首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Previous studies showed that inoculation of soybean [ Glycine max (L.) Merr] with Bradyrhizobium japonicum preactivated with plant-to-bacteria signal molecules increased nodule number, particularly at low root zone temperatures, thereby improving plant seasonal nitrogen fixation and final grain and protein yield under cool spring conditions. Two products carrying this technology, SoyaSignalTM and Affix+TM, were designed and tested at 127 locations in Canada and the United States from 1994 to 1999. A summary of the field test results shows that preincubation of B. japonicum with genistein and daidzein, as well as directly increasing the genistein and daidzein concentration in the soybean root rhizosphere, gave an average final grain yield increase of 7 %. The success of SoyaSignal technology was temperature dependent. The plants responded better to the SoyaSignal products when grown under cool soil conditions. Application of SoyaSignal to early planted soybean (before the soil temperature rose above 17.5 °C) increased yields by an average of 10 %. The responses declined with delayed planting dates. Soybean genotypes with high yield potential had greater yield increases than those with low yield potential. As the ratio of return to cost for SoyaSignal technology was 5.3 : 1 over the 127 site-years, SoyaSignal technology can be used as a tool to improve soybean yield in production areas with cool springs.  相似文献   

2.
Daidzein and genistein are plant-to-bacterium signal compounds involved in soybean nodule formation. They can induce nod gens expression in Bradyrhizobium japonicum. The objective of this study was to determine whether the production of signal molecules was affected by low root zone temperatures (RZTs) in a manner that varied among soybean cultivars. Daidzein and genistein concentrations of soybean seedling roots were measured at three RZTs by high performance liquid chromatography (HPLC). The results indicated that daidzein content and concentration per plant were higher at 15 and 17.5°C than those at 25°C. AC Bravor had higher daidzein contents and concentrations than did Maple Glen and KG20. At 17.5°C. KG20 had higher genistein content and concentration levels than Maple Glen, and no difference existed for the two cultivars at 15 and 25 C. Daidzein contents and concentrations of Maple Glen and AC Bravor increased with harvest time. However, for cultivar KG20, the content and concentration decreased at 19 days after inoculation. Genistein contents and concentrations of the three cultivars increased under each RZT up to the last harvest. There was an interaction between soybean cultivar and RZT for root genistein and daidzein contents and concentrations. The content and concentration of daidzein in soybean seedling roots were much higher (more than five times) than those of genistein.  相似文献   

3.
The addition of genistein, a plant-to-bacteria signal molecule, to Bradyrhizobium japonicum cells prior to use as inocula has been shown to increase nodule number and promote soybean N2 fixation at low root zone temperatures. Previous greenhouse and field experiments involving only two cultivars have indicated that soybean [ Glycine max (L.) Merr.] cultivars can vary in their response to genistein application. The objective of this study was to evaluate a range of soybean cultivars for response to genistein application under short-season cool-spring Canadian conditions. A 2-year field study was conducted in 1997 and 1998 with a range of soybean cultivars recommended for Quebec. The 11 cultivars tested represented a range of yield potentials and maturity groups. They were inoculated with genistein-preincubated B. japonicum inocula or regular inocula, applied into the furrow at the time of planting. The results of these experiments indicated that neither maturity nor yield was correlated with increases in nodulation, biomass, and plant total nitrogen content resulting from genistein treatment and that all maturity groups responded to genistein application in essentially the same way. Thus, response of soybean cultivars to genistein addition is regulated by genotype characteristics other than maturity or yield level.  相似文献   

4.
为了阐明黑腐病对苗期花椰菜的根系形态和生理的影响,对建立花椰菜抗黑腐病根系育种新途径提供依据,利用黑腐病菌感染花椰菜抗病品种雪峰的叶片后,研究植株根系发生的一系列形态和生理变化。结果表明,接种7天后的植株根长、根干重、地上部干重、根系活力比接种后2天的显著增加。接种处理的植株根长、根干重和地上部干重明显比未接种对照(CK)低,但是接种幼苗的根系活力比未接种对照的根系活力高。接种3天后,接种处理的根系可溶性蛋白质含量一直显著高于未接种对照;接种后0~4天,接种处理的根系超氧化物歧化酶(SOD)活性明显低于未接种对照,但到接种后5~7天,接种处理的根系SOD活性又高于未接种对照;根系多酚氧化酶(PPO)活性和脱落酸(ABA)含量在植株接种后都显著高于未接种对照。但是,黑腐病病原菌没有提高根系过氧化物酶(POD)活性。以上结果说明,黑腐病菌引起了花椰菜幼苗根部一系列形态变化,并通过诱导植株根系中防御酶活性和调控内源激素等抵御病原菌的进一步侵染。  相似文献   

5.
Co-inoculation of plant-growth-promoting rhizobacteria (PGPR) with B. japonicum has been shown to increase soybean [ Glycine max (L.) Merr.] nodulation, nitrogen fixation, growth and physiological activity at suboptimal root zone temperatures (RZTs). We studied the survival and growth of seven PGPR inoculated on soybean in a sterile rooting medium at three RZTs (25, 17.5 and 15 °C) on a growth bench. The survival of the two most promising strains ( Serratia liquefaciens 2-68 and S. proteamaculans 1-102) was studied under field conditions in methyl bromide fumigated and non-fumigated soils. In general, population densities varied with temperature. PGPR strains generally colonized the rhizosphere and root surface effeciently at higher RZTs; however, S. proteamaculans 1-102 colonized best at a low RZT (15 °C). The population of PGPR applied to the rhizosphere either with or without addition of B. japonicum increased over time in fumigated soil as compared to non-fumigated soil, indicating that the PGPR survive and proliferate better under fumigated conditions. S. liquefaciens 2-68 had higher population densities both on the root and in the rhizosphere, demonstrating, their ability to colonize under short-season conditions. The possible interactions between the two cultivars (Maple Glen and AC Bravor) and the PGPR were generally not significant, despite observations that growth and yield of AC Bravor respond more strongly to PGPR inoculation.  相似文献   

6.
In a soil lacking indigenous Bradyrhizobium japonicum , soybean ( Glycine max [L.] Merr.) nodulation depends upon the number of rhizobia applied with the inoculum. This field study reports the effect of different rates of applied rhizobia on nodulation, dry matter and nitrogen content in soybean in a Mediterranean soil lacking B. japonicum.
Treatments included six rates of B. japonicum , ranging from 2.5 × 104 to 6.075 × 106 rhizobia cells per seed applied to the seed as peat inoculant at planting, 100 kg N ha−1 and an uninoculated control. The experiment was conducted in an Entisol soil. Regression analysis showed linear relationship between the rate of applied rhizobia and the number of the nodules per plant or the dry weight per nodule. In early stages of development (32 and 68 days after planting) plant dry weight was not affected by inoculation rate. At harvest a rate of 7.5 × 104 rhizobia cells per seed was necessary for maximum total and stover dry weight. A higher rate, 6.75 × 105 rhizobia cells per seed, was required to obtain maximum grain yield, total N content in plant tops and grain N content. Grain percentage N was increased up to 2.025 × 106 rhizobia cells per seed. Nitrogen application increased grain yield, total N content and grain N content at the same level as the lower inoculation rate.  相似文献   

7.
为了阐明紫色土上接种丛枝菌根真菌(arbuscular mycorrhizal fungus,AMF)和不同间作方式对提高间作玉米(Zea mays L.)、大豆(Glycine max L.)的氮素利用和减少土壤氮残留的贡献。本试验在设施盆栽条件下,采用根系分隔模拟装置研究玉米/大豆间作体系中根系不分隔、尼龙网分隔、塑料膜分隔3种方式和不同AMF处理[不接种AMF(NM)、接种Glomus mosseae(GM)]对玉米、大豆植株生长、氮素累积与利用的影响。研究结果表明:接种GM不同程度提高了间作玉米和大豆根系菌根侵染率、株高、植株生物量及氮含量,而显著降低了玉米和大豆种植土壤的碱解氮含量。其中,GM-根系不分隔处理玉米、大豆的菌根侵染率最高。无论是否接种AMF,大豆生物量和植株氮含量均以根系分隔处理显著高于不分隔处理,而玉米生物量和植株氮含量却刚好相反。此外,GM处理条件下,玉米、大豆根际土壤碱解氮含量均以尼龙网分隔和不分隔处理显著低于塑料膜分隔处理。在所有复合处理中,以GM-根系不分隔处理对玉米生长及氮素累积的促进作用最好;GM-尼龙网分隔处理对大豆生长及氮素累积的促进效果最佳,并更能显著降低玉米、大豆根际土壤的碱解氮残留,可望减轻土壤氮流失而降低氮素流失对地表水体的污染风险。  相似文献   

8.
Plant growth and development are influenced by future elevated atmospheric CO2 concentration and increased salinity stress. AM (arbuscular mycorrhiza) symbiosis has been shown to improve plant growth and resistance to environmental stresses. The aim of this study was to investigate the potential role of AM fungus in alleviating salinity stress in wheat (Triticum aestivum L.) plants grown under ambient and elevated CO2 concentrations. Wheat plants inoculated or not inoculated with AM fungus were grown in two glasshouses with different CO2 concentrations (400 and 700 μmol l?1) and salinity levels (0, 9.5 and 19.0 dS m?1). Results showed that salinity stress decreased and elevated CO2 increased AM colonization. AM inoculation increased plant dry weight under elevated CO2 and salinity stress. Stomatal conductance, density, size and aperture of AM plants were greater than non‐AM plants. AM fungi enhanced NUE by altering plant C assimilation and N uptake. AM plants had higher soluble sugar concentration and [K+]: [Na+] ratio compared with non‐AM plants. It is concluded that AM symbiosis improves wheat plant growth at vegetative stages through increasing stomatal conductance, enhancing NUE, accumulating soluble sugar, and improving ion homeostasis in wheat plants grown at elevated CO2 and salinity stress.  相似文献   

9.
Disease symptoms and total soluble phenolics content have been analysed in four sunflower (Helianthus annuus L.)lines with different resistance levels(from highly susceptible to resistant) to head rot caused by Sclerotinia sclerotiorum (Lib.) de Bary. At the beginning of the flowering stage, capitula were inoculated by spraying with a water suspension of ascospores, and disease symptoms were evaluated from day 6 to day14 after inoculation. The most susceptible genotypes showed all their ovaries to be necrosed and abundant lesions in corollas, bracts and receptacle. In the resistant line, the ovary and corolla were only partially necrosed with no symptoms in the bracts or the receptacle. Total soluble phenolics were extracted and quantified from different parts of the capitulum in both inoculated and non-inoculated plants. The amount of phenolic compounds depended on the sunflower line, the time after inoculation, and the tissue. Higher constitutive and induced phenolic content as well as phenylalanine ammonia-lyase activity were present in the most resistant line, these differences correlated with the absence/presence of disease symptoms. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

10.
Drought can drastically reduce cowpea [Vigna unguiculata (L.) Walp.] biomass and grain yield. The application of plant growth‐promoting rhizobacteria and arbuscular mycorrhizal fungi can confer resistance to plants and reduce the effects of environmental stresses, including drought. Seed coating is a technique which allows the application of minor amounts of microbial inocula. Main effects of the factors inoculation and water regime showed that: severe or moderate water deficit had a general negative impact on cowpea plants; total biomass production, seed weight and seed yield were enhanced in plants inoculated with P. putida; inoculation of R. irregularis significantly increased nitrogen (N) and phosphorus (P) shoot concentrations; and R. irregularis enhanced both chlorophyll b and carotenoids contents, particularly under severe water deficit. Plants inoculated with P. putida + R. irregularis had an increase in shoot P concentration of 85% and 57%, under moderate and severe water deficit, respectively. Singly inoculated P. putida improved potassium shoot concentration by 25% under moderate water deficit. Overall, in terms of agricultural productivity the inoculation of P. putida under water deficit might be promising. Seed coating has the potential to be used as a large‐scale delivery system of beneficial microbial inoculants.  相似文献   

11.
Two experiments of soil N-fertilization and Rhizobium inoculation were conducted in 1981 and 1982 at Giza, Egypt. Soybean was sprayed with a commercial micronutrients mixture, and with urea.
In the first experiment, soil N-fertilization 0, 142.8 and 214.2 kg N/hectare were applied to uninoculated plants, whereas, in the second one, local inoculum was used alone or along with addition of a starter dose of N (47.6 kg N/hectare).
Urea applications were at pod filling period (R4, R5 and R6 stages), whereas, micronutrients mixture was applied at 25 days from planting.
Plant dry weight, leaf area/plant, plant height, pod and seed number/plant, seed weight/plant, seed yield and crude seed protein content increased significantly with nitrogen application to uninoculated soybean plants; whereas the starter dose of N had no significant effect on any of these traits under the inoculated soybean plants.
Foliar application of micronutrients caused significant increases in plant DW, LA, pod and seed number/plant, seed index and seed yield of fertilized and inoculated plants.
Foliar application of urea, to inoculated and uninoculated plants, caused significant increments in plant dry weight, 1A, seed protein content and particular seed index and seed yield.  相似文献   

12.
The effects of deep placement (supplied at 20 cm depth from soil surface below plants) of 100 kg N ha?1 of N fertilizers, urea, coated urea or calcium cyanamide (lime nitrogen) on the growth, nitrogen fixation activity, nitrogen absorption rate and seed yield of soybean (Glycine max L. Merr.) plants were examined by comparing them with control plots without deep placement of N fertilizer in sandy dune field. In addition, three different inoculation methods of bradyrhizobia were used for each N treatment: (1) transplantation of 10‐day‐old seedling in a paper pot with vermiculite inoculated with Bradyrhizobium japonicum USDA110, (2) direct transplantation of inoculated 10‐day‐old seedlings, and (3) transplantation of 10‐day‐old seedlings in a non‐inoculated paper pot. The deep placement of N fertilizers, especially calcium cyanamide and coated urea, markedly increased the growth and total N accumulation in shoot, roots and nodules, which resulted in an increase in seed yield. Daily N2 fixation activity and N absorption rate were estimated by relative abundance of ureide‐N analysed from the concentration of N constituents (ureide‐N, amide‐N and nitrate‐N) in root bleeding xylem sap and increase in total N accumulation in whole plants at R1, R3, R5 and R7 stages. The total amount of N2 fixation was about 50 % higher in the plants with calcium cyanamide and coated urea deep placements compared with control plants. Deep placement of slow release fertilizers kept nodule dry weight higher in the maturing stage of seed, possibly through abundant supply of photoassimilate to the nodules by supporting leaf area and activity until late reproductive stages. The results indicate that deep placement of calcium cyanamide or coated urea enhances N2 fixation activity, which ultimately increases the seed yield. The promotive effect was observed with the seedlings transplanted in paper pot with inoculum of bradyrhizobia within any treatments, although nodulation by indigenous rhizobia was observed in the plants transplanted with non‐inoculated paper pot.  相似文献   

13.
Biochar amendment to soil has the potential to improve soil quality and increase crop yield. Arbuscular mycorrhizal fungi (AMF ) provide beneficial plant services of stress alleviation with respect to phosphorus (P) deficiency and drought. The aim of this study was to explore interactive effects of biochar with AMF , P fertilization levels and irrigation strategies on growth of potato plants. Potato plants were amended with wood biochar of 0.74 % w/w (B+) or not (B?), fertilized with phosphorus of 0.11 mg P g?1 soil (P1) or not (P0), irrigated with full irrigation (FI ) or partial root‐zone drying irrigation (PRD ) and inoculated with AMF of Rhizophagus irregularis (M+) or not (M?) in split‐root pots in a sandy loam soil. Plants were analysed for growth performance, P and nitrogen (N) uptake and water use efficiency (WUE ). Biochar adsorption of mineral P and N in aqueous solution was tested in subexperiment. B+ significantly decreased plant biomass production except under P0 FI M?, where B+ increased plant biomass. This growth stimulation was counteracted by treatments of P1, PRD and M+. B+ significantly decreased plant leaf area, P and N uptake and WUE , but had no significant effect on root biomass and soil pH. The positive plant growth response to AMF was substantially reduced by biochar amendment. The wood biochar had no adsorption for mineral N, and it had 0.96 % adsorption for mineral P in aqueous solution. The results suggested that the negative effect of wood biochar application on plant growth may due to the reduced plant uptake of P and N and the possibility of phytotoxic effects of wood biochar on potato growth. It was concluded that the wood biochar used in current study had negative impact on plant growth and P/N uptake and it is not recommendable to apply this wood biochar to mycorrhizal agro‐system, to soil fertilized with high rate of P or to soil suffering water deficiency.  相似文献   

14.
The effect of salinity on the nodulation, N-fixation and plant growth of selected chickpea- Rhizobium symbionts was studied- Eighteen chickpea rhizobial strains were evaluated for their growth in a broth culture at salinity levels of 0 to 20 dS m−1 of NaCl + Na2SO4. Variability in response was high. Salinity generally reduced the lag phase and/or slowed the log phase of multiplication of Rhizobium. Nine chickpea genotypes were also evaluated for salt tolerance during germination and early seedling growth in Petri dishes at five salinity levels (0–32 dS m−1). Chickpea genotypes ILC-205 and ILC-1919 were the most salt-tolerant genotypes. The selected rhizobial strains and chickpea cultivars were combined in a pot experiment aimed at investigating the interactive effect of salinity (3, 6 and 9 dS m−1) and N source (symbiosis vs. inorganic N) on plant growth. Symbiotic plants were more sensitive to salinity than plants fed mineral N. Significant reductions in nodule dry weight (59.8 %) and N fixation (63.5 %) were evident even at the lowest salinity level of 3 dS m-1. Although nodules were observed in inoculated plants grown at 6 dS m-1, N-fixation was completely inhibited. The findings indicate that symbiosis is more salt-sensitive than both Rhizobium and the host plant, probably due to a breakdown in one of the processes involved in symbiotic-N fixation. Improvement of salinity tolerance in field grown chickpea may be achieved by application of sufficient amounts of mineral nitrogen.  相似文献   

15.
Soybean ( Glycine max L.) nitrogen nutrition is ensured by both symbiotic nitrogen fixation and mineral nitrogen assimilation. The relationship between these two modes of N nutrition was analysed in 3 growth types (determinate, semi-determinate and undeterminate) of soybean. The nitrate reductase activity and nitrogenase activity (acetylene reduction) of plants grown in the field and greenhouse showed that these enzymatic activity acted simultaneously or successively during the growth cycle, depending on the availability of inorganic nitrogen in the growing medium. Undeterminate soybean types had a higher potential nitrate reductase activities than determinate types.
The proportion of N2 fixed as measured by 15N labelling or stem ureide content indicated that determinate soybeans derived a higher proportion of their N from N2 fixation than the undeterminates.  相似文献   

16.
Soybean pod borer (SPB) (Leguminivora glycinivorella (Mats.) Obraztsov) causes severe loss of soybean (Glycine max L. Merr.) seed yield and quality in some regions of the world, especially in north‐eastern China, Japan and Russia. Isoflavones in soybean seed play a crucial role in plant resistance to diseases and pests. The aim of this study was to find whether SPB resistance QTL are associated with soybean seed isoflavone content. A cross was made between ‘Zhongdou 27’ (higher isoflavone content) and ‘Jiunong 20’ (lower isoflavone content). One hundred and twelve F5:10 recombinant inbred lines were derived through single‐seed descent. A plastic‐net cabinet was used to cover the plants in early August, and thirty SPB moths per square metre were put in to infest the soybean green pods. The results indicated that the percentage of seeds damaged by SPB was positively correlated with glycitein content (GC), whereas it was negatively correlated with genistein (GT), daidzein (DZ) and total isoflavone content (TI). Four QTL underlying SPB damage to seeds were identified and the phenotypic variation for SPB resistance explained by the four QTL ranged from 2% to 14% on chromosomes Gm7, 10, 13 and 17. Moreover, eleven QTL underlying isoflavone content were identified, and ten of them were encompassed within the same four marker intervals as the SPB QTL (BARC‐Satt208‐Sat292, Satt144‐Sat074, Satt540‐Sat244 and Satt345‐Satt592). These QTL could be useful in marker‐assisted selection for breeding soybean cultivars with both SPB resistance and high seed isoflavone content.  相似文献   

17.
Soybean (Glycine max (L.) Merrill) production is expanding into temperate and tropical environments. Yield stability studies under rhizobia inoculation were investigated in 24 soybean genotypes over two successive growing seasons at three agro‐ecological zone of Nigeria, during the 2015–2016 rainy seasons. Treatments were arranged in a split‐plot design and replicated three times. Treatments were 24 soybean genotypes and three levels of rhizobia inoculation. Results indicated that the variation of genotypes and inoculation on percentage emergence, height, number of leaves, number of branches per plant, total biomass yield, above‐ground biomass and seed yield was significant (p = .05). The effects of genotypes (G), environment (E) and G × E interactions on seed yield were also significant. Two soybean genotypes (TGx 1989‐45F and TGx 1990‐110FN) were identified as the most promising in relation to yield stability. Of the three locations, Abuja produced the least interaction effects followed by Igabi and may be most appropriate environments for large‐scale soybean production. Appropriate inoculation of soybean with inoculants (LegumeFix and or NoduMax) should be encouraged in farmer's field.  相似文献   

18.
花叶病毒(soybean mosaic virus, SMV)病是大豆主要病害之一,生产上常采用种植抗性品种方法来防治。本研究以RNA干扰花叶病毒衣壳蛋白(coat protein, CP)基因为表达载体,Bar基因作为筛选标记基因,成熟子叶节为外植体,采用农杆菌介导法获得了22株T0代转基因大豆生根苗,经草丁膦涂抹、Bar试纸条和PCR法鉴定,获得RNAi CP转基因植株18株;对转基因植株T1代的遗传分析表明,外源基因能够稳定遗传到下一代且符合孟德尔遗传规律;T1代Southern杂交表明,导入的干扰片段为单拷贝;花叶病毒摩擦接种表明RNAi CP转基因大豆植株具有抗花叶病毒特性;摩擦接种后3周,DAS-ELISA检测进一步表明,RNAi CP转基因植株花叶病毒检出率仅为7.69%,而非转基因植株为100%。这表明RNAi花叶病毒CP基因可用于抗大豆花叶病毒的研究。  相似文献   

19.
孙庆圣  原程  张玉先 《作物杂志》2022,38(4):132-212
为明确减施氮肥与接种根瘤菌对黑大豆植株形态、光合特性、干物质积累量以及产量的影响,选用黑龙江省嫩江市主栽农家品种青仁乌1号为试验材料,随机区组设计,重复3次,设置3个氮肥施用量,分别为当地氮肥施用量(100%)、当地氮肥施用量一半(50%)和不施用氮肥(0);每个氮肥施用量分别设置接种与不接种根瘤菌处理,100%施氮量+不接种根瘤菌为对照(CK)。结果表明,减施氮肥显著增加黑大豆的叶绿素含量、光合速率、干物质积累量及产量;接种根瘤菌显著提高叶绿素含量、光合能力、干物质积累量及产量,其中减施50%氮肥并接种根瘤菌增产效果最好,与CK处理相比增产7.77%。  相似文献   

20.
A factorial experiment with 3 nitrogen (N) levels and 4 application rates of the triazole type plant growth regulator (PGR), BAS 111 W = l-phenoxy-3-(1H-1,2,4-triazol-1-yl)-4-hydroxy-5,5-dimethylhexane, was conducted in hydroponics to study the influence on N uptake and morphological changes of oilseed rape. The following results were obtained:
–Increased N level of the nutrient solution increased plant height and root and shoot weight. Enhanced N uptake caused a higher N concentration of root and shoot.
–Increasing PGR application rates reduced plant height and shoot biomass production; this reaction was stronger at higher doses of N.
–Root weight, root length, root diameter and root surface area were increased by N application. None of these parameters was significantly altered by the PGR. This resulted in increased root-shoot-ratios at higher PGR rates.
–As a consequence of reduced shoot production PGR application resulted in increased concentrations of N. The root reacted similarly but to a lesser degree.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号