首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 630 毫秒
1.
在水、旱两栽培条件下比较了农大189 (不抗旱品种)和晋麦47 (抗旱品种)的籽粒蛋白质积累及施氮的调控效应。与灌溉条件相比,旱地栽培提高了籽粒清蛋白、醇溶蛋白、谷蛋白、总蛋白含量及谷/醇比,降低了球蛋白含量。旱作对农大189的籽粒蛋白质组分含量有显著影响,而对晋麦47籽粒球蛋白、醇溶蛋白、总蛋白、谷/醇比的影响不显著。旱作降低了籽粒谷氨酰胺合成酶(GS)、籽粒谷氨酸合酶(GOGAT)、籽粒谷丙转氨酶(GPT)、旗叶谷氨酰胺合成酶(GS)、旗叶谷氨酸合酶(GOGAT)活性,且影响了籽粒GPT活性的变化趋势。旱作对蛋白质合成有关酶活性的影响表现为农大189大于晋麦47。随着施氮量的增加,籽粒蛋白质及其组分含量表现为增加趋势,且施氮的调控效应对晋麦47大于对农大189。不同栽培条件下各处理的籽粒GS、籽粒GOGAT、籽粒GPT、旗叶GOGAT活性与籽粒蛋白质产量呈显著正相关,而与籽粒蛋白质含量无显著相关。两品种旗叶GS活性与蛋白质产量的相关性不同。总之,抗旱品种的籽粒蛋白质积累受水分条件影响小于不抗旱品种,表现一定的抗旱能力;施用氮肥可提高籽粒蛋白质含量,抗旱品种的氮肥调控效应大于不抗旱品种。  相似文献   

2.
The effects of water stress on physiological attributes of drought‐sensitive (Kalyansona) and drought‐tolerant (C‐306) wheat cultivars were studied in a pot experiment. Water stress was imposed by withholding irrigation at boot and anthesis stages. Leaf water potential, leaf osmotic potential and leaf turgor potential (measured with pressure chamber and osmometer), as well as leaf diffusive resistance, leaf transpiration rate and leaf‐to‐air transpiration gradient (measured with a steady‐state porometer) were measured diurnally. Growth and yield parameters were recorded after harvesting of the crop. Triplicate data were analysed using a completely randomized design and correlations amongst these parameters were computed. Water stress was found to reduce diurnal leaf water potential and leaf osmotic potential in both the genotypes but leaf osmotic potential was significantly higher in the drought‐tolerant cultivar C‐306 than in the drought‐sensitive cultivar Kalyansona. Positive turgor was recorded in both the genotypes under water stress and non‐stress conditions. Water‐stressed plants showed significantly lower turgor potential than control plants. In diurnal observations, water‐stressed plants exhibited significantly higher leaf diffusive resistance in both genotypes at both stages. The diffusive resistance of C‐306 was predominantly higher than that of Kalyansona. Water stress decreased leaf transpiration rate at both stages but the reduction was higher at the anthesis stage. The leaf‐to‐air temperature gradient was much higher in C‐306 than in Kalyansona at the boot stage but at the anthesis stage genotypic variation was non‐significant. The capacity to maintain cooler foliage was lower at the anthesis stage than at the boot stage in both the cultivars. Shoot dry weight, number of grains, test weight, grain yield, biological yield and harvest index decreased to a greater extent when water stress was imposed at the anthesis stage, while imposition of water stress at the boot stage caused a greater reduction in plant height and number of tillers. Similarly, water stress caused a smaller reduction in growth, yield and yield attributes in C‐306 than in Kalyansona. In general, the correlation coefficient of grain and biological yield with water potential and its components was positive and highly significant. Similarly, turgor potential was also correlated positively and significantly with grain yield at both the stages, but with biological yield it was significant only at the anthesis stage. A negative and significant correlation was obtained for diffusive resistance and leaf‐to‐air temperature gradient with grain yield at the boot and anthesis stages. The rate of transpiration was also positively and significantly correlated to grain and biological yields at both the stages. Amongst the yield attributes, number of leaves and number of tillers were positively correlated at the anthesis stage, whereas leaf area and shoot dry weight were significantly correlated with grain and biological yields at both the stages.  相似文献   

3.
There is a lack of studies that have investigated grain yield, its components and photosynthesis in late stages of wheat growth, giving us insufficient understanding of how these factors interact to contribute to yield during this period. As a result, three field experiments were carried out examining 20 winter wheat genotypes of diverse origins under irrigated, terminal drought and dryland conditions in the southern Idaho. Our objective was to evaluate the interaction between post‐anthesis physiological traits, especially leaf‐level photosynthetic capacity, senescence and yield components on grain yield in different moisture regimes. Genotype differences were found in leaf‐level photosynthesis and senescence, canopy temperature depression, grain yield and yield components in each water regime. Grain yield was closely associated with traits related to grain numbers. In all three moisture regimes, positive correlations were observed between grain yield and photosynthesis that were dependent on the timing or physiological growth stage of the photosynthetic measurement: highly significant correlations were found in the mid‐ and late grain filling stages, but no correlations at anthesis. Consistent with these findings, flag leaf senescence at the late grain filling stage was negatively correlated with grain yield and photosynthetic rate (under terminal drought and dryland conditions). These findings provided evidence that grain yield was sink‐limited until the final stages of growth, at which time sustained photosynthesis and delayed senescence were critical in filling grain. Because the trends were consistent in moisture sufficient and deficient conditions, the results suggest that late‐season photosynthesis and delayed leaf senescence are driven by the size of the reproductive carbon sink, which was largely governed by factors affecting grain numbers.  相似文献   

4.
Summary The possibility of using proline accumulation and fluorescence inhibition as predictive tests for drought tolerance in durum wheat has been investigated. The drought susceptibility of 25 genotypes was evaluated by comparing yields and yield components in irrigated and non irrigated conditions in the field. A drought susceptibility index (DSI) was calculated based on yields from irrigated and dry treatments and compared with the results obtained using the two physiological criteria. Proline accumulation and chlorophyll fluorescence inhibition were found to be significantly and negatively correlated with DSI of grain yield, biological yield, and thousand kernel weight, and tiller index. The use of both criteria for breeding durum wheat in Mediterranean dryland is discussed.  相似文献   

5.
Heat stress resulting from climate change and more frequent weather extremes is expected to negatively affect wheat yield. We evaluated the response of different spring wheat cultivars to a post‐anthesis high temperature episode and studied the relationship between different traits associated with heat tolerance. Fifteen spring wheat (Triticum aestivum L.) cultivars were grown in pots under semifield conditions, and heat stress (35/26 °C) and control treatments (20/12 °C) were applied in growth chambers for 5 days starting 14 days after flowering. The heat stress treatment reduced final yield in all cultivars. Significant variation was observed among cultivars in the reduction in average grain weight and grain dry matter yield under heat stress (up to 36 % and 45 %, respectively). The duration of the grain‐filling period was reduced by 3–12 days by the heat treatment. The reduction in the grain‐filling period was negatively correlated with grain nitrogen yield (r = ?0.60). A positive correlation (r = 0.73) was found between the treatment effect on green leaf area (GLA) and the reduction in yield resulting from heat stress. The amount of stem water‐soluble carbohydrates (WSC) was not related to treatment effects on grain yield or grain weight. However, the treatment effect on stem WSC remobilization was negatively correlated with reduction in grain‐filling duration due to heat stress (r = ?0.74) and positively with treatment effect on grain N yield (r = 0.52). The results suggest that the effect of the heat treatment on GLA was the trait most associated with yield reduction in all cultivars. These findings suggest the importance of ‘stay green’‐associated traits in plant breeding as well as the need for better modelling of GLA in crop models, especially with respect to brief heat episodes during grain filling. There is in particular a need to model how heat and other stresses, including interacting effects of heat and drought, affect duration of GLA after flowering and how this affects source–sink relations during grain filling.  相似文献   

6.
在大田栽培条件下,以小麦旱地品种晋麦47和西峰20、水旱兼用型品种石家庄8号和水地品种4185为材料,分别进行0水(T0)、一水(T1)和二水灌溉(T2)处理(每次灌水量60mm),研究了光合速率、叶面积指数、干物质积累与分配、根系分布、耗水量、产量因子与水分利用效率(WUE)的关系。结果表明,在拔节前不灌溉,拔节到开花期亏缺灌溉,促进干物质积累和深根发育。随着灌溉水的增加,耗水量显著增加,产量和WUE与耗水量呈二次曲线关系。T0处理显著减少了干物质积累和成穗数,产量、经济系数(HI)和WUE最低。T1和T2产量的提高主要是增加了穗数和穗粒数。灌浆期水分亏缺降低了光合速率(Pn)和气孔导度(Gs),加速了功能叶片的衰老,但诱导了花前储存碳库的再转运,显著提高了HI和产量。因此,在拔节和开花期亏缺灌溉促进根系生长,提高了土壤水分的利用效率。而产量和产量WUE的提高主要是由于增加了灌浆期叶片的Pn和光合功能持续期,促进花前储存碳库的再转运,显著提高了HI。  相似文献   

7.
Terminal drought is threatening the wheat productivity worldwide, which is consumed as a staple food by millions across the globe. This study was conducted to examine the influence of foliage‐applied stress signalling molecules hydrogen peroxide (H2O2; 50, 100, 150 μm ) and nitric oxide donor sodium nitroprusside (SNP; 50, 100, 150 μm ) on resistance against terminal drought in two bread wheat cultivars Mairaj‐2008 and BARS‐2009. These stress signalling molecules were applied at anthesis stage (BBCH 61); drought was then imposed by maintaining pots at 35% water holding capacity. Terminal drought caused significant reduction in grain yield of both tested bread wheat cultivars; however, foliage application of both stress signalling molecules at either concentration improved the performance of both bread wheat cultivars. Maximum improvement in 100‐grain weight (12.2%), grains per spike (19.7%), water‐use efficiency (WUE; 19.8%), chlorophyll content index (10.7%), total soluble phenolics (21.6%) and free leaf proline (34.3%), and highest reduction in leaf malondialdehyde contents (20.4%) was recorded when H2O2 was foliage‐applied at 100 μm . Foliage application of SNP enhanced the grains per spike, 100‐grain weight and grain yield by 14.9%, 11.3% and 20.1%, respectively, than control. The foliage‐applied stress signalling molecules improved the accumulation of soluble phenolics, proline and glycine betaine with simultaneous reduction in malondialdehyde contents, which enabled wheat plants to sustain the biological membranes under stress resulting in better stay green (high chlorophyll contents) under drought. This helped improving the grain number, grain weight, grain yield, WUE and transpiration efficiency. In crux, foliage‐applied H2O2 and SNP, at pre‐optimized rate, may be opted to lessen the drought‐induced yield losses in bread wheat in climate change conditions.  相似文献   

8.
Barley (Hordeum vulgare L.) is an important winter cereal crop grown in the semiarid Mediterranean, where late‐terminal drought stress during grain filling has recently become more common. The objectives of this study were to investigate the growth performance and grain yield of four barley cultivars under late‐terminal drought stress under both glasshouse and field conditions. At grain filling, four barley cultivars (Rum, ACSAD176, Athroh and Yarmouk) were exposed to three watering treatments: (1) well‐watered [soil maintained at 75 % field capacity (FC)], (2) mild drought stress at 50 % FC, (3) severe drought stress at 25 % FC in the glasshouse experiment and (1) well‐watered (irrigated once a week), (2) mild drought (irrigated once every 2 weeks), (3) severe drought (non‐irrigated; rainfed) in the field. As drought stress severity increased, gross photosynthetic rate, water potential, plant height, grain filling duration, spike number per plant, grain number per spike, 1000‐grain weight, straw yield, grain yield and harvest index decreased. In the glasshouse experiment, the six‐row barley cultivars (Rum, ACSAD176, and Athroh) had higher grain yield than the two‐row barley cultivar (Yarmouk), but the difference was not significant among the six‐row cultivars under all treatments. In the field experiment, Rum had the highest grain yield among all cultivars under the mild drought stress treatment. The two‐row cultivar (Yarmouk) had the lowest grain yield. In general, the traditional cultivar Rum had either similar or higher grain yield than the other three cultivars under all treatments. However, the yield response to drought differed between the cultivars. Those, Rum and ACSAD176, that were capable of maintaining a higher proportion of their spikes and grains per spike during drought also maintained a higher proportion of their yield compared with those in well‐watered treatment. In conclusion, cultivar differences in grain yield were related to spike number per plant and grain number per spike, but not days to heading or grain filling duration.  相似文献   

9.
Moisture stress is the major constraint to rice production and its stability in rainfed, mainly irrigated, and aerobic environments. Identification of genomic regions conferring tolerance to stress would improve our understanding of the genetics of stress response and result in the development of drought tolerant cultivars. In the present study, quantitative trait loci for drought response related traits and as well as grain yield were identified using a set of 140 recombinant inbred lines derived from a cross between the popular high-yielding variety, IR64 and the landrace, INRC10192. A total of 36 QTL were identified for grain yield and its components under control and stress conditions. Strikingly, a QTL cluster flanked by the markers RM38 and RM331 on chromosome 8 was found to be associated with grain yield, plant height, no. of productive tillers, chaffy grains, and spikelet fertility on secondary rachis and biomass under stress treatment. The genomic regions associated with these QTL under drought stress will be useful for the development of marker-based breeding for drought tolerant, high-yielding varieties suited to drought-prone areas.  相似文献   

10.
为了解葡萄糖对干旱和低氮胁迫下小麦产量的调节作用,在温室盆栽条件下,研究花后干旱和缺氮胁迫下外源葡萄糖对冬小麦籽粒产量和品质性状的影响。结果表明:花后干旱×低氮互作显著影响小麦的结实率和籽粒的灌浆,明显减少可育小穗数、穗粒数、粒重和籽粒充实度,而且缺氮处理显著降低了籽粒的蛋白质和淀粉产量。在花后干旱×低氮互作下外源喷施葡萄糖处理,明显增加了单穗结实率和籽粒干物质的积累,提高了灌浆中后期旗叶的叶绿素含量,延长了旗叶的光合功能期和灌浆持续期,明显促进了小麦籽粒蛋白质和淀粉积累,提高了小麦经济产量。试验结果表明,外源喷施葡萄糖处理有利于减轻干旱和低氮胁迫对籽粒发育和灌浆的不利影响。  相似文献   

11.
花后干旱和渍水对小麦籽粒HMW-GS及GMP含量的影响   总被引:3,自引:0,他引:3  
采用SDS-PAGE和切胶比色进行亚基定量,研究花后干旱和渍水对小麦强筋品种豫麦34和弱筋品种扬麦9号籽粒HMW-GS和GMP含量的影响。结果表明,两品种的干旱处理和豫麦34淹水处理在花后10 d籽粒HMW-GS形成,两品种对照和扬麦9号淹水处理在花后15 d籽粒HMW-GS形成,说明花后干旱提早了小麦籽粒HMW-GS的起始形成。干旱促进了小麦籽粒HMW-GS早期积累,但对后期积累不利,使快速积累期缩短,渍水处理更明显缩短籽粒HMW-GS快速积累期。两品种成熟期总HMW-GS和GMP含量表现为对照>干旱>渍水,且豫麦34各处理大于扬麦9号的对应处理。  相似文献   

12.
玉米苗期不同供水条件下穗部性状与产量的相关分析   总被引:2,自引:0,他引:2  
本试验在防雨棚中盆栽条件下进行。供试玉米杂交种5个,苗期设置正常供水、轻度干旱胁迫和中度干旱胁迫3个供水处理,拔节期均复水到正常供水水平。籽粒成熟后,对产量和主要穗部性状进行相关分析和通径分析。结果表明:正常供水条件下,百粒重对产量的影响较大;轻度干旱胁迫条件下,粒长和出籽率与产量关系最密切,通径分析表明轴粗对产量的贡献最大;中度干旱胁迫条件下,行粒数对产量的影响较大。  相似文献   

13.
With increasingly erratic rainfall patterns particularly in drought‐prone production systems, the capacity of plants to recover productively from drought spells becomes an important feature for yield stability in rainfed agriculture. Consequently, effects of water management at the stem elongation stage on partitioning and remobilization of dry matter, alteration in photosynthesis and water‐use efficiency (WUE), and yield components of wheat plants were studied in a glasshouse pot experiment. The plants were subjected to three soil moisture regimes: well watered during all phenological stages (WW), drought affected during stem elongation and post‐anthesis stages (DD) and drought affected during stem elongation and rewatered at post‐anthesis stage (DW). Total dry weight substantially decreased by both drought treatments. However, DD plants allocated relatively higher assimilates to roots whereas DW plants remobilized them to the grains. Drought applications resulted in a decrease of grain yield and thousand grain weight while reduction was more pronounced in DD treatment. Relative contribution of post‐anthesis photosynthesis to dry matter formation in grain was higher in WW treatment (72.6 %) than DD (68.5 %) and DW (68.2 %) treatments. Photosynthetic rate, gas exchange and transpiration decreased whereas leaf (photosynthetic) and plant level WUE increased with drought applications. However, all these parameters were rapidly and completely reversed by rewatering. Our findings showed that partitioning of dry weight to grain increases with rewatering of wheat plants subjected to drought during stem elongation phase, but the relative contributions of remobilization of stem reserves and post‐anthesis photosynthesis to grain did not change. Moreover, rewatering of plants at booting stage after a drought period lead to full recovery in photosynthesis and WUE, and a significant although partial recovery of yield components, such as grain yield, TGW and harvest index.  相似文献   

14.
在大田栽培条件下,以小麦旱地品种晋麦47和西峰20、水旱兼用型品种石家庄8号和水地品种4185为材料,分别进行0水(T0)、一水(T1)和二水灌溉(T2)处理(每次灌水量60 mm),研究了光合速率、叶面积指数、干物质积累与分配、根系分布、耗水量、产量因子与水分利用效率(WUE)的关系。结果表明,在拔节前不灌溉,拔节到开花期亏缺灌溉,促进干物质积累和深根发育。随着灌溉水的增加,耗水量显著增加,产量和WUE与耗水量呈二次曲线关系。T0处理显著减少了干物质积累和成穗数,产量、经济系数(HI)和WUE最低。T1和T2产量的提高主要是增加了穗数和穗粒数。灌浆期水分亏缺降低了光合速率(Pn)和气孔导度(Gs),加速了功能叶片的衰老,但诱导了花前储存碳库的再转运,显著提高了HI和产量。因此,在拔节和开花期亏缺灌溉促进根系生长,提高了土壤水分的利用效率。而产量和产量WUE的提高主要是由于增加了灌浆期叶片的Pn和光合功能持续期,促进花前储存碳库的再转运,显著提高了HI。  相似文献   

15.
高温与干旱是小麦灌浆期的主要胁迫逆境, 影响小麦同化物的生成及其在籽粒中的积累。本文以郑麦366为试验材料, 采用盆栽和人工气候室模拟相结合的方式, 研究了灌浆期高温(HT)、干旱(DS)和高温干旱复合胁迫(HT+DS)对小麦籽粒淀粉合成关键酶活性、淀粉及其组分的影响。于花后10 d将长势均匀一致的盆栽小麦转移至人工气候室, 至小麦成熟。人工气候室设适温(昼25℃/夜15℃)和高温(昼32℃/夜22℃)两种温度模式, 每种温度模式下又设置正常水分(土壤相对含水量75%左右)和轻度干旱胁迫(土壤相对含水量50%左右)两个土壤水分处理, 以适温、正常水分处理为对照。与对照相比, HT、DS及HT+DS条件下籽粒可溶性淀粉合酶(SSS)和结合态淀粉合酶(GBSS)活性在胁迫初期显著升高, 之后迅速下降; 淀粉分支酶(SBE)、ADPG焦磷酸化酶(AGPase)和蔗糖合酶(SS)活性在小麦籽粒整个灌浆过程中均低于对照; 上述酶活性还受高温与干旱互作的显著影响。HT、DS及HT+DS逆境下, 小麦籽粒淀粉积累速率减小, 籽粒直、支链淀粉和总淀粉含量下降, 生育期缩短, 粒重和产量降低。其中, HT的影响大于DS, 复合胁迫的影响大于单一胁迫。相关分析表明, SSS和GBSS活性与籽粒直、支链淀粉和总淀粉含量在多数测定时期呈正相关(P<0.01), AGPase、SBE和SS活性在灌浆后期(花后22~26 d)与籽粒直、支链淀粉和总淀粉含量呈正相关(P<0.01)。表明高温干旱胁迫通过淀粉合成关键酶而影响籽粒淀粉的合成与积累, 最终影响小麦产量和品质。  相似文献   

16.
To study the effects of early drought priming at 5th‐leaf stage on grain yield and nitrogen‐use efficiency in wheat (Triticum aestivum L.) under post‐anthesis drought and heat stress, wheat plants were first exposed to moderate drought stress (drought priming; that is, the leaf water potential reached ca. ?0.9 MP a) at the 5th‐leaf stage for 11 days, and leaf water relations and gas exchange rates, grain yield and yield components, and agronomic nitrogen‐use efficiency (ANUE ) of the primed and non‐primed plants under post‐anthesis drought and heat stress were investigated. Compared with the non‐primed plants, the drought‐primed plants possessed higher leaf water potential and chlorophyll content, and consequently a higher photosynthetic rate during post‐anthesis drought and heat stress. Drought priming also resulted in higher grain yield and ANUE in wheat under post‐anthesis drought and heat stress. Drought priming at vegetative stage improves carbon assimilation and ANUE under post‐anthesis drought and heat stress and their combination in wheat, which might be used as a field management tool to enhance stress tolerance of wheat crops to multiple abiotic stresses in a future drier and warmer climate.  相似文献   

17.
Integrative physiological criteria, such as carbon isotope discrimination (Δ) and (mineral) ash content (ma) have been found to be very useful, under drought conditions, to elucidate the association between yield gains and variation of photosynthesis‐related traits and orientate future breeding efforts. Information on this association is scarce under irrigated conditions. The relationships between Δ, ma and yield were studied in bread wheat (Triticum aestivum L.) and durum wheat (Triticum turgidum L. var. durum) under optimal (drip) irrigation in the arid conditions of north‐west Mexico. Carbon isotope discrimination was analysed on leaves at booting stage and anthesis and on grain at maturity, whereas ash content was measured on the flag leaf at anthesis and maturity. At anthesis, there were differences between bread and durum wheat during grain filling for Δ, but not for ma. No relationship was found between grain yield and Δ. Leaf ash content at anthesis and maturity showed a broad variability within each species and were associated with grain yield. These results suggest that ash content in leaves could be also used as predictive criteria for yield not only under drought, but also under irrigated conditions, particularly when evaporative demand is high.  相似文献   

18.
Drought and heat are among the main abiotic stresses causing severe damage to the cereal productivity when occur at reproductive stages. In this study, ten wheat cultivars were screened for combined heat and drought tolerance imposed at booting, heading, anthesis and post‐anthesis stages, and role of the foliage applied plant extracts was evaluated in improving the performance of differentially responding wheat cultivars under terminal heat and drought stresses. During both years, wheat crop was raised under ambient temperature and 70% water holding capacity (WHC) till leaf boot stage. The plant extracts (3% each) of sorghum, brassica, sunflower and moringa were foliage applied at booting, anthesis and post‐anthesis stage; and after one week of application of these plant extracts, combined heat and drought was imposed at each respective stage. Heat and drought stresses were imposed at each respective stage by placing pots in glass canopies with temperature of 4 ± 2°C above than the ambient temperature in combination with drought stress (35% WHC) until maturity. Combination of drought and heat stresses significantly reduced the performance of tested wheat cultivars; however, stress at the booting and heading stages was more damaging than the anthesis and post‐anthesis stages. Cultivars Mairaj‐2008 and Chakwal‐50 remained green with extended duration for grain filling, resulting in the maintenance of number of grains per spike and 100‐grain weight under stress conditions and thus had better grain yield and water‐use efficiency. However, in cultivars Fsd‐2008, and Shafaq‐2006, the combined imposition of drought and heat accelerated the grain filling rate with decrease in grain filling duration, grain weight and grain yield. Foliar application of all the plant extracts improved the wheat performance under terminal heat and drought stress; however, brassica extract was the most effective. This improvement in grain yield, water‐use efficiency and transpiration efficiency due to foliage applied plant extracts, under terminal heat and drought stress, was owing to better stay‐green character and accumulation of more soluble phenolics, which imparted stress tolerance as indicated by relatively stable grain weight and grain number. In crux, growing of stay‐green wheat cultivars with better grain filling and foliage application of plant extracts may help improving the performance of bread wheat under combined heat and drought stresses.  相似文献   

19.
To investigate the interactive effects of drought, heat and elevated atmospheric CO2 concentration ([CO2]) on plant water relations and grain yield in wheat, two wheat cultivars with different drought tolerance (Gladius and Paragon) were grown under ambient and elevated [CO2], and were exposed to post‐anthesis drought and heat stress. The stomatal conductance, plant water relation parameters, abscisic acid concentration in leaf and spike, and grain yield components were examined. Both stress treatments and elevated [CO2] reduced the stomatal conductance, which resulted in lower leaf relative water content and leaf water potential. Drought induced a significant increase in leaf and spike abscisic acid concentrations, while elevated [CO2] showed no effect. At maturity, post‐anthesis drought and heat stress significantly decreased the grain yield by 21.3%–65.2%, while elevated [CO2] increased the grain yield by 20.8% in wheat, which was due to the changes of grain number per spike and thousand grain weight. This study suggested that the responses of plant water status and grain yield to extreme climatic events (heat and drought) can be influenced by the atmospheric CO2 concentration.  相似文献   

20.
High temperature and drought stress are projected to reduce crop yields and threaten food security. While effects of heat and drought on crop growth and yield have been studied separately, little is known about the combined effect of these stressors. We studied detrimental effects of high temperature, drought stress and combined heat and drought stress around anthesis on yield and its components for three wheat cultivars originating from Germany and Iran. We found that effects of combined heat and drought on the studied physiological and yield traits were considerably stronger than those of the individual stress factors alone, but the magnitude of the effects varied for specific growth‐ and yield‐related traits. Single grain weight was reduced under drought stress by 13%–27% and under combined heat and drought stress by 43%–83% but not by heat stress alone. Heat stress significantly decreased grain number by 14%–28%, grain yield by 16%–25% and straw yield by 15%–25%. Cultivar responses were similar for heat but different for drought and combined heat and drought treatments. We conclude that heat stress as imposed in this study is less detrimental than the effects of those other studied stresses on growth and yield traits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号