首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
2.
3.
Landscape dynamics result from forestry and farming practices, both of which are expected to have diverse impacts on ecosystem services (ES). In this study, we investigated this general statement for regulating and supporting services via an assessment of ecosystem functions: climate regulation via carbon sequestration in soil and plant biomass, water cycle and soil erosion regulation via water infiltration in soil, and support for primary production via soil chemical quality and water storage. We tested the hypothesis that patterns of land-cover composition and structure significantly alter ES metrics at two different scales. We surveyed 54 farms in two Amazonian regions of Brazil and Colombia and assessed land-cover composition and structure from remote sensing data (farm scale) from 1990 to 2007. Simple and well-established methods were used to characterize soil and vegetation from five points in each farm (plot scale). Most ES metrics were significantly correlated with land-use (plot scale) and land-cover (farm scale) classifications; however, spatial variability in inherent soil properties, alone or in interaction with land-use or land-cover changes, contributed greatly to variability in ES metrics. Carbon stock in above-ground plant biomass and water infiltration rate decreased from forest to pasture land covers, whereas soil chemical quality and plant-available water storage capacity increased. Land-cover classifications based on structure metrics explained significantly less ES metric variation than those based on composition metrics. Land-cover composition dynamics explained 45 % (P < 0.001) of ES metric variance, 15 % by itself and 30 % in interaction with inherent soil properties. This study describes how ES evolve with landscape changes, specifying the contribution of spatial variability in the physical environment and highlighting trade-offs and synergies among ES.  相似文献   

4.
Agricultural intensification has led to dramatic losses in biodiversity over the past several decades. Many studies have shown the effects of intensification on vegetation or soil communities at field or local scales. However, the functional significance of biodiversity may only appear at larger spatial and temporal scales, due to exchanges among local ecosystems throughout a landscape. To examine how patterns of biodiversity loss are reflected at larger spatial scales, plant and soil biodiversity and associated indicators of ecosystem functions were assessed in riparian areas over a 150 km2 agricultural landscape in the Sacramento Valley of California. Publicly-available GIS data were first used to classify and select sites over the range of soils, topography and plant community types. Representative sites from the landscape were sampled for soil physiochemical properties, as well as microbial, nematode, and plant communities. Higher agricultural intensification, based on field and landscape indices, was negatively correlated with richness and diversity of plant and soil taxa, and was related to indicators of ecosystem functions, such as increased soil nitrate and phosphorus loading, decreased riparian health ratings, and lower soil carbon, soil microbial biomass and soil food web structure. Both field- and landscape-scale factors played important roles in the measured losses. The study area was composed of a wide array of soils, vegetation, and land management, indicating that the observed trends transcended site-specific conditions.  相似文献   

5.
Regional variation in nitrogen (N) deposition increases plant productivity and decreases species diversity, but landscape- or local -scale influences on N deposition are less well-known. Using ion-exchange resin, we measured variation of N deposition and soil N availability within Elk Island National Park in the ecotone between grassland and boreal forest in western Canada. The park receives regionally high amounts of atmospheric N deposition (22 kg ha−1 yr−1). N deposition was on average higher ton clay-rich luvisols than on brunisols, and areas burned 1–15 years previously received more atmospheric N than unburned sites. We suggest that the effects of previous fires and soil type on deposition rate act through differences in canopy structure. The magnitude of these effects varied with the presence of ungulate grazers (bison, moose, elk) and vegetation type (forest, shrubland, grassland). Available soil N (ammonium and nitrate) was higher in burned than unburned sites in the absence of grazing, suggesting an effect of deposition. On grazed sites, differences between fire treatments were small, presumably because the removal of biomass by grazers reduced the effect of fire. Aspen invades native grassland in this region, and our results suggest that fire without grazing might reinforce the expansion of forest into grassland facilitated by N deposition.  相似文献   

6.
In semiarid landscapes, the ratio of herbaceous to woody plant biomass is a major determinant of ecosystem properties. This ratio depends to a large extent on the amount and spatial distribution of soil moisture that is available to plants, and these variables, in turn, are determined primarily by climate and land use. Current conceptual models for determining the ratio of herbaceous to woody plant biomass in semiarid plant communities are based either on differences in soil moisture with depth (vertical heterogeneity) from one site to another (Walter's two-layer model) or on differences in soil moisture between canopy and intercanopy patches at the same site (horizontal heterogeneity) that result from disturbances associated with land use (Schlesinger et al.'s model of desertification). We developed a model that unifies these two perspectives by relaxing two assumptions of Walter's two-layer model. First, our model recognizes that soil moisture varies horizontally between canopy and intercanopy patches, not only due to land-use disturbance, a general assumption of the Schlesinger et al. model, but also due to the physical nature of the canopy itself. Second, while retaining the general assumption of Walter that woody plants obtain moisture from deeper soil layers than do herbaceous plants, our model recognizes the existence of two types of woody plants: those that extract a substantial proportion of their moisture from deeper layers and those that extract mainly from shallower layers. By modifying the two-layer hypothesis to include four soil compartments and distinguishing between shallow- and deeper-rooted woody species, our model integrates three key concepts in semiarid ecology: (1) the proportion of woody cover increases as moisture in the deeper soil layers increases (Walter's two-layer hypothesis for coexistence of herbaceous and woody plants); (2) land use practices that cause a reduction in herbaceous vegetation and compaction of intercanopy soils lead to a long-term increase in the proportion of woody plants (Schlesinger et al.'s concept, or more generally, that at a given site multiple variations in the proportions of herbaceous and woody plant biomass are possible); and (3) changes in the ratios of herbaceous to woody plant biomass exhibit complex behavior (changes can happen quickly and are not directly reversible without intensive management). This integration of concepts results because rather than assuming a simple, one-way dependence of plant functional types on soil moisture heterogeneity, our model assumes an interdependence between the two: soil moisture heterogeneity constrains the composition of the plant community, which in turn modifies soil moisture heterogeneity. The four-compartment model that we propose enables, for the first time, an integrated picture of both dimensions of soil moisture heterogeneity – horizontal and vertical – and of the interdependence between soil moisture heterogeneity and the proportions of the plant functional types that make up a given plant community. This unified conceptual model can be applied to provide insight into the individual and the combined effects of climate and land use on semiarid plant communities within the grassland/forest continuum, which vary in the proportions of canopy and intercanopy patches.  相似文献   

7.
Regional scale analysis of denitrification in north temperate forest soils   总被引:1,自引:0,他引:1  
Large scale analyses of biogeochemical processes are necessary for understanding anthropogenic effects on global climate and environmental quality. Regional scale estimates of denitrification from forest soils in southern lower Michigan USA were produced by stratifying the region into landscape experimental units using soil texture and natural drainage classes, and extrapolating data to larger areas using a geographic information system (GIS). Previous landscape-scale research established relationships between soil texture and drainage and denitrification and quantified annual denitrification N loss in nine soil texture/drainage groups. All forest soils within the region (64 series) were assigned to one of these nine groups based on their texture and drainage characteristics and were assigned an annual denitrification N loss value. A regional estimate of denitrification was produced by multiplying the areal extent of each of the nine soil groups by their annual denitrification N loss value. Loam-textured soils underlie 47% of the regional forest and accounted for 73% of the forest denitrification. Sandy soils were found under 44% of the regional forest but produced only 5% of the regional denitrification. Clay loam soils underlie 9% of the regional forest and produced 22% of the denitrification. Annual denitrification N loss for the region was estimated as 1.4×107 kg N/yr. We used denitrification enzyme activity (DEA) as a proxy for annual denitrification N loss to determine if the relationship between denitrification and soil texture and natural drainage that we observed at the landscape scale held up at the regional scale. DEA was measured in 22 soils across the region and was strongly related to soil texture and natural drainage (r2=0.61), suggesting that extrapolation of data from the landscape to the regional scale was justified.  相似文献   

8.
The use of large grid cell databases (1/2° to 5°) to drive nonlinear ecosystem process models may create an incompatibility of scales which can often lead to biased outputs. Global simulations of net primary production (NPP) often assume that bias due to averaging of sub-grid variations in climate, topography, soils, and vegetation is minimal, yet the magnitude and behavior of this bias on estimates of NPP are largely unknown. The effects of averaging sub-grid land surface variations on NPP estimates were evaluated by simulating a 1° × 1° land surface area as represented by four successive levels of landscape complexity, ranging from a single computation to 8,456 computations of NPP for the study area. Averaging sub-grid cell landscape variations typical of the northern US Rocky Mountains can result in overestimates of NPP as large as 30 %. Aggregating climate within the 1° cell contributed up to 50 % of the bias to NPP estimates, while aggregating topography, soils, and vegetation was of secondary importance. Careful partitioning of complex landscapes can efficiently reduce the magnitude of this overestimation.  相似文献   

9.
Forest canopy phenology is an important constraint on annual water and carbon budgets, and responds to regional interannual climate variation. In steep terrain, there are complex spatial variations in phenology due to topographic influences on microclimate, community composition, and available soil moisture. In this study, we investigate spatial patterns of phenology in humid temperate forest as a function of topography. Moderate-resolution imaging spectro-radiometer (MODIS) vegetation indices are used to derive local patterns of topography-mediated vegetation phenology using a simple post-processing analysis and a non-linear model fitting. Elevation has the most explanatory power for all phenological variables with a strong linear relationship with mid-day of greenup period, following temperatures lapse rates. However, all other phenological variables show quadratic associations with elevation, reflecting an interaction between topoclimatic patterns of temperature and water availability. Radiation proxies also have significant explanatory power for all phenological variables. Though hillslope position cannot be adequately resolved at the MODIS spatial resolution (250 m) to discern impacts of local drainage conditions, extended periods of greenup/senescence are found to occur in wet years. These findings are strongly supported by previous field measurements at different topographic positions within the study area. The capability of detecting topography-mediated local phenology offers the potential to detect vegetation responses to climate change in mountainous terrain. In addition, the large, local variability of meteorological and edaphic conditions in steep terrain provides a unique opportunity to develop an understanding of canopy response to the interaction of climate and landscape conditions.  相似文献   

10.
Pärtel  Meelis  Mändla  Riina  Zobel  Martin 《Landscape Ecology》1999,14(2):187-196
The landscape history of the largest calcareous seminatural alvar site (ca. 700 ha) in Estonia, is described with the help of a historical map from 1705 and aerial photographs from 1951, and recent vegetation mapping from 1994–1996. The seminatural, species rich alvar grasslands originate and are maintained by grazing of domestic animals. Three hundred years ago the area was mainly open grassland with sparse shrubs and some fields. Forty years ago the vegetation pattern was similar, with some smaller forests and forest clear-cut areas present. Now, since grazing has ceased for ca. 40 years, only 30% of the area remains as open grassland and 70% as forest. Identification of clusters of field layer vegetation using the program TABORD resulted in 8 clusters, which agreed with the empirically determined community types. The field layer within the young pine forest (up to 20 year old pines) is similar to the open alvar grassland. In older forests, the field layer has already changed. There were no phytosociological differences found between ancient grasslands and grasslands on former arable fields or forest clear-cut areas. Decrease in species richness, compared to open grassland, was most drastic in forests of age 20–40 years where the canopy was most closed. Forests have spread more extensively in areas with deeper soil. The continuation of traditional management (grazing and tree cutting) in alvar grasslands is urgently needed in order to keep seminatural alvar grasslands open. The possibility to restore open grasslands remains as long as there is a pool of grassland species available, especially in younger forests.  相似文献   

11.
A common form of land degradation in desert grasslands is associated with the relatively rapid encroachment of woody plants, a process that has important implications on ecosystem structure and function, as well as on the soil hydrological and biogeochemical properties. Until recently this grassland to shrubland transition was thought to be highly irreversible. However recent studies have shown that at the early stages of shrub encroachment in desert grasslands, there exists a very dynamic shrub–grass transition state with enough grass connectivity between the shrub islands to allow for fire spread. In this state fire could play a major role in determining the dominance of grasses and their recovery from the effects of overgrazing. Using a spatially explicit cellular automata model, we show how the patch-scale feedbacks between fires and soil erosion affects resource redistribution and vegetation dynamics in a mixed grass–shrub plant community at landscape to regional scales. The results of this study indicate that at its early stages, the grassland-to-shrubland transition can be reversible and that the feedbacks between fire and soil erosion processes may play a major role in determining the reversibility of the system.  相似文献   

12.
Understanding which environmental conditions are critical for species survival is a critical, ongoing question in ecology. These conditions can range from climate, at the broadest scale, through to elevation and other local landscape conditions, to fine scale landscape patterns of land cover and use. Remote sensing is an ideal technology to monitor and assess changes in these environmental conditions at a variety of spatial and temporal scales, with many studies focusing on the physiological state of vegetation derived from time series of satellite measurements. As vegetation occurs within specific climatic zones, over certain soil, terrain, and land cover types, it can be difficult to decipher the influence of the underlying role of climate, topography, soil, and land cover on the observed vegetation signal. In this article, we specifically addressed this problem by asking the question: what is the relative impact and importance of these different scales of environmental drivers on the temporal and spatial patterns observed on a habitat index derived from remotely sensed data? To find the solution, we utilized a SPOT VEGETATION-normalized difference vegetation index time series of Europe to create a remote-sensing-derived habitat index, which incorporates aspects of productivity, seasonality, and cover. We then compared the observed temporal and spatial variations in the index to a pan-Europe terrestrial classification system, which explicitly incorporates variations in climate, terrain, soil parent material, land cover, and use. Results indicated that the most accurate level of discrimination from the habitat index was at the broadest level of the hierarchy, climate, while the poorest degree of discrimination was associated with elevation. In terms of similarity on the index across time and space, we found that arable and forest cover classes were more similar across elevation and parent materials than across other land cover types within them. Analyzing the remote-sensing index, at multiple scales, provides significant insights into the drivers of satellite-derived greenness indices, as well as highlights the benefit and cautions associated with linking satellite-derived indirect indicators to species distribution modeling and biodiversity.  相似文献   

13.
Through its control on soil moisture patterns, topography’s role in influencing forest composition is widely recognized. This study addresses shortcomings in traditional moisture indices by employing a water balance approach, incorporating topographic and edaphic variability to assess fine-scale moisture demand and moisture availability. Using GIS and readily available data, evapotranspiration and moisture stress are modeled at a fine spatial scale at two study areas in the US (Ohio and North Carolina). Model results are compared to field-based soil moisture measurements throughout the growing season. A strong topographic pattern of moisture utilization and demand is uncovered, with highest rates of evapotranspiration found on south-facing slopes, followed by ridges, valleys, and north-facing slopes. South-facing slopes and ridges also experience highest moisture deficit. Overall higher rates of evapotranspiration are observed at the Ohio site, though deficit is slightly lower. Based on a comparison between modeled and measured soil moisture, utilization and recharge trends were captured well in terms of both magnitude and timing. Topographically controlled drainage patterns appear to have little influence on soil moisture patterns during the growing season. In addition to its ability to accurately capture patterns of soil moisture in both high-relief and moderate-relief environments, a water balance approach offers numerous advantages over traditional moisture indices. It assesses moisture availability and utilization in absolute terms, using readily available data and widely used GIS software. Results are directly comparable across sites, and although output is created at a fine-scale, the method is applicable for larger geographic areas. Since it incorporates topography, available water capacity, and climatic variables, the model is able to directly assess the potential response of vegetation to climate change.  相似文献   

14.
Studies of the endangered Kirtland's warbler in relation to landscape ecosystems were conducted from 1986–1988 on a large wildfire-burn surrounding Mack Lake in southeastern Oscoda County, Michigan. A landscape ecosystem approach was used to distinguish low- and high-elevation segments of the landscape, as well as 11 local ecosystem types. The ecosystems were distinguished by physiography, microclimate, soil, and vegetation. The early occurrence of the warblers was strongly related to landscape structure, i.e., to the broad low- and high-elevation areas and the local ecosystem types within them. Territories of male warblers were observed in 5 of the 11 ecosystems. The five ecosystem types where warblers were observed were characterized by (1) a physiography of level or rolling terrain; (2) soil series of Grayling, Graycalm, Montcalm, or Rubicon; (3) uplands with relatively warm temperature during the breeding season; (4) vegetation dominated by low sweet blueberry, bearberry, wintergreen, northern pin oak, blue stem grasses, and hair cap moss; and (5) canopy of relatively tall, dense, and patchy jack pine and oak. Landscape structure appears to be an important factor affecting the occurrence of the warbler in its summer habitat in northern Lower Michigan.  相似文献   

15.
The U.S. Public Land Survey (PLS) notebooks are one of the best records of the pre-European settlement landscape and are widely used to recreate presettlement vegetation maps. The purpose of this study was to evaluate the relative ability of several interpolation techniques to map this vegetation, as sampled by the PLS surveyors, at the landscape level. Field data from Sylvania Wilderness Area, MI (U.S.A.), sampled at the same scale as the PLS data, were used for this test. Sylvania is comprised of a forested landscape similar to that present during presettlement times. Data were analyzed using two Arc/Info interpolation processes and indicator kriging. The resulting maps were compared to a `correct' map of Sylvania, which was classified from aerial photographs. We found that while the interpolation methods used accurately estimated the relative forest composition of the landscape and the order of dominance of different vegetation types, they were unable to accurately estimate the actual area occupied by each vegetation type. Nor were any of the methods we tested able to recreate the landscape patterns found in the natural landscape. The most likely cause for these inabilities is the scale at which the field data (and hence the PLS data) were recorded. Therefore, these interpolation methods should not be used with the PLS data to recreate pre-European settlement vegetation at small scales (e.g., less than several townships or areas <104 ha). Recommendations are given for ways to increase the accuracy of these vegetation maps.  相似文献   

16.
土壤微生物群落结构是影响生态系统养分循环的重要因素之一。该研究选取北京市松山国家级自然保护区内胡桃楸阔叶林、蒙古栎阔叶林、油松针叶林、针阔叶混交林、灌丛和草甸6种典型植被类型下的土壤,基于野外调查、采样与实验室分析对不同植被类型下土壤微生物群落结构进行了研究。结果表明:胡桃楸阔叶林土壤细菌和真菌特有的OTUs和Alpha多样性均最高,细菌和真菌OTUs最低值则分别出现在针阔叶混交林和灌丛土壤,Alpha多样性最低值出现在蒙古栎阔叶林;土壤细菌群落主要为变形菌门(Proteobacteria)、放线菌门(Actinobacteria)和酸杆菌门(Acidobacteria),真菌群落以担子菌门(Basidiomycota)和子囊菌门(Ascomycota)为主。土壤pH、含水量和土壤温度会影响土壤细菌和真菌的丰富度与多样性。该研究为松山国家级自然保护区内土壤微生物资源保护及其生态功能的研究提供参考依据。  相似文献   

17.

Context

Landscape modification is an important driver of biodiversity declines, yet we lack insight into how ongoing landscape change and legacies of historical land use together shape biodiversity.

Objectives

We examined how a history of agricultural land use and current forest fragmentation influence the abundance of red-backed salamanders (Plethodon cinereus). We hypothesized that historical agriculture and fragmentation cause changes in habitat quality and landscape structure that limit abundance.

Methods

We measured salamander abundance at 95 forested sites in New York, USA, and we determined whether sites were agricultural fields within the last five decades. We used a structural equation model to estimate relationships between historical agriculture and salamander abundance mediated by changes in forest vegetation, microclimate, and landscape structure.

Results

Historical agriculture affected salamander abundance by altering forest vegetation at a local scale and forest cover at a landscape scale. Abundance was lowest at post-agricultural sites with low woody vegetation, leaf litter depth, and canopy cover. Post-agricultural sites had limited forest cover in the surrounding landscape historically, and salamander abundance was positively related to historical forest cover, suggesting that connectivity to source populations affects colonization of regenerating forests. Abundance was also negatively related to current forest fragmentation.

Conclusions

Historical land use can have legacy effects on animal abundance on par with effects of ongoing landscape change. We showed that associations between animal abundance and historical land use can be driven by altered site conditions and surrounding habitat area, indicating that restoration efforts should consider local site conditions and landscape context.
  相似文献   

18.
The purpose of our study was to compare the number, proportion, and species composition of introduced plant species in forest patches situated within predominantly forested, agricultural, and urban landscapes. A previous study suggested that agricultural landscape context does not have a large effect on the proportion of introduced species in forest patches. Therefore, our main goal was to test the hypothesis that forest patches in an urban landscape context contain larger numbers and proportions of non-native plant species. We surveyed the vegetation in 44 small remnant forest fragments (3–7.5 ha) in the Ottawa region; 15 were situated within forested landscapes, 18 within agricultural landscapes, and 11 within urban landscapes. Forest fragments in urban landscapes had about 40% more introduced plant species and a 50% greater proportion of introduced plant species than fragments found in the other two types of landscape. There was no significant difference in the number or proportion of introduced species in forest fragments within forested vs. agricultural landscapes. However, the species composition of introduced species differed among the forest patches in the three landscape types. Our results support the hypothesis that urban and suburban areas are important foci for spread of introduced plant species.  相似文献   

19.
We examined how the measurement of stable carbon and nitrogen isotopes in soils, vegetation and invertebrates can contribute to understanding landscape processes in mulga Acacia aneura ecosystems characterised by alternating wooded groves and intergroves. Our analyses showed that greater leakiness of water from intergroves at the landscape scale tended to promote more conserving physiology at the plant scale. Thus isolated mulga trees in intergroves probably have higher water use efficiency than those in groves. Both trees and grasses in the intergroves have a greater reliance on recycled nitrogen than plants in the groves for which recently fixed N was a substantial source. Grasses in the intergroves had higher N concentrations than those in the groves despite the soil having lower N concentrations. A lack of variation in the isotopic signature of surface soil N suggested that the lower N concentrations in soils of intergroves than groves is due to lower rates of input and not shorter residence times. Stable isotopic signatures of invertebrates showed a diversity of feeding strategies amongst termite species and indicated symbiotic N fixation in two species. There was no relationship between the dependence on N fixation and the habitat preference or diet of termites. Our results suggest that with cautious interpretation, stable isotope signatures could contribute to understanding other ecosystems where patch-interpatch functioning is an important landscape process.  相似文献   

20.
Roads are conspicuous components of landscapes and play a substantial role in defining landscape pattern. Previous studies have demonstrated the link between roads and their effects on ecological processes and landscape patterns. Less understood is the placement of roads, and hence the patterns imposed by roads on the landscape in relation to factors describing land use, land cover, and environmental heterogeneity. Our hypothesis was that variation in road density and landscape patterns created by roads can be explained in relation to variables describing land use, land cover, and environmental factors. We examined both road density and landscape patterns created by roads in relation to suitability of soil substrate as road subgrade, land cover, lake area and perimeter, land ownership, and housing density across 19 predominantly forested counties in northern Wisconsin, USA. Generalized least squares regression models showed that housing density and soils with excellent suitability for road subgrade were positively related to road density while wetland area was negatively related. These relationships were consistent across models for different road types. Landscape indices showed greater fragmentation by roads in areas with higher housing density, and agriculture, grassland, and coniferous forest area, but less fragmentation with higher deciduous forest, mixed forest, wetland, and lake area. These relationships provide insight into the complex relationships among social, institutional, and environmental factors that influence where roads occur on the landscape. Our results are important for understanding the impacts of roads on ecosystems and planning for their protection in the face of continued development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号