首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 347 毫秒
1.
A simple irrigation scheduling approach for pecans   总被引:1,自引:0,他引:1  
Pecans are a major crop in New Mexico's Lower Rio Grande Valley (LRGV). It is estimated that New Mexico is responsible for about 21% of the world's pecan production (Lillywhite et al., 2007). Currently, approximately 12,000 ha of pecan orchards at various stages of growth consume 45% of the area's irrigation water. Pecan evapotranspiration (ET) varies with age, canopy cover, soil type, crop density and method of water management. Intense competition for the LRGV's limited water supply has created a serious need for better water management through improved irrigation scheduling. Annual pecan ET ranges from as low as 500 mm to as high as 1400 mm. Diversity of the pecan crop coefficient (Kc) and ET makes the task of irrigation scheduling for this crop very complicated. Using remote sensing technology and field ET measurements, a simple relationship was developed to relate crop coefficient and ET to canopy cover. This relationship is then used in combination with climate data to calculate daily and weekly water requirements for each orchard. The difference between annual ET values estimated from canopy cover and values measured with an eddy covariance flux tower ranged from 2 to 5%. The average ratio of estimated monthly ET values over measured ET values was 1.03 with the standard error of the estimate ranging from 10 to 20 mm/month. This methodology provides a simple tool that farmers can use to schedule irrigation of pecan orchards. Even though the methodology was developed for irrigation scheduling in the LRGV, it can be used in other locations by transferring the reference crop coefficients using Kc-GDD relationships.  相似文献   

2.
A field study on cotton (Gossypium hirsutum L., cv.) was carried out from 2005 to 2008 in the Çukurova Region, Eastern Mediterranean, Turkey. Treatments were designated as I100 full irrigation; DI70, DI50 and DI00 which received 70, 50, and 0% of the irrigation water amount applied in the I100 treatment. The irrigation water amount to be applied to the plots was calculated using cumulative pan evaporation that occurred during the irrigation intervals. The effect of water deficit or water stress on crop yield and some plant growth parameters such as yield response, water use efficiencies, dry matter yield (DM), leaf area index (LAI) as well as on lint quality components was evaluated. The average seasonal evapotranspiration ranged from 287 ± 15 (DI00) to 584 ± 80 mm (I100). Deficit irrigation significantly affected crop yield and all yield components considered in this study. The average seed cotton yield varied from 1369 ± 197 (DI00) to 3397 ± 508 kg ha−1 (I100). The average water use efficiency (WUEET) ranged from 6.0 ± 1.6 (I100) to 4.8 ± 0.9 kg ha−1 mm−1 (DI00), while average irrigation water use efficiency (WUEI) was between 9.4 ± 3.0 (I100) and 14.4 ± 4.8 kg ha−1 mm−1 (DI50). Deficit irrigation increased the harvest index (HI) values from 0.26 ± 0.054 (I100) to 0.32 ± 0.052 kg kg−1 (DI50). Yield response factor (Ky) was determined to be 0.98 based on four-year average. Leaf area index (LAI) and dry matter yields (DM) increased with increasing water use. This study demonstrated that the full irrigated treatment (I100) should be used for semiarid conditions with no water shortage. However, DI70 treatment needs to be considered as a viable alternative for the development of reduced irrigation strategies in semiarid regions where irrigation water supplies are limited.  相似文献   

3.
Decreasing in water availability for cotton production has forced researchers to focus on increasing water use efficiency by improving either new drought-tolerant cotton varieties or water management. A field trial was conducted to observe the effects of different drip irrigation regimes on water use efficiencies (WUE) and fiber quality parameters produced from N-84 cotton variety in the Aegean region of Turkey during 2004 and 2005. Treatments were designated as full irrigation (T100, which received 100% of the soil water depletion) and those that received 75, 50 and 25% of the amount received by treatment T100 on the same day (treatments T75; T50 and T25, respectively). The average seasonal water use values ranged from 265 to 753 mm and the average seed cotton yield varied from 2550 to 5760 kg ha−1. Largest average cotton yield was obtained from the full irrigation treatment (T100). WUE ranged from 0.77 kg m−3 in the T100 to 0.98 kg m−3 in the T25 in 2004 growing season and ranged from 0.76 kg m−3 in the T100 to 0.94 kg m−3 in the T25 in 2005 growing season. The largest irrigation water use efficiency (IWUE) was observed in the T25 (1.46 kg m−3), and the smallest IWUE was in the T100 treatment (0.81 kg m−3) in the experimental years. A yield response factor (ky) value of 0.78 was determined based on averages of two years. Leaf area index (LAI) and dry matter yields (DM) increased with increasing water use for treatments. Fiber qualities were influenced by drip irrigation levels in both years. The results revealed that well-irrigated treatments (T100) could be used for the semi-arid climatic conditions under no water shortage. Moreover, the results also demonstrated that irrigation of cotton with drip irrigation method at 75% level (T75) had significant benefits in terms of saved irrigation water and large WUE indicating a definitive advantage of deficit irrigation under limited water supply conditions. In an economic viewpoint, 25.0% saving in irrigation water (T75) resulted in 34.0% reduction in the net income. However, the net income of the T100 treatment is found to be reasonable in areas with no water shortage.  相似文献   

4.
Irrigation performance assessments are required for hydrological planning and as a first step to improve water management. The objective of this work was to assess seasonal on-farm irrigation performance in the Ebro basin of Spain (0.8 million ha of irrigated land). The study was designed to address the differences between crops and irrigation systems using irrigation district data. Information was only available in districts located in large irrigation projects, accounting for 58% of the irrigated area in the basin. A total of 1617 records of plot water application (covering 10,475 ha) were obtained in the basin. Average net irrigation requirements (IRn) ranged from 2683 m3 ha−1 in regulated deficit irrigation (RDI) vineyards to 9517 m3 ha−1 in rice. Average irrigation water application ranged from 1491 m3 ha−1 in vineyards to 11,404 m3 ha−1 in rice. The annual relative irrigation supply index (ARIS) showed an overall average of 1.08. Variability in ARIS was large, with an overall standard deviation of 0.40. Crop ARIS ranged between 0.46 and 1.30. Regarding irrigation systems, surface, solid-set sprinkler and drip irrigated plots presented average ARIS values of 1.41, 1.16 and 0.65, respectively. Technical and economic water productivities were determined for the main crops and irrigation systems in the Aragón region. Rice and sunflower showed the lowest productivities. Under the local technological and economic constraints, farmers use water cautiously and obtain reasonable (yet very variable) productivities.  相似文献   

5.
With the availability of irrigation water, supplemental irrigation in winter-grown crops, such as lentil, wheat, and barley, has been intensely practiced to prevent crop yield losses due to the incidence of intermittent drought stress. In the crop growing seasons of 2006-2007 and 2008-2009, a study was conducted to determine the effect of supplemental irrigations on Canola (Brassica napus L. cv. Elvis F1) under the semiarid climatic conditions of the Harran plain, Sanliurfa, Turkey. A sprinkler irrigation system was used to irrigate the study plots. The irrigation treatments included 0.0, 0.25, 0.50, 0.75, and 1.0 (full irrigation) of Class-A pan evaporation amounts. The full irrigation treatment during both years consisted of 250 and 225 mm, respectively. In turn, crop water use values during the same years and treatments were 462 and 449 mm. In general, plant height and 1000 seed weight ranged from 140 to 165 cm and from 2.5 to 3.3 g, respectively, and these variables significantly differed among irrigation treatments (p < 0.05). Crop yield and above ground biomass measurements were affected by irrigation treatments and varied from 1094 to 3943 kg ha−1 and from 6746 to 18,311 kg ha−1, respectively (p < 0.05). Similarly, harvest index values were affected (p < 0.05) and ranged from 0.16 to 0.23 on average. The water use efficiency obtained in the different treatments indicated a strong positive relationship between crop yield and irrigation. Overall, our results indicate that supplemental irrigation substantially increased canola yield; however, for an optimum yield, full irrigation is suggested.  相似文献   

6.
A long-term (30 year) historical analysis of turfgrass monthly net irrigation requirements for southeast USA is analyzed and discussed in this paper. The process involved gathering weather data for ten locations in Florida plus one in Alabama, from 1980 through 2009, and data quality. Available weather data included maximum and minimum temperature, maximum and minimum relative humidity, wind speed, and rainfall. Solar radiation was estimated using the Hargreaves–Samani equation, and coefficients were calibrated for every location. Reference evapotranspiration (ETos) was calculated using the ASCE-EWRI standardized reference evapotranspiration equation. Net irrigation was estimated using a daily soil–water balance. Variability in soil types and root depth was taken into account during the simulations, and three sets of monthly K c values from the literature were applied from north through south Florida. Results showed that the calibrated Hargreaves–Samani adjustment coefficients varied from 0.14 in Tallahassee to 0.24 in Key West, with an inland average value of 0.15, and a coastal average value of 0.18. The calculated ETos ranged from 1,296 mm year?1 in Tallahassee to 1,658 mm year?1 in Miami. The estimated net irrigation ranged from 423 mm year?1 in Mobile, AL, to 1,063 mm year?1 in Key West, FL. The number of irrigation events per year varied from 25 in Mobile to 161 in Key West. May and December were the months with the highest and lowest net irrigation requirements, respectively.  相似文献   

7.
Many of the best management practices (BMPs) that are recommended for agricultural producers have not been scientifically evaluated for their conservation benefits considering the soil, climate, and hydrology of the proposed application location. The goal of this study was to compare royal palm (Roystonea elata) production in south Florida, USA, using tensiometer automated irrigation and reduced soil applications of nitrogen (N) and phosphorus (P), to that of traditional grower practices considering water savings, nutrient inputs, crop yield, crop nutrient status, soil nutrient status, and economic analyses. The study consisted of six treatments: (1) control (i.e., a grower irrigation rate and N and P fertilizer rates); (2) irrigation system automated to irrigate when soil water suction exceeded 5 kPa and the grower N and P rates; (3) irrigation system automated to irrigate when soil water suction exceeded 15 kPa and the grower N and P rates; (4) irrigation system automated to irrigate when soil water suction exceeded 15 kPa and 50% of the grower N and P rates; (5) the grower irrigation rate and 75% of the grower N and P rates; and (6) the grower irrigation rate and 50% of the grower N and P rates. Irrigation water volume applied, plant diameters, and plant heights were measured periodically throughout the study and plant tissue samples and soil samples were collected periodically for analysis of N and P content. Significant differences among treatments were only observed for the irrigation water volume applied. Automating the irrigation system to irrigate at soil suction exceeding 5 and 15 kPa resulted in 75 and 96% less water applied, respectively, than traditional irrigation scheduling practices used by a grower. Economic analyses suggested that all treatments would result in financial savings ranging from 7 to 34% per ha considering a 5-year, 2 ha investment. Thus, automating irrigation based on soil water suction for palm production in southern Florida, USA and similar locations will result in more sustainable agricultural production systems by benefiting the environment (less nutrients and water applied) and the grower (lower cost).  相似文献   

8.
Precision irrigation management and scheduling, as well as developing site- and cultivar-specific crop coefficient (Kc), and yield response factor to water deficit (ky) are very important parameters for efficient use of limited water resources. This study investigated the effect of deficit irrigation, applied at different growth stages of peanut with sprinkler irrigation in sandy soil, on field peanut evapotranspiration (ETc), yield and yield components, and water use efficiencies (IWUE and WUE). Also, yield response factor to water deficit (ky), and site- and cultivar-specific Kc were developed. Four treatments were imposed to deficit irrigation during late vegetative and early flowering, late flowering and early pegging, pegging, and pod formation growth stages of peanut, and compared with full irrigation in the course of the season (control). A soil water balance equation was used to estimate crop evapotranspiration (ETc). The results revealed that maximum seasonal ETc was 488 mm recorded with full irrigation treatment. The maximum value of Kc (0.96) occurred at the fifth week after sowing, this value was less than the generic values listed in FAO-33 and -56 (1.03 and 1.15), respectively. Dry kernels yield among treatments differed by 41.4%. Deficit irrigation significantly affected yields, where kernels yield decreased by 28, 39, 36, and 41% in deficit-irrigated late vegetative and early flowering, late flowering and early pegging, pegging, and pod formation growth stages, respectively, compared with full irrigation treatment. Peanut yields increased linearly with seasonal ETc (R2 = 0.94) and ETc/ETp (R2 = 0.92) (ETp = ETc with no water stress). The yield response factor (ky), which indicates the relative reduction in yield to relative reduction in ETc, averaged 2.9, was higher than the 0.7 value reported by Doorenbos and Kassam [Doorenbos, J., Kassam, A.H., 1979. Yield response to water. FAO Irrigation and Drainage Paper 33, Rome, Italy, 193 pp.], the high ky value reflects the great sensitivity of peanut (cv. Giza 5) to water deficit. WUE values varied considerably with deficit irrigation treatments, averaging 6.1 and 4.5 kg ha−1 mm−1 (dry-mass basis) for pods and kernels, respectively. Differences in WUE between the driest and wettest treatment were 31.3 and 31.3% for pods and kernels, respectively. Deficit irrigation treatments, however, impacted IWUE much more than WUE. Differences in IWUE between the driest and wettest treatment were 33.9 and 33.9% for pods and kernels, respectively. The results revealed that better management of available soil water in the root zone in the course of the season, as well as daily and seasonal accurate estimation of ETc can be an effective way for best irrigation scheduling and water allocation, maximizing yield, and optimizing economic return.  相似文献   

9.
Improving irrigation water management is becoming important to produce a profitable crop in South Texas as the water supplies shrink. This study was conducted to investigate grain yield responses of corn (Zea mays) under irrigation management based on crop evapotranspiration (ETC) as well as a possibility to monitor plant water deficiencies using some of physiological and environmental factors. Three commercial corn cultivars were grown in a center-pivot-irrigated field with low energy precision application (LEPA) at Texas AgriLife Research Center in Uvalde, TX from 2002 to 2004. The field was treated with conventional and reduced tillage practices and irrigation regimes of 100%, 75%, and 50% ETC. Grain yield was increased as irrigation increased. There were significant differences between 100% and 50% ETC in volumetric water content (θ), leaf relative water content (RWC), and canopy temperature (TC). It is considered that irrigation management of corn at 75% ETC is feasible with 10% reduction of grain yield and with increased water use efficiency (WUE). The greatest WUE (1.6 g m−2 mm−1) achieved at 456 mm of water input while grain yield plateaued at less than 600 mm. The result demonstrates that ETC-based irrigation can be one of the efficient water delivery schemes. The results also demonstrate that grain yield reduction of corn is qualitatively describable using the variables of RWC and TC. Therefore, it appears that water status can be monitored with measurement of the variables, promising future development of real-time irrigation scheduling.  相似文献   

10.
Irrigated agriculture is threatened by soil salinity in numerous arid and semiarid areas of the Mediterranean basin. The objective of this work was to quantify soil salinity through electromagnetic induction (EMI) techniques and relate it to the physical characteristics and irrigation management of four Mediterranean irrigation districts located in Morocco, Spain, Tunisia and Turkey. The volume and salinity of the main water inputs (irrigation and precipitation) and outputs (crop evapotranspiration and drainage) were measured or estimated in each district. Soil salinity (ECe) maps were obtained through electromagnetic induction surveys (ECa readings) and district-specific ECa-ECe calibrations. Gravimetric soil water content (WC) and soil saturation percentage (SP) were also measured in the soil calibration samples. The ECa-ECe calibration equations were highly significant (P < 0.001) in all districts. ECa was not significantly correlated (P > 0.1) with WC, and was only significantly correlated (P < 0.1) with soil texture (estimated by SP) in Spain. Hence, ECa mainly depended upon ECe, so that the maps developed could be used effectively to assess soil salinity and its spatial variability. The surface-weighted average ECe values were low to moderate, and ranked the districts in the order: Tunisia (3.4 dS m−1) > Morocco (2.2 dS m−1) > Spain (1.4 dS m−1) > Turkey (0.45 dS m−1). Soil salinity was mainly affected by irrigation water salinity and irrigation efficiency. Drainage water salinity at the exit of each district was mostly affected by soil salinity and irrigation efficiency, with values very high in Tunisia (9.0 dS m−1), high in Spain (4.6 dS m−1), moderate in Morocco (estimated at 2.6 dS m−1), and low in Turkey (1.4 dS m−1). Salt loads in drainage waters, calculated from their salinity (ECdw) and volume (Q), were highest in Tunisia (very high Q and very high ECdw), intermediate in Turkey (extremely high Q and low ECdw) and lowest in Spain (very low Q and high ECdw) (there were no Q data for Morocco). Reduction of these high drainage volumes through sound irrigation management would be the most efficient way to control the off-site salt-pollution caused by these Mediterranean irrigation districts.  相似文献   

11.
This study compares the effects of different irrigation regimes on seed yield and oil yield quality and water productivity of sprinkler and drip irrigated sunflower (Helianthus annus L.) on silty-clay-loam soils in 2006 and 2007 in the Mediterranean region of Turkey. In sprinkler irrigation a line-source system was used in order to create gradually varying irrigation levels. Irrigation regimes consisted of full irrigation (I1) and three deficit irrigation treatments (I2, I3 and I4), and rain-fed treatment (I5). In the drip system, irrigation regimes included full irrigation (FI-100), three deficit irrigation treatments (DI-25, DI-50, DI-75), partial root zone drying (PRD-50) and rain-fed treatment (RF). Irrigations were scheduled at weekly intervals both in sprinkler and drip irrigation, based on soil water depletion within a 0.90 m root zone in FI-100 and I1 plots. Irrigation treatments influenced significantly (P < 0.01) sunflower seed and oil yields, and oil quality both with sprinkler and drip systems. Seed yields decreased with increasing water stress levels under drip and sprinkler irrigation in both experimental years. Seed yield response to irrigation varied considerably due to differences in soil water contents and spring rainfall distribution in the experimental years. Although PRD-50 received about 36% less irrigation water as compared to FI-100, sunflower yield was reduced by an average of 15%. PRD-50 produced greater seed and oil yields than DI-50 in the drip irrigation system. Yield reduction was mainly due to less number of seeds per head and lower seed mass. Soil water deficits significantly reduced crop evapotranspiration (ET), which mainly depends on irrigation amounts. Significant linear relationships (R2 = 0.96) between ET and oil yield (Y) were obtained in each season. The seed yield response factors (kyseed) were 1.24 and 0.86 for the sprinkler and 1.19 and 1.06 for the drip system in 2006 and 2007, respectively. The oil yield response factor (kyoil) for sunflower was found to be 1.08 and 1.49 for both growing seasons for the sprinkler and 1.36 and 1.25 for the drip systems, respectively. Oil content decreased with decreasing irrigation amount. Consistently greater values of oil content were obtained from the full irrigation treatment plots. The saturated (palmitic and stearic acid) and unsaturated (oleic and linoleic acid) fatty acid contents were significantly affected by water stress. Water stress caused an increase in oleic acid with a decrease in linoleic acid contents. The palmitic and stearic acid concentrations decreased under drought conditions. Water productivity (WP) values were significantly affected by irrigation amounts and ranged from 0.40 to 0.71 kg m−3 in 2006, and from 0.69 to 0.91 kg m−3 in 2007. The PRD-50 treatment resulted in the greatest WP (1.0 kg m−3) and irrigation water productivity (IWP) (1.4 kg m−3) in both growing seasons. The results revealed that under water scarcity situation, PRD-50 in drip and I2 in sprinkler system provide acceptable irrigation strategies to increase sunflower yield and quality.  相似文献   

12.
Monthly water billing records for eleven cities in Hillsborough County Florida were available from 2001 through 2007. Irrigation was estimated from total water use based on two different methods to estimate basic indoor water use and assumed impervious areas. Estimated irrigation use was compared with a calculated irrigation requirement by a water balance to test if homeowners were over-irrigating. Results showed that on average, the mean estimated irrigation was lower than the calculated irrigation requirements in most of the cities and years given the uncertainties in this analysis. The calculated irrigation ranged from 612 to 744 mm year−1, whereas the average estimated irrigation ranged from 264 to 684 mm year−1. However, there were some homeowners that greatly exceeded the calculated irrigation requirement. The estimated irrigation increased temporarily in areas under urban development, which was evidenced by built landscape expansion. Good correlation was found between the annual estimated irrigation and the annual calculated irrigation requirements, when the per capita method was used, but not between the annual estimated irrigation and the annual rainfall. Future conservation programs can use this methodology to identify users where substantial opportunity for water savings exists.  相似文献   

13.
The actual irrigation water demand in a district in Sicily (Italy) was assessed by the spatially distributed agro-hydrological model SIMODIS (SImulation and Management of On-Demand Irrigation Systems). For each element with homogeneous crop and soil conditions, in which the considered area can be divided, the model numerically solves the one-dimensional water flow equation with vegetation parameters derived from Earth Observation data. In SIMODIS, the irrigation scheduling is set by means of two parameters: the threshold value of soil water pressure head in the root zone, hm, and the fraction of soil water deficit to be re-filled, Δ. This study investigated the possibility of identifying a couple of irrigation parameters (hm, Δ) which allowed to reproduce the actual irrigation water demand, given that the study area was adequately characterized with regard to the spatial distribution of the soil hydraulic properties and the vegetation conditions throughout the irrigation season. The spatial distribution of the soil and vegetation properties of the study area, covering an irrigation district of approximately 800 ha, was accurately characterized during the summer of 2002. The soil hydraulic properties were identified by an intensive undisturbed soil sampling, while the vegetation cover was characterized in terms of leaf area index, surface albedo and fractional soil cover by analysing multispectral LandSat TM imageries. Irrigation volumes were monitored at parcel scale.A reference scenario with hm = −700 cm and Δ = 50% (corresponding to a mean actual to potential transpiration ratio of 0.95) allowed to reproduce the spatial and temporal distribution of the actual irrigation demand at the district scale. The spatial variability of the crop conditions in the considered area had much more influence to assess the irrigation water demand than the soil hydraulic spatial variability. The proposed approach showed that, under the agro-climatic conditions typical for the Mediterranean region, SIMODIS may be a valuable tool in managing irrigation to increase water productivity.  相似文献   

14.
The effects of drip irrigation on the yield and crop water productivity responses of four tea (Camellia sinensis (L.) O. Kuntze) clones were studied four consecutive years (2003/2004-2006/2007), in a large (9 ha) field experiment comprising of six drip irrigation treatments (labelled: I1-I6) and four clones (TRFCA PC81, AHP S15/10, BBK35 and BBT207) planted at a spacing of 1.20 m × 0.60 m at Kibena Tea Limited (KTL), Njombe in the Southern Tanzania in a situation of limited water availability. Each clone × drip irrigation treatment combination was replicated six times in a completely randomized design with 144 net plots each with an area of 72 m2. Clone TRFCA PC81 gave the highest yields (range: 5920-6850 kg dried tea ha−1) followed by clones BBT207 (5010-5940 kg dried tea ha−1), AHP S15/10 (4230-5450 kg dried tea ha−1) and BBK35 (3410-4390 kg dried tea ha−1) and drip irrigation treatment I2 gave the highest yields, ranging from 4954 to 6072 kg dried tea ha−1) compared with those from other treatments (4113-5868 kg dried tea ha−1). Most of these yields exceeded those (4200 kg dried tea ha−1) obtained from overhead sprinkler irrigation system in Mufindi also Southern Tanzania, and Kibena Estate itself. Results showed that drip irrigation of tea not only increased yields but also gave water saving benefits of up to 50% from application of 50% less water to remove the cumulative soil water deficit (treatment I2), and with labour saving of 85% for irrigation. The yield of dried tea per mm depth of water applied, i.e., “the crop water productivity” for drip irrigation of clones TRFCA PC81, BBT207 and BBK35, in 2003/2004 for instance, were 9.3, 8.5 and 7.1 kg dried tea [ha mm]−1, respectively. The corresponding values in 2004/2005 were 2.7, 4.5 and 2.0 kg dried tea [ha mm]−1 while the yield responses from clone AHP S15/10 were linear decreasing by 1 and 1.6 kg dried tea [ha mm]−1 in 2003/2004 and 2004/2005, respectively. In 2005/2006 the crop water productivity from clones TRFCA PC81, AHP S15/10, BBK35 and BBT207 were 4.5, 0.4, 5.2 and 6.9 kg dried tea [ha mm]−1, respectively with quadratic yield response functions to drip irrigation depth of water application. The results are presented and recommendations and implications made for technology-transfer scaling-up for increased use by large and smallholder tea growers.  相似文献   

15.
Surface irrigation analysis and design require the knowledge of the variation of the cumulative infiltration water Z (L) (per unit area) into the soil as a function of the infiltration time t (T). The purpose of this study is to evaluate water infiltration and storage under surface irrigation in an alluvial clay soil cultivated with grape yield, and to determine if partially wetted furrow irrigation has more efficient water storage and infiltration than traditional border irrigation. The two irrigation components considered were wet (WT) and dry (DT) treatments, at which water applied when available soil water reached 65% and 50%, and the traditional border irrigation control. Empirical power form equations were obtained for measured advance and recession times along the furrow length during the irrigation stages of advance, storage, depletion and recession. The infiltration (cumulative depth, Z and rate, I) was functioned to opportunity time (to) in minute for WT and DT treatments as: ZWT = 0.528 to0.6, ZDT = 1.2 to0.501, IWT = 19 to−0.4, and IDT = 36 to−0.498. The irrigation efficiency and soil water distribution have been evaluated using linear distribution and relative schedule depth. Coefficient of variation (CV) was 5.2 and 9.5% for WT and DT under furrow irrigation system comparing with 7.8% in border, respectively. Water was deeply percolated as 11.88 and 19.2% for wet and dry furrow treatments, respectively, compared with 12.8% for control, with no deficit in the irrigated area. Partially wetted furrow irrigation had greater water-efficiency and grape yield than both dry furrow and traditional border irrigations, where application efficiency achieved as 88.1% for wet furrow irrigation that achieved high grape fruit yield (30.71 Mg/ha) and water use efficiency 11.9 kg/m3.  相似文献   

16.
There are numerous models capable of simulating crop behavior under different water stress conditions. However, none of them takes into account the effect of irrigation water uniformity on yield. The model developed simulates the uniformity effect on yield and the repercussion on gross margin (GM). The application of the model to a maize crop in Albacete (Spain) indicates that for the same irrigation depth, an increase in uniformity of water in the soil (CU) corresponds to a 4% increase in yield for the common irrigation strategy in the area, and a 6.8% increase in yield for the optimal irrigation schedule established by the model. Values of percentage of adequately irrigated area (a) between 50 and 80% appear to be adequate for values of CU > 80%. This effect has special relevance on the GM mainly when designing the irrigation strategy of areas with limited water resources. This leads to improvement of CU from 75 to 95% for the common irrigation depth applied to maize and may increase GM up to 27%. For small irrigation depths, the effect of CU on GM is reduced. The maximum GM is reached at ETa/ETm < 1 and a <100%. The paper also describes a methodology for determining the most suitable irrigation schedule under regulated deficit irrigation conditions.  相似文献   

17.
Field studies were done in 2003 and 2006 to evaluate the performance of water pillow (WP) irrigation as an alternative to furrow irrigation (FI) for soybean growth in semi-arid climatic conditions. There were four irrigation treatments: two of which (FI and WP1.0) were full irrigation, in that the water deficit in the soil profile (0.9 m) was brought to field capacity in 10-day intervals. The other two treatments (WP0.75 and WP0.50) were deficit irrigation treatments, and received 75% and 50% of WP1.0 irrigation amount. The highest seed yield was achieved with the WP1.0 treatment. Irrigation water use efficiency (IWUE) and water use efficiency (WUE) were influenced significantly by the irrigation methods and levels (P ≤ 0.05). The highest values of WUE and IWUE were obtained by the WP0.75 and WP0.50 treatment, respectively, in both study years. However, the smallest irrigation amount resulted in lower total yield for the WP0.50 treatment, and is not recommended. In conclusion, the WP0.75 treatment is recommended for soybean production in order to attain higher values of IWUE and WUE, and to conserve water and maximize yield with the same volume of water.  相似文献   

18.
Crop evapotranspiration (ETc) was measured as evaporative heat flux from an irrigated acid lime orchard (Citrus latifolia Tanaka) using the aerodynamic method. Crop transpiration (T) was determined by a stem heat balance method. The irrigation requirements were determined by comparing the orchard evapotranspiration (ETc) and T with the reference evapotranspiration (ETo) derived from the Penman-Monteith equation, and the irrigation requirements were expressed as ETc/ETo (Kc) and T/ETo (Kcb) ratios. The influence of inter-row vegetation on the ETc was analyzed because the measurements were taken during the summer and winter, which are periods with different regional soil water content. In this study, the average Kc values obtained were 0.65 and 0.24 for the summer and winter, respectively. The strong coupling of citrus trees to the atmosphere and the sensitivity of citrus plants to large vapor pressure deficits and air/leaf temperatures caused variations in the Kcb in relation to the ETo ranges. During the summer, the Kcb value ranged from 0.34 when the ETo exceeded 5 mm d−1 to 0.46 when the ETo was less than 3 mm d−1.  相似文献   

19.
Tieguanyin Oolong tea (Camellia sinensis (L.) O. Kuntze) is a name brand important commodity for Anxi county, Fujian province in China. Four-year-old tea plants at a tea plantation in Anxi were subjected to six different irrigation treatments (i.e. 5, 10, 15, 20, and 25 d irrigation intervals for T1 to T5 with a rate of 3.5 kg water per plant, plus a non-irrigated control). After 50 d of irrigation treatments, leaf water potential was −1.70, −2.34, −2.48, −2.89, −3.55, and −4.92 MPa for treatment T1, T2, T3, T4, T5, and control, respectively. Leaf biomass yield increased by 32.8%, 21.9%, and 21.3% for T1, T2, and T3, respectively, compared to control. The net photosynthesis (Pn), stomatal conductance (gs) and transpiration (E) decreased with irrigation interval increasing. Tea polyphenol (TP) and free amino acid (AA) decreased when the irrigation intervals were increased, but caffeine (CA) content apparently increased as the irrigation intervals were increased. To balance irrigation water demand and tea yield and quality, it is recommended that the irrigation interval should be set at 10 d with a rate of 3.5 kg water per plant for the optimal production in Anxi, Fujian province of China.  相似文献   

20.
The effects of mid-summer regulated deficit irrigation (RDI) treatments were investigated on Clementina de Nules citrus trees over three seasons. Water restrictions applied from July, once the June physiological fruit drop had finished, until mid September were compared with a Control treatment irrigated during all the season to match full crop evapotranspiration (ETc). Two degrees of water restrictions were imposed based on previous results also obtained in Clementina de Nules trees ( [Ginestar and Castel, 1996] and [González-Altozano and Castel, 1999]). During the RDI period, deficit irrigation was applied based on given reductions over the ETc, but also taking into account threshold values of midday stem water potential (Ψs) of −1.3 to −1.5 MPa for RDI-1 and of −1.5 to −1.7 MPa for RDI-2. Results showed that water savings achieved in the RDI-2 treatment impaired yield by reducing fruit size. On the contrary, the RDI-1 strategy allowed for 20% water savings, with a reduction in tree growth but without any significant reduction in yield, fruit size nor in the economic return when irrigation was resumed to normal dose about three months before harvest. Water use efficiency (WUE) in the RDI trees was similar or even higher than in Control trees. RDI improved fruit quality increasing total soluble solids (TSS) and titratable acidity (TA). In conclusion, we suggest that the RDI-1 strategy here evaluated can be applied in commercial orchards not only in case of water scarcity, but also as a tool to control vegetative growth improving fruit composition and reducing costs associated with the crop management.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号