from 0.32 kg m−3 under 40% irrigation to 0.39 kg m−3 under the 100% treatment. Results suggest that deficit irrigation does not improve biological water productivity of drip-irrigated cotton. Water and fertilizer levels (especially the former) have significant effects on yield, crop growth and WPET. Water, but not N level, has a highly significant effect on crop ETc. The study provides production functions relating cotton yield to ETc as well as soil water content at planting. These functions are useful for irrigation optimization and for forecasting the impact of water rationing and drought on regional water budgets and agricultural economies. The WPET values obtained in this study compare well with those reported from the southwestern USA, Argentina and other developed cotton producing regions. Most importantly, these WPET values are double the current values in Syria, suggesting that improved irrigation water and system management can improve WPET, and thus enhance conservation and sustainability in this water-scarce region.  相似文献   

13.
During 2 years, a melon crop (Cucumis melo L. cv. Sancho) was grown under field conditions to investigate the effects of different nitrogen (N) and irrigation (I) levels on fruit yield, fruit quality, irrigation water use efficiency (IWUE) and nitrogen applied efficiency (NAE). The statistical design was a split-plot with four replications, where irrigation was the main factor of variation and N was the secondary factor. In 2005, irrigation treatments consisted of applying daily a moderate water stress equivalent to 75% of ETc (crop evapotranspiration), a 100% ETc control and an excess irrigation of 125% ETc (designated as I75, I100 and I125), while the N treatments were 30, 85, 112 and 139 kg N ha−1 (designated as N30, N85, N112 and N139). In 2006, both the irrigation and N treatments applied were: 60, 100 and 140% ETc (I60, I100 and I140) and 93, 243 and 393 kg N ha−1 (N93, N243 and N393). Moderate water stress did not reduce melon yield and high IWUE was obtained. Under severe deficit irrigation, the yield was reduced by 22% mainly due to decrease fruit weight. The relative yield (yield/maximum yield) was higher than 95% when the irrigation depth applied was in the range of 87-136% ETc. In 2006, the interaction between irrigation and N was significant for yield, fruit weight and IWUE. The best yield, 41.3 Mg ha−1, was obtained with 100% ETc at N93. The flesh firmness and the placenta and seeds weight increased when the irrigation level was reduced by 60% ETc. The highest NAE was obtained with quantities of water close to 100% ETc and increased as the N level was reduced. The highest IWUE was obtained with applications close to 90 kg N ha−1. The I243 and I393 treatments produced inferior fruits due to higher skin ratios and lower flesh ratios. These results suggest that it is possible to apply moderate deficit irrigation, around 90% ETc, and reduce nitrogen input to 90 kg ha−1 without lessening quality and yields.  相似文献   

14.
Rapid urbanization and industrialization have increased the pressure on limited existing fresh water to meet the growing needs for food production. Two immediate responses to this challenge are the efficient use of irrigation technology and the use of alternative sources of water. Drip irrigation methods may play an important role in efficient use of water but there is still limited information on their use on sugar beet crops in arid countries such as Iran. An experiment was conducted to evaluate the effects of irrigation method and water quality on sugar beet yield, percentage of sugar content and irrigation water use efficiency (IWUE). The irrigation methods investigated were subsurface drip, surface drip and furrow irrigation. The two waters used were treated municipal effluent (EC = 1.52 dS m−1) and fresh water (EC = 0.509 dS m−1). The experiments used a split plot design and were undertaken over two consecutive growing seasons in Southern Iran. Statistical testing indicated that the irrigation method and water quality had a significant effect (at the 1% level) on sugar beet root yield, sugar yield, and IWUE. The highest root yield (79.7 Mg ha−1) was obtained using surface drip irrigation and effluent and the lowest root yield (41.4 Mg ha−1) was obtained using furrow irrigation and fresh water. The highest IWUE in root yield production (9 kg m−3) was obtained using surface drip irrigation with effluent and the lowest value (3.8 kg m−3) was obtained using furrow irrigation with fresh water. The highest IWUE of 1.26 kg m−3 for sugar was obtained using surface drip irrigation. The corresponding efficiency using effluent was 1.14 kg m−3. Irrigation with effluent led to an increase in the net sugar yield due to an increase in the sugar beet root yield. However, there was a slight reduction in the percentage sugar content in the plants. This study also showed that soil water and root depth monitoring can be used in irrigation scheduling to avoid water stress. Such monitoring techniques can also save considerable volumes of irrigation water and can increase yield.  相似文献   

15.
The dissolved oxygen concentration (DOC) is an important irrigation water quality parameter that can become a limiting factor in some intensive agriculture systems. A low DOC in the irrigation water may have critical consequences because it causes root oxygen deficiency, which in turn can result in agronomic problems. The aim of this study was to improve the understanding of the dynamics of the DOC in hypoxic irrigation water when passing throughout a surface drip irrigation system (DIS) and seeping into the soil. To this end, an experimental DIS consisting of three types of commercial emitters and a venturi air injector, installed in-line, was set up for evaluation. Furthermore, subsurface water samplers were buried to catch the water in the soil. The trials were conducted with water from two different sources. The control treatment was performed with fresh channel water, which had a high DOC (7.54 mg L−1; 92.2% saturation), and the low DOC treatments were supplied from a covered agricultural reservoir and had DOC values less than 1.08 mg L−1 (10.8% saturation). After the low DOC treatments, the final DOC in the soil 24 h after irrigation ranged from 3.77 mg L−1 to 5.31 mg L−1 (47.2% to 65.2% saturation). There was an increase in the DOC in all stages of the experimental DIS, which was more important in the water passing through the emitters. The main factor determining the final DOC was the type of emitter, where DOC differences were correlated to their flow performance. The control treatment reached a similar DOC in the soil 24 h after irrigation, indicating that using hypoxic water under DIS does not affect the final soil DOC. Finally, the application of a venturi air injector increased the DOC in the low DOC source up to values typically found in open channels and reservoirs.  相似文献   

16.
Decreasing in water availability for cotton production has forced researchers to focus on increasing water use efficiency by improving either new drought-tolerant cotton varieties or water management. A field trial was conducted to observe the effects of different drip irrigation regimes on water use efficiencies (WUE) and fiber quality parameters produced from N-84 cotton variety in the Aegean region of Turkey during 2004 and 2005. Treatments were designated as full irrigation (T100, which received 100% of the soil water depletion) and those that received 75, 50 and 25% of the amount received by treatment T100 on the same day (treatments T75; T50 and T25, respectively). The average seasonal water use values ranged from 265 to 753 mm and the average seed cotton yield varied from 2550 to 5760 kg ha−1. Largest average cotton yield was obtained from the full irrigation treatment (T100). WUE ranged from 0.77 kg m−3 in the T100 to 0.98 kg m−3 in the T25 in 2004 growing season and ranged from 0.76 kg m−3 in the T100 to 0.94 kg m−3 in the T25 in 2005 growing season. The largest irrigation water use efficiency (IWUE) was observed in the T25 (1.46 kg m−3), and the smallest IWUE was in the T100 treatment (0.81 kg m−3) in the experimental years. A yield response factor (ky) value of 0.78 was determined based on averages of two years. Leaf area index (LAI) and dry matter yields (DM) increased with increasing water use for treatments. Fiber qualities were influenced by drip irrigation levels in both years. The results revealed that well-irrigated treatments (T100) could be used for the semi-arid climatic conditions under no water shortage. Moreover, the results also demonstrated that irrigation of cotton with drip irrigation method at 75% level (T75) had significant benefits in terms of saved irrigation water and large WUE indicating a definitive advantage of deficit irrigation under limited water supply conditions. In an economic viewpoint, 25.0% saving in irrigation water (T75) resulted in 34.0% reduction in the net income. However, the net income of the T100 treatment is found to be reasonable in areas with no water shortage.  相似文献   

17.
Crops grown in semiarid rainfed conditions are prone to water stress which could be alleviated by improving cultural practices. This study determined the effect of cropping system, cultivar, soil nitrogen status and Rhizobium inoculation (Rz) on water use and water use efficiency (WUE) of chickpea (Cicer arietinum L.) in semiarid environments. The cultivars Amit, CDC Anna, CDC Frontier, and CDC Xena were grown in no-till barley, no-till wheat, and tilled-fallow systems and under various rates of N fertilizer (0, 28, 56, 84, and 112 kg N ha−1) coupled with or without Rz. The study was conducted at Swift Current and Shaunavon, Saskatchewan, from 2004 to 2006. On average, chickpea used about 10 mm of water from the top 0-15 cm soil depth. In the tilled-fallow system, chickpea extracted 20% more water in the 15-30 cm depth, 70% more in the 30-60 cm depth, and 156% more in the 60-120 cm depth than when it was grown in the no-till systems. CDC Xena had WUE of 5.3 kg ha−1 mm−1 or 20% less than the average WUE (6.6 kg ha−1 mm−1) of the three other cultivars, even though these cultivars used the same amounts of water. Water use efficiency increased from 4.7 to 6.8 kg ha−1 mm−1 as N fertilizer rate was increased from 0 to 112 kg N ha−1 when chickpea was grown in the no-till barley or wheat systems, but chickpea grown in the tilled-fallow system did not respond to changes in the fertilizer N rates averaging WUE of 6.5 kg ha−1 mm−1. In the absence of N fertilizer, the application of Rz increased WUE by 33% for chickpea grown in the no-till barley system, 30% in the no-till wheat system, and 9% in the tilled-fallow system. Chickpea inoculated with Rhizobium achieved a WUE value similar to the crop fertilized at 84 kg N ha−1. Without the use of Rz, chickpea increased WUE in a linear fashion with increasing fertilizer N rates from 0 to 84 kg N ha−1. Cropping system, cultivar, and inoculation all had greater impact on WUE than on the amount of water extracted by the crop from the soil. The improvement of cultural practices to promote general plant health along with the development of cultivars with improved crop yields will be keys for improving water use efficiency of chickpea in semiarid environments.  相似文献   

18.
A great challenge for the agricultural sector is to produce more food from less water, particularly in arid and semi-arid regions which suffer from water scarcity. A study was conducted to evaluate the effect of three irrigation methods, using effluent versus fresh water, on water savings, yields and irrigation water use efficiency (IWUE). The irrigation scheduling was based on soil moisture and rooting depth monitoring. The experimental design was a split plot with three main treatments, namely subsurface drip (SSD), surface drip (SD) and furrow irrigation (FI) and two sub-treatments effluent and fresh water, which were applied with three replications. The experiment was conducted at the Marvdasht city (Southern Iran) wastewater treatment plant during 2005 and 2006. The experimental results indicated that the average water applied in the irrigation treatments with monitoring was much less than that using the conventional irrigation method (using furrows but based on a constant irrigation interval, without moisture monitoring). The maximum water saving was obtained using SSD with 5907 m3 ha−1 water applied, and the minimum water saving was obtained using FI with 6822 m3 ha−1. The predicted irrigation water requirements using the Penman-Monteith equation (considering 85% irrigation efficiency for the FI method) was 10,743 m3 ha−1. The pressure irrigation systems (SSD and SD) led to a greater yield compared to the surface method (FI). The highest yield (12.11 × 103 kg ha−1) was obtained with SSD and the lowest was obtained with the FI method (9.75 × 103 kg ha−1). The irrigation methods indicated a highly significant difference in irrigation water use efficiency. The maximum IWUE was obtained with the SSD (2.12 kg m−3) and the minimum was obtained with the FI method (1.43 kg m−3). Irrigation with effluent led to a greater IWUE compared to fresh water, but the difference was not statistically significant.  相似文献   

19.
Tomato production systems in Florida are typically intensively managed with high inputs of fertilizer and irrigation and on sandy soils with low inherent water and nutrient retention capacities; potential nutrient leaching losses undermine the sustainability of such systems. The objectives of this 3-year field study were to evaluate the interaction between N-fertilizer rates and irrigation scheduling on crop N and P accumulation, N-fertilizer use efficiency (NUE) and NO3-N leaching of tomato cultivated in a plastic mulched/drip irrigated production system in sandy soils. Experimental treatments were a factorial combination of three irrigation scheduling regimes and three N-rates (176, 220, and 330 kg ha−1). Irrigation treatments included were: (1) surface drip irrigation (SUR) both the irrigation and fertigation line placed underneath the plastic mulch; (2) subsurface drip irrigation (SDI) where the irrigation drip was placed 0.15 m below the fertigation line which was located on top of the bed; and (3) TIME (conventional control) with the irrigation and fertigation lines placed as in SUR and irrigation applied once a day. Except for the TIME treatment all irrigation treatments were soil moisture sensor (SMS)-based with irrigation occurring at 10% volumetric water content. Five irrigation windows were scheduled daily and events were bypassed if the soil water content exceeded the established threshold. The use of SMS-based irrigation systems significantly reduced irrigation water use, volume percolated, and nitrate leaching. Based on soil electrical conductivity (EC) readings, there was no interaction between irrigation and N-rate treatments on the movement of fertilizer solutes. Total plant N accumulation for SUR and SDI was 12-37% higher than TIME. Plant P accumulation was not affected by either irrigation or N-rate treatments. The nitrogen use efficiency for SUR and SDI was on the order of 37-45%, 56-61%, and 61-68% for 2005, 2006 and 2007, respectively and significantly higher than for the conventional control system (TIME). Moreover, at the intermediate N-rate SUR and SDI systems reduced NO3-N leaching to 5 and 35 kg ha−1, while at the highest N-rate corresponding values were 7 and 56 kg N ha−1. Use of N application rates above 220 kg ha−1 did not result in fruit and/or shoot biomass nor N accumulation benefits, but substantially increased NO3-N leaching for the control treatment, as detected by EC monitoring and by the lysimeters. It is concluded that appropriate use of SDI and/or sensor-based irrigation systems can sustain high yields while reducing irrigation application as well as reducing NO3-N leaching in low water holding capacity soils.  相似文献   

20.
Early planting of rice crop during the period of peak evaporative demand results in substantial mining of ground water and threats the sustainability of rice production in Punjab, northwest India. In order to increase yield and water productivity, arrest the mining of ground water, and achieve sustainability of rice production, there is need to adopt water-saving management practices. The present investigation in the Indian Punjab was aimed at investigating the effect of date of transplanting in four rice cultivars varying in growth duration (short-duration RH-257 and PR-115, and medium-duration PR-113 and PAU-201) on yield and water productivity. Delaying in transplanting from 15 June to 25 June or 5 July resulted in reduction in mean grain yield of the four cultivars by 7.2% and 15.9%, respectively. PAU-201, a photoperiod-sensitive cultivar, had higher mean grain yield (7.8 t ha−1) by 14.1%, 12.8% and 11.5% over the photoperiod-insensitive cultivars, PR-113, PR-115 and RH-257, respectively. Irrespective of transplanting dates, short-duration cultivars, RH-257 and PR-115, respectively, resulted in 18.9% and 16.6% saving of water, as compared to medium-duration cultivar PR-113. With delayed transplanting after 15 June, both yield and water productivity decreased for all photoperiod insensitive cultivars, but yields remained statistically similar and water productivity greater for a photoperiod sensitive cultivar. Mean irrigation water productivity (WPI) was highest for 15 June transplanting (0.66 kg m−3) and lowest for 5 July transplanting (0.57 kg m−3), and was highest for RH-257 (0.68 kg m−3) and lowest for PR-113 (0.50 kg m−3). Total water productivity (WPI+R; irrigation plus rainfall) decreased by 9.1% for 5 July transplanting compared with 15 June transplanting, and was highest for RH-257 (0.49 kg m−3) and lowest for PR-113 (0.38 kg m−3). Real crop water productivity (WPET) of the photoperiod insensitive cultivars decreased (1.10-1.40 kg m−3), but that of a photoperiod sensitive cultivar increased (1.63 kg m−3), with delayed transplanting. We conclude that substantial amount of water can be saved and yield increased by transplanting short-duration cultivars during the period of peak evaporative demand, or water saved and yield maintained by transplanting a photoperiod-sensitive cultivar late in the season when the evaporative demand is low.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号