首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Herbicide-resistant crops and weed resistance to herbicides   总被引:10,自引:0,他引:10  
The adoption of genetically modified (GM) crops has increased dramatically during the last 3 years, and currently over 52 million hectares of GM crops are planted world-wide. Approximately 41 million hectares of GM crops planted are herbicide-resistant crops, which includes an estimated 33.3 million hectares of herbicide-resistant soybean. Herbicide-resistant maize, canola, cotton and soybean accounted for 77% of the GM crop hectares in 2001. However, sugarbeet, wheat, and as many as 14 other crops have transgenic herbicide-resistant cultivars that may be commercially available in the near future. There are many risks associated with the production of GM and herbicide-resistant crops, including problems with grain contamination, segregation and introgression of herbicide-resistant traits, marketplace acceptance and an increased reliance on herbicides for weed control. The latter issue is represented in the occurrence of weed population shifts, the evolution of herbicide-resistant weed populations and herbicide-resistant crops becoming volunteer weeds. Another issue is the ecological impact that simple weed management programs based on herbicide-resistant crops have on weed communities. Asiatic dayflower (Commelina cumminus L) common lambsquarters (Chenopodium album L) and wild buckwheat (Polygonum convolvulus L) are reported to be increasing in prominence in some agroecosystems due to the simple and significant selection pressure brought to bear by herbicide-resistant crops and the concomitant use of the herbicide. Finally, evolution of herbicide-resistant weed populations attributable to the herbicide-resistant crop/herbicide program has been observed. Examples of herbicide-resistant weeds include populations of horseweed (Conyza canadensis (L) Cronq) resistant to N-(phosphonomethyl)glycine (glyphosate). An important question is whether or not these problems represent significant economic issues for future agriculture.  相似文献   

2.
There is interest in more diverse weed management tactics because of evolved herbicide resistance in important weeds in many US and Canadian crop systems. While herbicide resistance in weeds is not new, the issue has become critical because of the adoption of simple, convenient and inexpensive crop systems based on genetically engineered glyphosate‐tolerant crop cultivars. Importantly, genetic engineering has not been a factor in rice and wheat, two globally important food crops. There are many tactics that help to mitigate herbicide resistance in weeds and should be widely adopted. Evolved herbicide resistance in key weeds has influenced a limited number of growers to include a more diverse suite of tactics to supplement existing herbicidal tactics. Most growers still emphasize herbicides, often to the exclusion of alternative tactics. Application of integrated pest management for weeds is better characterized as integrated weed management, and more typically integrated herbicide management. However, adoption of diverse weed management tactics is limited. Modifying herbicide use will not solve herbicide resistance in weeds, and the relief provided by different herbicide use practices is generally short‐lived at best. More diversity of tactics for weed management must be incorporated in crop systems. © 2014 Society of Chemical Industry  相似文献   

3.
BACKGROUND: Weed management in glyphosate‐resistant (GR) maize, cotton and soybean in the United States relies almost exclusively on glyphosate, which raises criticism for facilitating shifts in weed populations. In 2006, the benchmark study, a field‐scale investigation, was initiated in three different GR cropping systems to characterize academic recommendations for weed management and to determine the level to which these recommendations would reduce weed population shifts. RESULTS: A majority of growers used glyphosate as the only herbicide for weed management, as opposed to 98% of the academic recommendations implementing at least two herbicide active ingredients and modes of action. The additional herbicides were applied with glyphosate and as soil residual treatments. The greater herbicide diversity with academic recommendations reduced weed population densities before and after post‐emergence herbicide applications in 2006 and 2007, particularly in continuous GR crops. CONCLUSION: Diversifying herbicides reduces weed population densities and lowers the risk of weed population shifts and the associated potential for the evolution of glyphosate‐resistant weeds in continuous GR crops. Altered weed management practices (e.g. herbicides or tillage) enabled by rotating crops, whether GR or non‐GR, improves weed management and thus minimizes the effectiveness of only using chemical tactics to mitigate weed population shifts. Copyright © 2011 Society of Chemical Industry  相似文献   

4.
Weed management in conservation crop production systems   总被引:1,自引:0,他引:1  
Information on weed management in conservation crop production systems is needed as adoption of practices such as reduced tillage and cover crops becomes more widespread. This review summarizes recent research on weed management aspects in these systems. Changes in patterns of tillage, planting systems, and other management strategies can alter the soil environment and lead to shifts in weed populations. Weed patterns and populations are not always consistent and vary with locale, crop, and herbicide use. However, in many long-term conservation management studies, a general increase in perennial weeds and grass species has been observed. The development of low-dose herbicides, selective postemergence herbicides, and transgenic crops has greatly improved the flexibility of producers who use conservation systems where opportunities for tillage are limited. With a higher level of management inputs, producers can successfully implement conservation management practices.  相似文献   

5.
Glyphosate-resistant crops: adoption, use and future considerations   总被引:6,自引:0,他引:6  
BACKGROUND: Glyphosate-resistant crops (GRCs) were first introduced in the United States in soybeans in 1996. Adoption has been very rapid in soybeans and cotton since introduction and has grown significantly in maize in recent years. GRCs have grown to over 74 million hectares in five crop species in 13 countries. The intent of this paper is to update the hectares planted and the use patterns of GRC globally, and to discuss briefly future applications and uses of the technology. RESULTS: The largest land areas of GRCs are occupied by soybean (54.2 million ha), maize (13.2 million ha), cotton (5.1 million ha), canola (2.3 million ha) and alfalfa (0.1 million ha). Currently, the USA, Argentina, Brazil and Canada have the largest plantings of GRCs. Herbicide use patterns would indicate that over 50% of glyphosate-resistant (GR) maize hectares and 70% of GR cotton hectares receive alternative mode-of-action treatments, while approximately 25% of GR soybeans receive such a treatment in the USA. Alternative herbicide use is likely driven by both agronomic need and herbicide resistance limitations in certain GR crops such as current GR cotton. Tillage practices in the USA indicate that > 65% of GR maize hectares, 70% of GR cotton hectares and 50% of GR soybean hectares received some tillage in the production system. Tillage was likely used for multiple purposes ranging from seed-bed preparation to weed management. CONCLUSION: GRCs represent one of the more rapidly adopted weed management technologies in recent history. Current use patterns would indicate that GRCs will likely continue to be a popular weed management choice that may also include the use of other herbicides to complement glyphosate. Stacking with other biotechnology traits will also give farmers the benefits and convenience of multiple pest control and quality trait technologies within a single seed.  相似文献   

6.
Summary Weeds cause yield losses and reductions in crop quality. Prior to the introduction of selective herbicides, the drudgery of manual weeding forced farmers to adhere to a suit of weed management tactics by carefully combining crop rotation, appropriate tillage and fallow systems. The introduction of selective herbicides in the late 1940s and the constant flow of new herbicides in the succeeding decades provided farmers with a new tool, ‘the chemical hoe’, putting them in a position to consider weed control more independently of the crop production system than hitherto. The reliance on herbicides for weed control, however, resulted in shifts in the weed flora and the selection of herbicide‐resistant biotypes. In the 1980s, the public concern about side‐effects of herbicides on the environment and human health resulted in increasingly strict registration requirements and, in some countries, political initiatives to reduce the use of pesticides were launched. Today, the number of new herbicides being introduced has decreased significantly and integrated weed management has become the guiding concept. Farmers also have the option of growing herbicide‐resistant crops where the biology of the crop has been adapted to tolerate herbicides considered safe to humans and environmentally benign. This paper discusses some of the recent developments in herbicide discovery, technology and fate, and sketches important future developments.  相似文献   

7.
A six-state, 5 year field project was initiated in 2006 to study weed management methods that foster the sustainability of genetically engineered (GE) glyphosate-resistant (GR) crop systems. The benchmark study field-scale experiments were initiated following a survey, conducted in the winter of 2005-2006, of farmer opinions on weed management practices and their views on GR weeds and management tactics. The main survey findings supported the premise that growers were generally less aware of the significance of evolved herbicide resistance and did not have a high recognition of the strong selection pressure from herbicides on the evolution of herbicide-resistant (HR) weeds. The results of the benchmark study survey indicated that there are educational challenges to implement sustainable GR-based crop systems and helped guide the development of the field-scale benchmark study. Paramount is the need to develop consistent and clearly articulated science-based management recommendations that enable farmers to reduce the potential for HR weeds. This paper provides background perspectives about the use of GR crops, the impact of these crops and an overview of different opinions about the use of GR crops on agriculture and society, as well as defining how the benchmark study will address these issues.  相似文献   

8.
草甘膦是目前世界上用量最大、应用范围最广的农药,因为在转基因抗草甘膦作物田中过度依赖其除草,耐草甘膦杂草将演替成优势种群。耐受性杂草不但增加了杂草防除难度和成本,而且还会导致在农田生态系统中因过量使用草甘膦而出现一系列生态风险问题。本文通过对草甘膦特性、耐草甘膦杂草现状和耐受机制等进行较系统的总结和分析,以期为我国未来抗除草剂作物商业化种植后制定杂草治理策略奠定基础,也为草甘膦在转基因作物田高效安全地使用提供理论依据。  相似文献   

9.
Agricultural intensification, besides increasing land productivity, also affects weed communities. We studied weed shifts in cropping sequences differing in the identity and number of crops grown. We also evaluated whether dissimilar weed communities in different cropping systems converge towards more similar communities, when the same sequence is cropped during 2 years. In three locations in the Rolling Pampa, Argentina, field experiments were conducted including five cropping systems in the first year (winter cereal/soyabean, field pea/soyabean, and field pea/maize double crops, and maize and soyabean as single crops), while the same sequence was grown in the following 2 years (wheat/soyabean double crop and maize). Changes in weed community composition and structure were analysed through multivariate analyses and frequency–species ranking plots. Weed communities differed first among sites, while weed shifts within each site were mainly associated with growing season and crop type. Differences among crop sequences were higher in the first year, mostly related to specific crop grown, rather than to the number of crops in the sequences. Differences were reduced when the same sequence was grown during two consecutive seasons. Frequency of highly common weeds was negatively associated with the number of days with high crop cover. Our findings contribute to understand weed shifts in consecutive growing seasons, which may help readapting crop sequences to reduce the occurrence of abundant weed species.  相似文献   

10.
Taking stock of herbicide-resistant crops ten years after introduction   总被引:11,自引:0,他引:11  
Since transgenic, bromoxynil-resistant cotton and glufosinate-resistant canola were introduced in 1995, planting of transgenic herbicide-resistant crops has grown substantially, revolutionizing weed management where they have been available. Before 1995, several commercial herbicide-resistant crops were produced by biotechnology through selection for resistance in tissue culture. However, non-transgenic herbicide-resistant crops have had less commercial impact. Since the introduction of glyphosate-resistant soybean in 1996, and the subsequent introduction of other glyphosate-resistant crops, where available, they have taken a commanding share of the herbicide-resistant crop market, especially in soybean, cotton and canola. The high level of adoption of glyphosate-resistant crops by North American farmers has helped to significantly reduce the value of the remaining herbicide market. This has resulted in reduced investment in herbicide discovery, which may be problematic for addressing future weed-management problems. Introduction of herbicide-resistant crops that can be used with selective herbicides has apparently been hindered by the great success of glyphosate-resistant crops. Evolution of glyphosate-resistant weeds and movement of naturally resistant weed species into glyphosate-resistant crop fields will require increases in the use of other herbicides, but the speed with which these processes compromise the use of glyphosate alone is uncertain. The future of herbicide-resistant crops will be influenced by many factors, including alternative technologies, public opinion and weed resistance. Considering the relatively few recent approvals for field testing new herbicide-resistant crops and recent decisions not to grow glyphosate-resistant sugarbeet and wheat, the introduction and adoption of herbicide-resistant crops during the next 10 years is not likely to be as dramatic as in the past 10 years.  相似文献   

11.
Glyphosate-resistant (GR) crop technology has dramatically impacted agriculture. The adoption of GR systems in canola, maize, cotton, soybean and sugar beets has been widespread in the United States. However, weed scientists are concerned that growers' current herbicide programs and weed management tactics will affect their sustainability and effectiveness. Without proper management, the potential for weed populations to express a high degree of resistance to glyphosate will adversely impact the utility of glyphosate. In 2005, weed scientists from six universities initiated a long-term research study to assess the sustainability of GR technology. This paper introduces five other articles in this series. Over 150 fields of at least 10 ha were selected to participate in a long-term field-scale study, and each field was split in half. On one-half the grower continued using the current weed management program; on the other half the grower used academic-recommended herbicide resistance best management practices. Field data were collected in 2006-2008 to determine the impact of the two weed management programs on weed populations, diversity, seedbank, crop yields and economic returns. This long-term study will provide invaluable data for determining the sustainability and profitability of diversified weed management programs designed to lower the risk of evolving weed resistance to glyphosate.  相似文献   

12.
Phalaris paradoxa (awned canary-grass) is an aggressive annual winter weed in wheat and other arable crops that is controlled mainly by ACCase-inhibiting herbicides: cyclohexanediones (DIMs), aryloxyphenoxypropionates (FOPs) and phenylpyrazolines (DENs, e.g. pinoxaden). The selection pressure imposed on the weed populations by repeated use of these herbicides has resulted in the evolution of increased numbers of ACCase-resistant populations of P. paradoxa in Israel and other countries. Two populations, Revadim (RV) and Mishmar Ha'emek (MH) that were exposed to differing weed and crop management tactics were investigated. Both populations were highly resistant to all FOPs, pinoxaden and cycloxydim, but responded differently to some DIMs. RV plants exhibited much higher resistance to tralkoxydim than MH plants, while showing similar low levels of resistance to tepraloxydim and clethodim. Both populations were equally susceptible to graminicides with other modes of action. The mutations responsible for the observed resistance were identified using PCR-RFLP and by sequencing the carboxyl transferase domain of the chloroplastic ACCase gene. RV plants possess a substitution of Asp2078 to Gly, whereas in MH population a mixture of Ile2041 to Asn or Asp2078 to Gly was found. Our study demonstrates that lack of herbicide and crop rotation may result in the evolution of diverse target site mutations and differential response of the whole plant to ACCase inhibitors.  相似文献   

13.
Glyphosate-resistant crops: history, status and future   总被引:16,自引:0,他引:16  
The commercial launch of glyphosate-resistant soybeans in 1996 signaled the beginning of a new era in weed management in row crops. Today, over 80% of the soybeans grown in the USA are glyphosate resistant. Since that time, many crops have been transformed that have allowed crop applications of many classes of herbicide chemistries. Crops currently under production include maize, soybean, cotton and canola. Transformation technology and selection methods have improved and the rate of development as well as the breadth of crops being considered as commercial targets has increased. On the basis of recent adoption rates by growers around the world, it appears that glyphosate-resistant crops will continue to grow in number and in hectares planted. However, global public acceptance of biotechnology-derived products will continue to impact the rate of adoption of this and other new innovations derived from transformation technology.  相似文献   

14.
The development of acetolactate synthase (ALS) tolerant sugar beet provides new opportunities for weed control in sugar beet cultivation. The system consists of an ALS?inhibiting herbicide (foramsulfuron + thiencarbazone‐methyl) and a herbicide‐tolerant sugar beet variety. Previously, the use of ALS‐inhibitors in sugar beet was limited due to the susceptibility of the crop to active ingredients from this mode of action. The postulated benefits of cultivation of the ALS‐tolerant sugar beet are associated with potential risks. Up to now, with no relevant proportion of herbicide‐tolerant crops in Germany, ALS‐inhibitors are used in many different crops. An additional use in sugar beet cultivation could increase the selection pressure for ALS‐resistant weeds. To evaluate the impact of varying intensity of ALS‐inhibitor use on two weed species (Alopecurus myosuroides and Tripleurospermum perforatum) in a crop rotation, field trials were conducted in Germany in two locations from 2014 to 2017. Weed densities, genetic resistance background and crop yields were annually assessed. The results indicate that it is possible to control ALS‐resistant weeds with an adapted herbicide strategy in a crop rotation including herbicide‐tolerant sugar beet. According to the weed density and species, the herbicide strategy must be extended to graminicide treatment in sugar beet, and a residual herbicide must be used in winter wheat. The spread of resistant biotypes in our experiments could not be attributed to the integration of herbicide‐tolerant cultivars, although the application of ALS‐inhibitors promoted the development of resistant weed populations. Annual use of ALS‐inhibitors resulted in significant high weed densities and caused seriously yield losses. Genetic analysis of surviving weed plants confirmed the selection of ALS‐resistant biotypes.  相似文献   

15.
Weeds and weed control are major production costs in global agriculture, with increasing challenges associated with herbicide‐based management because of concerns with chemical residue and herbicide resistance. Non‐chemical weed management may address these challenges but requires the ability to differentiate weeds from crops. Harvest is an ideal opportunity for the differentiation of weeds that grow taller than the crop, however, the ability to differentiate late‐season weeds from the crop is unknown. Weed mapping enables farmers to locate weed patches, evaluate the success of previous weed management strategies, and assist with planning for future herbicide applications. The aim of this study was to determine whether weed patches could be differentiated from the crop plants, based on height differences. Field surveys were carried out before crop harvest in 2018 and 2019, where a total of 86 and 105 weedy patches were manually assessed respectively. The results of this study demonstrated that across the 191 assessed weedy patches, in 97% of patches with Avena fatua (wild oat) plants, 86% with Raphanus raphanistrum (wild radish) plants and 92% with Sonchus oleraceus L. (sow thistles) plants it was possible to distinguish the weeds taller than the 95% of the crop plants. Future work should be dedicated to the assessment of the ability of remote sensing methods such as Light Detection and Ranging to detect and map late‐season weed species based on the results from this study on crop and weed height differences.  相似文献   

16.
Glyphosate has performed long and well, but now some weed communities are shifting to populations that survive glyphosate, and growers need new weed management technologies to augment glyphosate performance in glyphosate-resistant crops. Unfortunately, most companies are not developing any new selective herbicides with new modes of action to fill this need. Fortunately, companies are developing new herbicide-resistant crop technologies to combine with glyphosate resistance and expand the utility of existing herbicides. One of the first multiple-herbicide-resistant crops will have a molecular stack of a new metabolically based glyphosate resistance mechanism with an active-site-based resistance to a broad spectrum of ALS-inhibiting herbicides. Additionally, new formulation technology called homogeneous blends will be used in conjunction with glyphosate and ALS-resistant crops. This formulation technology satisfies governmental regulations, so that new herbicide mixture offerings with diverse modes of action can be commercialized more rapidly and less expensively. Together, homogeneous blends and multiple-herbicide-resistant crops can offer growers a wider choice of herbicide mixtures at rates and ratios to augment glyphosate and satisfy changing weed management needs.  相似文献   

17.
Multiple herbicide‐resistant (MHR ) weed populations pose significant agronomic and economic threats and demand the development and implementation of ecologically based tactics for sustainable management. We investigated the influence of nitrogen fertiliser rate (56, 112, 168, or 224 kg N ha?1) and spring wheat seeding density (67.3 kg ha?1 or 101 kg ha?1) on the demography of one herbicide susceptible and two MHR Avena fatua populations under two cropping systems (continuous cropping and crop‐fallow rotation). To represent a wide range of environmental conditions, data were obtained in field conditions over 3 years (2013–2015). A stochastic density‐dependent population dynamics model was constructed using the demographic data to project A. fatua populations. Elasticity analysis was used to identify demographic processes with negative impacts on population growth. In both cropping systems, MHR seedbank densities were negatively impacted by increasing nitrogen fertilisation rate and wheat density. Overall, MHR seedbank densities were larger in the wheatfallow compared with the continuous wheat cropping system and seedbank densities stabilised near zero in the high nitrogen and high spring wheat seeding rate treatment. In both cropping systems, density‐dependent seed production was the most influential parameter impacting population growth rate. This study demonstrated that while the short‐term impact of weed management tactics can be investigated by field experiments, evaluation of long‐term consequences requires the use of population dynamics models. Demographic models, such as the one constructed here, will aid in selecting ecologically based weed management tactics, such as appropriate resource availability and modification to crop competitive ability to reduce the impact of MHR .  相似文献   

18.
Reduced herbicide doses in field crops: A review   总被引:2,自引:1,他引:2  
Farmers are becoming increasingly interested in more comprehensive weed management programs that reduce weed populations over time and in the use of reduced herbicide doses that lower their production costs. Research indicates that there is good potential to reduce the number of herbicide applications and utilize lower herbicide doses within competitive cropping systems. Diverse crop rotations, competitive cultivars, higher crop seed rates, reduced row spacing, specific fertilizer placement, and cover crops have been identified as integral components of competitive cropping systems. This review paper explores the potential for successful use of reduced herbicide doses within competitive cropping systems that have a multiyear approach to weed management. The utilization of decision support systems or new methods of assessing active weed growth are discussed in light of further enhancing the successful use of reduced herbicide doses and advising farmers on when (and when not) they might be a viable option.  相似文献   

19.
Α three‐year, non‐irrigated field study was conducted in 1998, 1999, and 2000 at the Southern Weed Science Research Unit farm, Stoneville, MS to study the effects of rye cover crop residue, soybean planting systems, and herbicide application programs on the control, density and biomass of several weed species and soybean yield. The soybean planting systems comprised 19 cm rows with high plant density, 57 cm rows with medium plant density, and 95 cm rows with low plant density. The herbicide programs evaluated were pre‐emergence, postemergence, pre‐emergence followed by postemergence, and no herbicide. Flumetsulam and metolachlor were applied pre‐emergence, and acifluorfen, bentazon, and clethodim were applied postemergence. The presence or absence of rye cover crop residue and a soybean planting system did not affect weed control of the species evaluated (browntop millet, barnyard grass, broadleaf signal grass, pitted morningglory, yellow nutsedge, Palmer amaranth and hyssop spurge), when herbicides were applied, regardless of the application program. In addition, rye cover crop residue was not an effective weed management tool when no herbicide was applied, because density and biomass of most weeds evaluated were higher than a no cover crop residue system. Among soybean planting systems, narrow with high plant density soybeans reduced density of grasses, broadleaf weeds and yellow nutsedge by 24–83% and total weed biomass by 38%, compared to wide with low plant density soybeans. Although weed pressure was reduced by narrow with high plant density soybeans, herbicide applications had the most impact on weed control, weed density and biomass. All herbicide programs controlled all weed species 81–100% at two weeks after postemergence herbicide applications, in comparison to no‐herbicide. Density of grasses and all broadleaf weeds as well as total weed biomass was lower with the pre‐emergence followed by postemergence program than these programs alone. Soybean yields were higher in the pre‐emergence followed by postemergence, and postemergence only programs than the pre‐emergence alone program. Planting crops in narrow rows is one cultural method of reducing weed pressure. However, even with the use of this cultural practice, prevalent weed pressure often requires management with herbicides.  相似文献   

20.
The management of weeds in Malaysian rice fields is very much herbicide‐based. The heavy reliance on herbicide for weed control by many rice‐growers arguably eventually has led to the development and evolution of herbicide‐resistant biotypes in Malaysian rice fields over the years. The continuous use of synthetic auxin (phenoxy group) herbicides and acetohydroxyacid synthase‐inhibiting herbicides to control rice weeds was consequential in leading to the emergence and prevalence of resistant weed biotypes. This review discusses the history and confirmed cases and incidence of herbicide‐resistant weeds in Malaysian rice fields. It also reviews the Clearfield Production System and its impact on the evolution of herbicide resistance among rice weed species and biotypes. This review also emphasizes the strategies and management options for herbicide‐resistant rice field weeds within the framework of herbicide‐based integrated weed management. These include the use of optimum tillage practices, certified clean seeds, increased crop competition through high seeding rates, crop rotation, the application of multiple modes of action of herbicides in annual rotations, tank mixtures and sequential applications to enable a broad spectrum of weed control, increase the selective control of noxious weed species in a field and help to delay the resistance evolution by reducing the selection pressure that is forced on those weed populations by a specific herbicidal mode of action.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号