首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present a framework that uses both sources and sinks as elements in the construction of a landscape matrix. We propose that the matrix be conceived as a collection of temporary habitats, some of which are sources, others of which are sinks, that form a landscape mosaic. The key element in this framing is that the sources are ephemeral and the sinks are propagating. A mean field approach is used to modify the classic metapopulation model, taking this new framework into account. Additionally a spatially explicit approach reveals different scaling rules for the percolation probability and the propagating probability.  相似文献   

2.
In the southwestern U.S., wildland fire frequency and area burned have steadily increased in recent decades, a pattern attributable to multiple ignition sources. To examine contributing landscape factors and patterns related to the occurrence of large (⩾20 ha in extent) fires in the forested region of northern Arizona, we assembled a database of lightning- and human-caused fires for the period 1 April to 30 September, 1986–2000. At the landscape scale, we used a weights-of-evidence approach to model and map the probability of occurrence based on all fire types (n = 203), and lightning-caused fires alone (n = 136). In total, large fires burned 101,571 ha on our study area. Fires due to lightning were more frequent and extensive than those caused by humans, although human-caused fires burned large areas during the period of our analysis. For all fires, probability of occurrence was greatest in areas of high topographic roughness and lower road density. Ponderosa pine (Pinus ponderosa)-dominated forest vegetation and mean annual precipitation were less important predictors. Our modeling results indicate that seasonal large fire events are a consequence of non-random patterns of occurrence, and that patterns generated by these events may affect the regional fire regime more extensively than previously thought. Identifying the factors that influence large fires will improve our ability to target resource protection efforts and manage fire risk at the landscape scale.  相似文献   

3.
Habitat connectivity is an important element of functioning landscapes for mobile organisms. Maintenance or creation of movement corridors is one conservation strategy for reducing the negative effects of habitat fragmentation. Numerous spatial models exist to predict the location of movement corridors. Few studies, however, have investigated the effectiveness of these methods for predicting actual movement paths. We used an expert-based model and a resource selection function (RSF) to predict least-cost paths of woodland caribou. Using independent data for model evaluation, we found that the expert-based model was a poor predictor of long-distance animal movements; in comparison, the RSF model was effective at predicting habitat selection by caribou. We used the Path Deviation Index (PDI), cumulative path cost, and sinuosity to quantitatively compare the spatial differences between inferred caribou movement paths and predicted least-cost paths, and quasi-random null models of directional movement. Predicted movement paths were on average straighter than inferred movement paths for collared caribou. The PDI indicated that the least-cost paths were no better at predicting the inferred paths than either of two null models—straight line paths and randomly generated paths. We found statistically significant differences in cumulative cost scores for the main effects of model and path type; however, post-hoc comparisons were non-significant suggesting no difference among inferred, random, and predicted least cost paths. Paths generated from an expert based cost surface were more sinuous than those premised on the RSF model, but neither differed from the inferred path. Although our results are specific to one species, they highlight the importance of model evaluation when planning for habitat connectivity. We recommend that conservation planners adopt similar techniques when validating the effectiveness of movement corridors for other populations and species.  相似文献   

4.
Landscape composition and configuration, often termed as habitat loss and fragmentation, are predicted to reduce species population viability, partly due to the restriction of movement in the landscape. Unfortunately, measuring the effects of habitat loss and fragmentation on functional connectivity is challenging because these variables are confounded, and often the motivation for movement by target species is unknown. Our objective was to determine the independent effects of landscape connectivity from the perspective of a mature forest specialist—the northern flying squirrel (Glaucomys sabrinus). To standardize movement motivation, we translocated 119 squirrels, at varying distances (0.18–3.8 km) from their home range across landscapes representing gradients in both habitat loss and fragmentation. We measured the physical connectedness of mature forest using an index of connectivity (landscape coincidence probability). Patches were considered connected if they were within the mean gliding distance of a flying squirrel. Homing success increased in landscapes with a higher connectivity index. However, homing time was not strongly predicted by habitat amount, connectivity index, or mean nearest neighbour and was best explained as a simple function of sex and distance translocated. Our study shows support for the independent effects of landscape configuration on animal movement at a spatial scale that encompasses several home ranges. We conclude that connectivity of mature forest should be considered for the conservation of some mature forest specialists, even in forest mosaics where the distinction between habitat and movement corridors are less distinct.  相似文献   

5.
Though fire is considered a natural disturbance, humans heavily influence modern wildfire regimes. Humans influence fires both directly, by igniting and suppressing fires, and indirectly, by either altering vegetation, climate, or both. We used the LANDIS disturbance and succession model to compare the relative importance of a direct human influence (suppression of low intensity surface fires) with an indirect human influence (timber harvest) on the long-term abundance and connectivity of high-risk fuel in a 2791 km2 landscape characterized by a mixture of northern hardwood and boreal tree species in northern Wisconsin. High risk fuels were defined as a combination of sites recently disturbed by wind and sites containing conifer species/cohorts that might serve as ladder fuel to carry a surface fire into the canopy. Two levels of surface fire suppression (high/current and low) and three harvest alternatives (no harvest, hardwood emphasis, and pine emphasis) were compared in a 2×3 factorial design using 5 replicated simulations per treatment combination over a 250-year period. Multivariate analysis of variance indicated that the landscape pattern of high-risk fuel (proportion of landscape, mean patch size, nearest neighbor distance, and juxtaposition with non fuel sites) was significantly influenced by both surface fire suppression and by forest harvest (p > 0.0001). However, the two human influences also interacted with each other (p < 0.001), because fire suppression was less likely to influence fuel connectivity when harvest disturbance was simultaneously applied. Temporal patterns observed for each of seven conifer species indicated that disturbances by either fire or harvest encouraged the establishment of moderately shade-tolerant conifer species by disturbing the dominant shade tolerant competitor, sugar maple. Our results conflict with commonly reported relationships between fire suppression and fire risk observed within the interior west of the United States, and illustrate the importance of understanding key interactions between natural disturbance, human disturbance, and successional responses to these disturbance types that will eventually dictate future fire risk.This revised version was published online in May 2005 with corrections to the Cover Date.  相似文献   

6.
In this paper we show how the spatialconfiguration of habitat quality affects the spatial spread of apopulation in a heterogeneous environment. Our main result is thatfor species with limited dispersal ability and a landscape withisolated habitats, stepping stone patches of habitat greatlyincrease the ability of species to disperse. Our results showthat increasing reproductive rate first enables and thenaccelerates spatial spread, whereas increasing the connectivity has aremarkable effect only in case of low reproductive rates. Theimportance of landscape structure varied according to thedemographic characteristics of the population. To show this wepresent a spatially explicit habitat model taking into accountpopulation dynamics and habitat connectivity. The population dynamicsare based on a matrix projection model and are calculated on eachcell of a regular lattice. The parameters of the Leslie matrix dependon habitat suitability as well as density. Dispersal between adjacentcells takes place either unrestricted or with higher probability inthe direction of a higher habitat quality (restricted dispersal).Connectivity is maintained by corridors and stepping stones ofoptimal habitat quality in our fragmented model landscape containinga mosaic of different habitat suitabilities. The cellular automatonmodel serves as a basis for investigating different combinations ofparameter values and spatial arrangements of cells with high and lowquality.This revised version was published online in May 2005 with corrections to the Cover Date.  相似文献   

7.

Context

Despite calls for landscape connectivity research to account for spatiotemporal dynamics, studies have overwhelmingly evaluated the importance of habitats for connectivity at single or limited moments in time. Remote sensing time series represent a promising resource for studying connectivity within dynamic ecosystems. However, there is a critical need to assess how static and dynamic landscape connectivity modelling approaches compare for prioritising habitats for conservation within dynamic environments.

Objectives

To assess whether static landscape connectivity analyses can identify similar important areas for connectivity as analyses based on dynamic remotely sensed time series data.

Methods

We compared degree and betweenness centrality graph theory metric distributions from four static scenarios against equivalent results from a dynamic 25-year remotely sensed surface-water time series. Metrics were compared at multiple spatial aggregation scales across south-eastern Australia’s 1 million km2 semi-arid Murray–Darling Basin and three sub-regions with varying levels of hydroclimatic variability and development.

Results

We revealed large differences between static and dynamic connectivity metric distributions that varied by static scenario, region, spatial scale and hydroclimatic conditions. Static and dynamic metrics showed particularly low overlap within unregulated and spatiotemporally variable regions, although similarities increased at coarse aggregation scales.

Conclusions

In regions that exhibit high spatiotemporal variability, static connectivity modelling approaches are unlikely to serve as effective surrogates for more data intensive approaches based on dynamic, remotely sensed data. Although this limitation may be moderated by spatially aggregating static connectivity outputs, our results highlight the value of remotely sensed time series for assessing connectivity in dynamic landscapes.
  相似文献   

8.
Two stochastic model formulations, one using pixel-based transitions and the other patch-based, were compared by running simulations where the amount of information on which transitions were based was increased. Both model types adequately represented changes in the proportion of the landscape occupied by different land cover types. However, the pixel-based model underestimated contagion and overestimated the amount of edge. The patch-based model overestimated contagion and underestimated edge. Overall, the estimates more closely approximated the expected and the variances decreased as more information was added to the models. As expected, the model that most closely simulated the spatial pattern of the landscape was a 5-data-layer patch-based model that also included ownership boundaries as an additional layer. The simulation methods described provide a means to integrate socioeconomic and ecological information into a spatially-explicit transition model of landscape change and to simulate change at a scale similar to that occurring in a landscape.  相似文献   

9.
We utilize empirically derived estimates of landscape resistance to assess current landscape connectivity of American marten (Martes americana) in the northern Rocky Mountains, USA, and project how a warming climate may affect landscape resistance and population connectivity in the future. We evaluate the influences of five potential future temperature scenarios involving different degrees of warming. We use resistant kernel dispersal models to assess population connectivity based on full occupancy of suitable habitat in each of these hypothetical future resistance layers. We use the CDPOP model to simulate gene exchange among individual martens in each of these hypothetical future climates. We evaluate: (1) changes in the extent, connectivity and pattern of marten habitat, (2) changes in allelic richness and expected heterozygosity, and (3) changes in the range of significant positive genetic correlation within the northern Idaho marten population under each future scenario. We found that even moderate warming scenarios resulted in very large reductions in population connectivity. Calculation of genetic correlograms for each scenario indicates that climate driven changes in landscape connectivity results in decreasing range of genetic correlation, indicating more isolated and smaller genetic neighborhoods. These, in turn, resulted in substantial loss of allelic richness and reductions in expected heterozygosity. In the U.S. northern Rocky Mountains, climate change may extensively fragment marten populations to a degree that strongly reduces genetic diversity. Our results demonstrate that for species, such as the American marten, whose population connectivity is highly tied to climatic gradients, expected climate change can result in profound changes in the extent, pattern, connectivity and gene flow of populations.  相似文献   

10.
Leaf area of urban vegetation is an important ecological characteristic, influencing urban climate through shading and transpiration cooling and air quality through air pollutant deposition. Accurate estimates of leaf area over large areas are fundamental to model such processes. The aim of this study was to explore if an aerial LiDAR dataset acquired to create a high resolution digital terrain model could be used to map effective leaf area index (Le) and to assess the Le variation in a high latitude urban area, here represented by the city of Gothenburg, Sweden. Le was estimated from LiDAR data using a Beer-Lambert law based approach and compared to ground-based measurements with hemispherical photography and the Plant Canopy Analyser LAI-2200. Even though the LiDAR dataset was not optimized for Le mapping, the comparison with hemispherical photography showed good agreement (r2 = 0.72, RMSE = 0.97) for urban parks and woodlands. Leaf area density of single trees, estimated from LiDAR and LAI-2200, did not show as good agreement (r2 = 0.53, RMSE = 0.49). Le in 10 m resolution covering most of Gothenburg municipality ranged from 0 to 14 (0.3% of the values >7) with an average Le of 3.5 in deciduous forests and 1.2 in urban built-up areas. When Le was averaged over larger scales there was a high correlation with canopy cover (r2 = 0.97 in 1 × 1 km2 scale) implying that at this scale Le is rather homogenous. However, when Le was averaged only over the vegetated parts, differences in Le became clear. Detailed study of Le in seven urban green areas with different amount and type of greenery showed a large variation in Le, ranging from average Le of 0.9 in a residential area to 4.1 in an urban woodland. The use of LiDAR data has the potential to considerably increase information of forest structure in the urban environment.  相似文献   

11.
Green roofs provide many ecosystem services, but little is known about the way they contribute to urban functional connectivity. This paper has the following four objectives: (1) to compare the potential green roofs’ role to connectivity in relation to other urban green spaces, (2) to specify the green roofs contribution’s type, (3) to explore the influence of building height integration method and finally (4) to assess the impact on connectivity of simulated greening new roofs. Using a landscape graph approach, we modeled ecological networks of three species groups with different dispersion capacities in the Paris region (France). Then, we computed several connectivity metrics to assess the potential contribution of green roofs to functional connectivity. At a large scale (metropole scale), our results show that green roofs can slightly improve the global connectivity largely through the connections rather than the addition of habitat area. More than a stepping stone function, green roofs would have a dispersion flux function at a local scale. Furthermore, when the difficulty of crossing movement is exponential to the height of buildings, green roofs over 20 m high are mostly disconnected from the ecological networks. In addition to the green roof’s height, our analysis highlights the very strong role played by buildings’ configuration. This study raises promising directions for the integration of building height into the analysis of urban connectivity. Detailed research and long-term biological data from green roofs and green spaces are needed to confirm our results.  相似文献   

12.

Context

A challenge devising revegetation strategies in fragmented landscapes is conserving for the widest spectrum of biodiversity. Habitat network reconstruction should improve landscape capacity to maintain species populations. However, the location of revegetation often fails to account for species occurrence and dispersal processes operating across spatial scales.

Objectives

Our objective was to integrate metapopulation theory with estimates of landscape capacity and dispersal pathways to highlight connectivity gaps. Maintenance of populations could thereby be facilitated through reconnecting habitat networks across regional and broader scales, with assumed benefit for the dispersal needs of less sensitive species.

Methods

Predicted occupancy and metapopulation capacity were calculated for a generic focal species derived from fragmentation-sensitive woodland birds, mammals and reptiles. A metapopulation connectivity analysis predicted regional dispersal links to identify likely routes through which individuals may move to contribute to the viability of the population. We used the revegetation programmes of the Brigalow–Nandewar Biolinks project, eastern New South Wales, Australia, to demonstrate our approach.

Results

Landscape capacity of the current landscape varied across the region. Low-value links between populations provided greatest opportunities for revegetation and improved landscape capacity. Where regional connectivity did not indicate a pathway between populations, broader scale connectivity provided guidance for revegetation.

Conclusions

The metapopulation-based model, coupled with a habitat dispersal network analysis, provided a platform to inform revegetation locations and better support biodiversity. Our approach has application for directing on-ground action to support viable populations, assess the impact of revegetation schemes or monitor the progress of staged implementations.
  相似文献   

13.
The interaction between physical environment and land ownership in creating spatial heterogeneity was studied in largely forested landscapes of northern Wisconsin, USA. A stratified random approach was used in which 2500-ha plots representing two ownerships (National Forest and private non-industrial) were located within two regional ecosystems (extremely well-drained outwash sands and moderately well-drained moraines). Sixteen plots were established, four within each combination of ownership and ecosystem, and the land cover on the plots was classified from aerial photographs using a modified form of the Anderson (U.S. Geological Survey) land use and land cover classification system.Upland deciduous forests dominated by northern hardwoods were common on the moraines for both ownerships. On the outwash, the National Forest was dominated by pine plantations, upland deciduous forests, and upland regenerating forests (as defined by <50% canopy coverage). In contrast, a more even distribution among the classes of upland forest existed on private land/outwash. A strong interaction between ecosystem and ownership was evident for most comparisons of landscape structure. On the moraine, the National Forest ownership had a finer grain pattern with more complex patch shapes compared to private land. On the outwash, in contrast, the National Forest had a coarser grain pattern with less complex patch shapes compared to private land. When patch size and shape were compared between ecosystems within an ownership, statistically significant differences in landscape structure existed on public land but not on private land. On public land, different management practices on the moraine and outwash, primarily related to timber harvesting and road building, created very different landscape patterns. Landscape structure on different ecosystems on private land tended to be similar because ownership was fragmented in both ecosystems and because ownership boundaries often corresponded to patch boundaries on private land. A complex relationship exits between ownership, and related differences in land use, and the physical environment that ultimately constrains land use. Studies that do not consider these interactions may misinterpret the importance of either variable in explaining variation in landscape patterns.  相似文献   

14.
Landscape Ecology - Amphibian conservation efforts commonly assume populations are tied to waterbodies that collectively function as a metapopulation. This assumption is rarely evaluated, and there...  相似文献   

15.
单向不亲和对于研究种间花粉不亲和及自交不亲和机制有重要意义。以潘那利番茄‘LA0716’渐渗系群体中的单向不亲和株系为主要材料,通过花粉萌发试验,正、反交试验和花粉管在雌蕊中的伸长研究,发现单向不亲和株系的花粉活力正常,其花粉与普通栽培番茄杂交可正常结实,但是其雌蕊不能接受自身或栽培番茄的花粉。然而,将秘鲁番茄‘LA3858’的花粉授予单向不亲和株系,花粉能够正常萌发,花粉管正常伸长和受精,但是杂交种子败育。利用20个分子标记对BC5S3群体的1 000株植株进行遗传分析,结合表型鉴定结果,将单向不亲和基因UI3a精细定位于第3号染色体上分子标记C2_At3g10220和1k-1294之间,物理距离为349 kb,该区域编码37个基因。  相似文献   

16.
This paper presents a method to quantify cultural ecosystem services (ES) and their spatial distribution in the landscape based on ecological structure and social evaluation approaches. The method aims to provide quantified assessments of ES to support land use planning decisions. A GIS-based approach was used to estimate and map the provision of recreation and aesthetic services supplied by ecosystems in a peri-urban area located in the Basque Country, northern Spain. Data of two different public participation processes (frequency of visits to 25 different sites within the study area and aesthetic value of different landscape units) were used to validate the maps. Three maps were obtained as results: a map showing the provision of recreation services, an aesthetic value map and a map of the correspondences and differences between both services. The data obtained in the participation processes were found useful for the validation of the maps. A weak spatial correlation was found between aesthetic quality and recreation provision services, with an overlap of the highest values for both services only in 7.2 % of the area. A consultation with decision-makers indicated that the results were considered useful to identify areas that can be targeted for improvement of landscape and recreation management.  相似文献   

17.
Understanding the impacts of habitat fragmentation on dispersal is an important issue in landscape and conservation ecology. Here I examine the effects of fine- to broad-scale patterns in landscape structure on dispersal success of organisms with differing life-history traits. An individual-based model was used to simulate dispersal of amphibian-like species whose movements were driven by land cover and moisture conditions. To systematically control spatial pattern, a landscape model was created by merging simulated land cover maps with synthetic topographic surfaces. Landscapes varied in topographic roughness and spatial contagion in agriculture and urban land cover. Simulations included three different species types that varied in their maximum potential dispersal distances by 1-, 2-, or 4-fold. Two sets of simulations addressed effects of varying aspects of landscape structure on dispersal success. In the first set of simulations, which incorporated variable distances between breeding patches, dispersal success was lowest for all species types when anthropogenic cover was patchily distributed. In the second set, with interpatch distances held constant as landscape composition varied, dispersal success decreased as anthropogenic cover became spatially contagious. Both sets revealed strong main effects of species characteristics, interpatch distances and landscape composition on dispersal success; furthermore, scale-dependent patterns in land cover and moisture gradients had a stronger effect on longer- than shorter-ranging species types. Taken together, these simulations suggest that heuristic conservation strategies could potentially be developed based on important but limited life history information.  相似文献   

18.
19.
The development of private rural lands can significantly fragment landscapes, with potentially negative consequences on ecosystem services. Models of land-use trends beyond the urban fringe are therefore useful for developing policy to manage these environmental effects. However, land-use change models have been primarily applied in urban environments, and it is unclear whether they can adequately predict exurban growth. This study compared the ability of two urban growth models to project exurban development in north-central Virginia and western Maryland over a 24-year period. Pattern-based urban growth models (such as SLEUTH) are widely used, but largely mimic patterns that emerge from historic conditions rather than allowing landowner decision-making to project change. In contrast, spatially-explicit econometric models (such as the complementary log?Clog hazard assessed in this study) model landowner choices as profit-maximizing behavior subject to market and regulatory constraints. We evaluated the two raster-based models by comparing model predictions to observed exurban conversion at pixel and county scales. The SLEUTH model was more successful at matching the total amount of new growth at the county scale than it was at the pixel scale, suggesting its most appropriate use in exurban areas is as a blunt instrument to forewarn potential coarse-scale losses of natural resources. The econometric model performed significantly better than SLEUTH at both scales, although it was not completely successful in fulfilling its promise of projecting changes that were sensitive to policy. The lack of significance of some policy variables may have resulted from insufficient variation in drivers over our study area or time period, but also suggests that drivers of land use change in exurban environments may differ from those identified for urban areas.  相似文献   

20.
Landscape Ecology - The Sunda clouded leopard is vulnerable to forest loss and fragmentation. Conservation of this species requires spatially explicit evaluations of the effects of landscape...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号