首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lysimeters are valuable for studying the fate and transport of chemicals in soil. Large‐scale field lysimeters are used to assess pesticide behaviour and radionuclide transport, and are assumed to represent natural field conditions better than laboratory columns. Field lysimeters are usually characterized by a free‐draining lower boundary. As a result, the hydraulic gradient is disrupted, and leachate cannot be collected until the bottom of the lysimeter becomes saturated. We compared heterogeneously structured, free‐drainage lysimeters and field soils with respect to water flow and solute transport. Numerical simulations were carried out in a two‐dimensional heterogeneous sandy soil under unsaturated water flow conditions with the CHAIN_2D code. Three different soil structures (isotropic, horizontal, and vertical) were generated, and Miller–Miller similitude was used to scale the hydraulic properties of the soil. The results showed that ponding occurs at the bottom of the lysimeter for the three soil structures and that it occurred faster and was more pronounced with the vertical structure (preferential flow effect). Breakthrough curves of a conservative solute (bromide) showed that solutes are moving faster in the field than in the lysimeters. Fewer differences between lysimeters and field soils were found with the horizontal soil structure than with the isotropic and vertical structures.  相似文献   

2.
This paper presents the results of a study on nutrient exchange at the sediment-water interface which is caused by early diagenesis and resuspension of bottom sediments. The research was carried out on anoxic silty-clay sediment cores collected south of the Po river delta (Northern Adriatic Sea, Italy) in late summer. The early diagenetic processes were investigated by means of the integrated study of pore-water chemistry and solid phase composition. Exchange at the sediment-water interface was studied by comparing the fluxes measured in incubated cores with the fluxes calculated by modelling pore-water profiles. Nutrient exchange during resuspension was analysed by simulating a storm event in the laboratory. The high production of nutrients near the sediment-water interface is mainly caused by the anoxic degradation of organic matter and the successive reductions of Mn and Fe-oxyhydroxides and, to a lesser extent, of sulphate. The oxic degradation of organic matter occurs only at the sediment-water interface. In the incubation experiment the increases of phosphate, ammonia, nitrate, silica, and Fe in bottom waters were measured. The comparison between calculated and measured fluxes showed that: a) the fluxes are mainly controlled by molecular diffusion; b) phosphate and Fe sink because of the Fe-oxyhydroxide precipitation and nitrification process influences the ammonia and nitrate fluxes. Resuspension caused the release of: a) phosphate through surficial desorption and authigenic apatite dissolution; b) ammonia by means of the oxic degradation of organic matter; and c) dissolved silica generated by biogenic silica dissolution. Resuspension also caused a weak removal of Fe. The more oxic conditions following resuspension favoured the formation of a Fe-oxyhydroxide film at the sediment-water interface which inhibited the phosphate fluxes from sediments to the water column.  相似文献   

3.
Engineering and operation of a lysimeter station for the estimation of pesticide leaching through soil profiles An above ground, air-conditioned, lysimeter station was constructed for measuring pesticide leaching into soil profiles (Fluvisol; Cambisol). Specially transport in soil macropores was investigated by using sprinkler irrigation simulating high precipitation. Twelve soil monoliths (30 diameter, 100 cm depth) can be investigated simultaneously. Engineering and operation of this station are described. The lysimeters consist cf stainless steel cylinders with a special leaching water collector and low pressure equipment. In the soil monolith tensiometers with electronic pressure transducer and temperature sensors are installed. Measured data are recorded with a PC continously.  相似文献   

4.
In forested catchments, retention and remobilization of S in soils and wetlands regulate soil and water acidification. The prediction of long‐term S budgets of forest ecosystems under changing environmental conditions requires a precise quantification of all relevant soil S pools, comprising S species with different remobilization potential. In this study, the S speciation in topsoil horizons of a soil toposequence with different groundwater influence and oxygen availability was assessed by synchrotron‐based X‐ray absorption near‐edge spectroscopy (XANES). Our investigation was conducted on organic (O, H) and mineral topsoil (A, AE) horizons of a Cambisol–Stagnosol–Histosol catena. We studied the influence of topography (i.e., degree of groundwater influence) and oxygen availability on the S speciation. Soil sampling and pretreatment were conducted under anoxic conditions. With increasing groundwater influence and decreasing oxygen availability in the sequence Cambisol–Stagnosol–Histosol, the C : S ratio in the humic topsoil decreased, indicating an enrichment of soil organic matter in S. Moreover, the contribution of reduced S species (inorganic and organic sulfides, thiols) increased systematically at the expense of intermediate S species (sulfoxide, sulfite, sulfone, sulfonate) and oxidized S species (ester sulfate, SO ). These results support the concept of different S‐retention processes for soils with different oxygen availability. Sulfur contents and speciation in two water‐logged Histosols subject to permanently anoxic and temporarily oxic conditions, respectively, were very different. In the anoxic Histosol, reduced S accounted for 57% to 67% of total S; in the temporarily oxic Histosol, reduced S was only 43% to 54% of total S. Again, the extent of S accumulation and the contribution of reduced S forms to total S closely reflected the degree of O2 availability. Our study shows that XANES is a powerful tool to elucidate key patterns of the biogeochemical S cycling in oxic and anoxic soil environments. In contrast to traditional wet‐chemical methods, it particularly allows to distinguish organic S compounds in much more detail. It can be used to elucidate microbial S‐metabolism pathways in soils with different oxygen availability by combining soil inventories and repeated analyses of a sample in different stages of field or laboratory incubation experiments under controlled boundary conditions and also to study (sub)microspatial patterns of S speciation in aggregated soils.  相似文献   

5.
A technique is described which allows collection and transportation of undisturbed soil monoliths in glass fibre casings 80 cm in diameter and 135 cm deep. The technique has been used to obtain 150 monoliths from a range of soil types in England and Wales, including soils with compact or chalky horizons. Measurements from lysimeters containing a non-swelling sandy loam and a swelling clay showed that the hydraulic properties of both soils were not affected by encasement of the profiles, provided that supplementary drainage outlets at the depth of field mole drains were provided in the lysimeters containing the clay soil. Aeration of the clay monoliths was comparable with that of the same soil in the field. When winter wheat plants growing on the lysimeters were surrounded by a similar guard crop, yields were equivalent to those obtained in the field. Edge effects were not significant; plants grown adjacent to the lysimeter wall yielded the same weight of grain per unit soil area as those in the central area of the monolith.  相似文献   

6.
The availability of O2 is one of the most important factors controlling the chemical and biological reactions in soils. In this study, the effects of different aeration conditions on the dynamics of the emission of trace gases (CO2, N2O, CH4) and the leachate composition (NO3, DOC, Mn, Fe) were determined. The experiment was conducted with naturally structured soil columns (silty clay, Vertisol) from a well aerated forest site. The soil monoliths were incubated in a microcosm system at different O2 concentrations (0, 0.001, 0.005, 0.01, 0.05, and 0.205 m3 m‐3 in the air flow through the headspace of the microcosms) for 85 days. Reduced O2 availability resulted in a decreased CO2 release but in increased N2O emission rates. The greatest cumulative N2O emissions (= 1.6 g N2O‐N m‐2) were observed at intermediate O2 concentrations (0.005 and 0.01 m3 m‐3) when both nitrification and denitrification occurred simultaneously in the soil. Cumulative N2O emissions were smallest (= 0.05 g N2O‐N m‐2) for the aeration with ambient air (O2 concentration: 0.205 m3 m‐3), although nitrate availability was greatest in this treatment. The emission of CH4 and leaching of Mn and Fe were restricted to the soil columns incubated under completely anoxic conditions. The sequence of the reduction processes under completely anoxic conditions complied with the thermodynamic theory: soil nitrate was reduced first, followed by the reduction of Mn(IV) and Fe(III) and finally CO2 was reduced to CH4. The re‐aeration of the soil columns after 85 days of anoxic incubation terminated the production of CH4 and dissolved Fe and Mn in the soil but strongly increased the emission rates of CO2 and N2O and the leaching of NO3 probably because of the accumulation of DOC and NH4+ during the previous anoxic period.  相似文献   

7.
The composition of soil solutions obtained from the field varies with the method of extraction. Variations in sampling methods and the difficulties in extracting representative samples from soils in space and time, can explain divergent results. In this study we compared soil solutions from a forest soil in northern Sweden obtained by a centrifuge drainage technique and by zero-tension monolith lysimeters. Zero-tension lysimeters were destructively sampled, and centrifuge solutions from this soil were compared with that from soil outside. In our study we found three major differences in the solute composition between the centrifugate and the lysimeter leachate: (i) larger concentrations of most solutes in the mor layer centrifugate than in the mor layer leachate, (ii) accumulation of nitrate in the lysimeters, and (iii) larger concentrations of base cations in the zero-tension lysimeters below 0.3 m depth. Water contents within the lysimeters were up to 3.5 times greater than under natural conditions and the water yields from the lysimeters indicate that water residence time ranged from < 1 to >5 years. This study shows that differences in results from the two methods are due to inherent differences in the methods themselves and not just to the collection of different soil waters. The hydrological anomaly and disturbance induced by the zero-tension lysimeters affects the solute chemistry and thus the applicability of the results to field conditions.  相似文献   

8.
Application of iron (Fe) -rich amendments to soils has been proposed as a means of decreasing phosphorus (P) losses from soils. However, anoxic conditions following soil saturation are known to increase Fe and P solubility in soils, thus cancelling out the potential benefits. Our aim was to evaluate the effects of continuous oxic, continuous anoxic and alternating anoxic/oxic conditions on P exchangeability and Fe forms in soil amended with Ca(OH)2 and FeSO4. We incubated amended and unamended soils under these conditions for 8 weeks and measured Fe forms and P exchangeability. Under oxic conditions, addition of Ca(OH)2 and FeSO4 resulted in a strong decrease in P exchangeability and an increase in oxalate-extractable Fe. Mössbauer analyses suggested that an unidentified Fe oxide (D1oxide) with a strong sorbing capacity for P was precipitated. Under continuously anoxic conditions, P exchangeability and oxalate-extractable Fe increased with or without the amendments. Mössbauer analyses suggested that there was a partial dissolution of the D1oxide phase, precipitation of another unidentified Fe oxide (S3) and a reduction of structural Fe3+ in phyllosilicate, thereby increasing soil negative charge. These transformations resulted in a strong increase in rapidly exchangeable P. Alternating anoxic and oxic periods induced the dissolution and precipitation of iron oxides and the increase and decrease in P exchangeability. Implications of the results for limiting P losses from grassland soils are discussed.  相似文献   

9.
10.
A two‐year lysimeter experiment was conducted using winter wheat plants on two texturally contrasting soils (soil A and soil B). The main objective of this study was to evaluate the influence of increasing doses (5, 10, 15, 20, and 251 ha‐1) of solid phase from pig slurry (SP) on soil extractable copper (Cu), zinc (Zn), iron (Fe), and manganese (Mn) and on wheat micronutrients composition and uptake. As the control, a basic dressing of NPK fertilizer was applied. Results showed that increasing additions of SP significantly enhanced extractable Cu, Zn, Fe, and Mn content on the topsoil for both soils tested. In addition, a significant increase was detected for extractable Cu, Zn, and Mn content with increasing application rates of SP for subsoil A, but no significant differences were detected for subsoil B. A significant increase in the contents of Fe, Mn, and Zn in the plants as well as total uptakes were observed from increasing doses of SP. Copper content in the plants was not significantly affected. Finally, a strong pH effect was exerted in the Mn and Zn uptake by the plants.  相似文献   

11.
Overall, arable soils in Sweden are currently generally close to phosphorus (P) balance, but excessive P accumulation has occurred on animal fur farms, i.e., those rearing mink (Mustela vison) and foxes (Alopex lagopus and Vulpes vulpes). Manure P from these farms has sometimes regarded as sparingly soluble. Laboratory lysimeter topsoil trials with simulated rain demonstrated that potential leaching of P in dissolved reactive form (DRP) can be very high, even for heavy clay (50%–65%) soils. The Swedish/Norwegian soil test P‐AL (soil P extracted with acid NH4 lactate, AL) proved useful as a potential indicator of DRP leaching risk (regression coefficient [R2] = 0.89) from fur farms. The upper 5‐cm soil layer, with 190% higher (median) soil P status than the 5–20 cm layer, was the major source of potential DRP leaching through soil columns at the site, despite having been under grass or green fallow for the past 8 y. In percolate from topsoil lysimeters, DRP concentration increased by 0.29 mg L–1 after the long‐term manure application but only by 0.14 mg L–1 after the single slurry application when compared to no addition of slurry. Therefore, the build‐up to a high soil P status due to the long‐term application of mink manure was more important than a single application of pig slurry at a rate corresponding to 22 kg P ha–1 with respect to soil leachate DRP losses in this lysimeter study. The study stresses the importance of precision farming, in which the amount of slurry‐P applied is based on testing the already existing soil P content.  相似文献   

12.
A model of water and solute transport in macroporous soils (Jarvis et al., 1991) has been evaluated in column breakthrough experiments under field conditions. Hydraulic properties were first measured in replicate soil monolith lysimeters sampled from grass ley and continuous barley treatments in a clay soil. A pulse input of 0.05 M KCl was then supplied by drip irrigation and measurements made of the water discharge and chloride leaching resulting from the natural rainfall over a 1-month period. The results showed that the macropores constituted the dominant flow pathway (accounting for 80% of the total water outflow) and that diffusive exchange of chloride between the two flow domains was the main factor causing variability in leaching. Larger hydraulic conductivities and macroporosities in the lower topsoil and at plough depth in the grass ley monoliths were taken as evidence of structural amelioration. Less of the applied chloride was leached in the grass monoliths than in the barley (means of 20% and 31% respectively). This was mainly due to a smaller effective aggregate size and thus a more efficient diffusion-controlled retention.  相似文献   

13.
Presently, the soil water balance of flood‐influenced soils in fluvial plains is insufficiently described. The new development of a weighable groundwater lysimeter is the basis for recording the water‐balance components precipitation, evapotranspiration, groundwater recharge, capillary rise, and interaction with the water course. Soil‐hydrologic measuring setups at two floodplain sites of the Elbe river serve for direct comparability of lysimeter measurements with data obtained on site. A groundwater control was designed for lysimeters that automatically adjusts the current groundwater level at the floodplain measuring setups and quantifies inflow into or outflow from the lysimeter. It turned out that the lysimeter developed is capable of identifying the individual water‐balance quantities at high accuracy. Contrary to previous assumptions, it was possible to prove groundwater recharge for the floodplain sites.  相似文献   

14.
《Applied soil ecology》2009,41(3):499-509
Redox states affect substrate availability and energy transformation, and, thus, play a crucial role in regulating soil microbial abundance, diversity, and community structure. We evaluated microbial communities in soils under oxic, intermittent, and anoxic conditions along a river floodplain continuum using fatty acid methyl ester (FAME) and 16S rRNA genes-based terminal-restriction fragment length polymorphism (T-RFLP) bacterial fingerprints. In all the soils tested, microbial communities clustered according to soil redox state by both evaluation techniques. Bacteria were dominant components of soil microbial communities, while mycorrhizal fungi composed about 12% of the microbial community in the oxic soils. Gram-positive bacteria consisted >10% of the community in all soils tested and their abundance increased with increasing soil depth when shifting from oxic to anoxic conditions. In the anoxic soils, Gram-positive bacteria composed about 16% of the total community, suggesting that their growth and maintenance were not as sensitive to oxygen supply as for other microbes. In general, microorganisms were more abundant and diverse, and distributed more evenly in the oxic layers than the anoxic layers. The decrease in abundance with increasing oxygen and substrate limitation, however, was considerably more drastic than the decrease in diversity, suggesting that growth of soil microorganisms is more energy demanding than maintenance. The lower diversity in the anoxic than the oxic soils was attributed primarily to the differences in oxygen availability in these soils.  相似文献   

15.
A study was conducted to compare soil leachate chemistry and determine sample size requirements for tension vs pan (zero-tension) lysimeters. Analyses were performed on an annual and seasonal basis for one year of data collected at Pea Vine Hill, a forested site in southwestern Pennsylvania. On an annual basis, SO4 ?2, Ca+2, Mg+2, Mn+2, K+ and specific conductance were significantly higher in tension lysimeter samples but no chemical species were significantly higher in pan lysimeters. Seasonal comparisons indicated chemical differences between lysimeter types were variable with more significant deviations present during wet periods. Nearly all significant seasonal differences were comprised of higher concentrations in tension compared to pan lysimeters. Disparities in leachate chemistry between lysimeter types were ascribed to different sources of water collected by the instruments especially during wet periods. Sample size requirements were calculated for two biweekly periods for each lysimeter type at three confidence levels. Based upon calculated sample demands, pan lysimeter soil leachate chemistry could be characterized with fewer samples than tension lysimeters. Less than .30 samples were generally necessary for pan B-horizon lysimeters at the 70% confidence level. Sample requirements were usually unreasonable at higher confidence levels.  相似文献   

16.
A lysimeter method using undisturbed soil columns was used to investigate the effect of water table depth and soil properties on soil organic matter decomposition and greenhouse gas (GHG) emissions from cultivated peat soils. The study was carried out using cultivated organic soils from two locations in Sweden: Örke, a typical cultivated fen peat with low pH and high organic matter content and Majnegården, a more uncommon fen peat type with high pH and low organic matter content. Even though carbon and nitrogen contents differ greatly between the sites, carbon and nitrogen density are quite similar. A drilling method with minimal soil disturbance was used to collect 12 undisturbed soil monoliths (50 cm high, Ø29.5 cm) per site. They were sown with ryegrass (Lolium perenne) after the original vegetation was removed. The lysimeter design allowed the introduction of water at depth so as to maintain a constant water table at either 40 cm or 80 cm below the soil surface. CO2, CH4 and N2O emissions from the lysimeters were measured weekly and complemented with incubation experiments with small undisturbed soil cores subjected to different tensions (5, 40, 80 and 600 cm water column). CO2 emissions were greater from the treatment with the high water table level (40 cm) compared with the low level (80 cm). N2O emissions peaked in springtime and CH4 emissions were very low or negative. Estimated GHG emissions during one year were between 2.70 and 3.55 kg CO2 equivalents m−2. The results from the incubation experiment were in agreement with emissions results from the lysimeter experiments. We attribute the observed differences in GHG emissions between the soils to the contrasting dry matter liability and soil physical properties. The properties of the different soil layers will determine the effect of water table regulation. Lowering the water table without exposing new layers with easily decomposable material would have a limited effect on emission rates.  相似文献   

17.
 The response of the microbial community to changes in aeration status, from oxic to anoxic and from anoxic to oxic, was determined in arable soil incubated in a continuous flow incubation apparatus. Soil incubated in permanently oxic (air) and/or anoxic (O2-free N2) conditions was used as the control. Before experiments soil was preincubated for 6 days, then aeration status was changed and glucose added. Glucose concentration, extractable C, CO2 production, microbial biomass, pH and redox potential were determined 0, 4, 8, 12, 16, 24, 36 and 48 h after change of aeration status. If oxic conditions were changed to anoxic, the amount of glucose consumed was reduced by about 60%, and CO2 production was 10 times lower at the end of incubation compared to the control (permanently oxic conditions). Microbial biomass increased by 114% in glucose-amended soil but did not change in unamended soil. C immobilization prevailed over C mineralization. Redox potential decreased from +627 mV to –306 mV. If anoxic conditions were changed to oxic, consumption of glucose and CO2 evolution significantly increased, compared to permanently anoxic conditions. Microbial biomass did not change in glucose-amended soil, but decreased by 78% in unamended soil. C mineralization was accelerated. Redox potential increased from +238 to +541 mV. The rate of glucose consumption was low in anoxic conditions if soil was incubated in pure N2 but increased significantly when incubation was carried out in a CO2/N2 mixture. Received: 6 January 1999  相似文献   

18.
Abstract. Results from recent studies of peatland biogeochemistry suggest that appropriate soil water sampling techniques are required in order to advance our understanding of peatland soil systems. In a comparative field experiment, concentrations of inorganic solutes and dissolved organic carbon (DOC) were measured in soil water extracted at a depth of 10 cm beneath the surface of deep peat by three techniques: zero-tension (z-t) lysimeters, PTFE suction samplers, and polysulfone suction samplers. The majority of solute concentrations were broadly similar, but mean concentrations of silicon, DOC, iron and aluminium in water extracted by z-t lysimeters and PTFE samplers were in ratios of 1:5; 1:2; 1:5 and 1:3 respectively. Mean conductivity and concentrations of chloride and hydrogen ion were significantly larger in the z-t lysimeter samples, which had sodium, potassium and magnesium to chloride ratios that were very similar to local rainfall. The z-t lysimeters appeared to sample macropores preferentially, while the suction samplers collected micropore water.  相似文献   

19.
Soils of the Brazilian Cerrado biome have been found to be deficient in copper (Cu) and zinc (Zn). In this area, an Oxisol was deeply excavated in 1962 during the construction of a hydroelectrical plant, and the exposed saprolite material was abandoned, without any reclamation measures. The abandoned land was a harsh environment for plant growth, and the secondary vegetation has not recovered. A field trial was established in 1992 to assess the effects of different grass species and lime amendments on soil reclamation at the degraded site. In 2011 soil samples were collected at three depths (0–10, 10–20, and 20–40 cm) from vegetated and bare plots over tilled saprolite, from an untreated area of the saprolite, and from an Oxisol under native forest, used as external reference. Nineteen years after the reclamation effort was begun, the organic carbon (OC) content of the restored saprolite still was much lower than that of the Oxisol under natural vegetation. The undisturbed Oxisol was deficient in extractable Cu (0.16–0.10 mg kg?1) and Zn (0.10–0.02 mg kg?1) and exhibited rather low concentrations of extractable iron (Fe; 5.24–1.47 mg kg?1) and manganese (Mn; 3.21–0.77 mg kg?1). However, the saprolite under reclamation showed even lower levels of these elements compared to the native forest soil. In the natural soil, OC, N, extractable Fe, Mn, and Cu showed stratification, but this was not the case for extractable Zn. Although the reclaimed saprolite still was far from predisturbance conditions, the revegetation treatments promoted recovery of OC, N, Fe, Mn, and Cu at the surface layers, which resulted in incipient stratification. Extractable Fe, Mn, and Cu were correlated to OC, whereas no association between Zn and OC was detected. Our results also suggest that reclamation of the excavated saprolite may be constrained by micronutrient deficiencies and mostly by the extremely low levels of Zn and Cu.  相似文献   

20.
This paper considers the development of lysimeters and their role in the evolution of our understanding of the dynamics of water and plant nutrients in ecosystems. Lysimeters are delineated volumes of soil. They can be divided into those filled with repacked soil, and those enclosing an undisturbed monolith. The original repacked lysimeter was developed to investigate the concept that all life stems from water, and is considered to be the first quantitative experiment in history. It focussed on the growth of a willow tree and how much of the increment was derived from the soil solids. From this start some 360 years ago lysimeters quickly contributed to the quantification of the transpiration stream and the differentiation of water loss by evaporation from the soil from loss via the leaves of plants. Chronologically, further development began about 210 years ago with the exploration of whether precipitation could account for all the water moving from the land to the oceans, and was the origin of springs. In part, this required a careful quantification of soil evaporation, runoff and deep drainage. This in turn led to the quantification of the soil water balance. As a result, we are able to predict indices, such as crop water use efficiency, drainage and irrigation requirements, contributions to stream flow, groundwater recharge and nutrient loss by leaching. Recognition that the quantification of drainage and leaching required soils of natural structure and profile integrity resulted in the building of the first monolith lysimeter and the development of ‘pan’ or ‘Ebermayer’ lysimeters. Improved technology allowed a better understanding of the role of soil in the regional water balance through the development of small diameter lysimeters that could be transported to a central location subject to the same climatic variables. In contrast, other technological changes allowed the impact of typical soil management operations carried out using regular machinery to be applied on field‐scale lysimeters. The contribution of the different types of lysimeter to the development of our understanding of soil use and management is considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号