首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
This study evaluated the effect of biochar and phosphorus fertilizer application on selected soil physical and chemical properties in two contrasting soil types: Rhodic Ferralsols (clay) in Thohoyandou and Leptic Cambisols (loamy sand) in Nelspruit, South Africa. Field experiments were conducted in summer and winter. Treatments consisted of a factorial combination of four biochar levels (0, 5, 10 and 20 t ha?1) and two phosphorus fertilizer levels (0 and 90 kg ha?1) arranged in a randomized complete block design with three replicates. Chickpea was the test crop. Soil bulk density, aggregate stability, porosity, total C, total N, C:N ratio, K and Mg were determined. Biochar (10 t ha?1) and phosphorus increased bulk density and decreased porosity at 0–5 and 15–20 cm soil depth on a loamy sand soil in both seasons. The interaction between biochar and phosphorus increased total C and total N on a clay soil in the summer sowing. However, in the loamy sand soil, biochar (10 t ha?1) increased total C, C:N ratio, K and Mg in the summer sowing. The effect of biochar was more evident in the loamy sand soil than the clay soil suggesting that the influence of biochar may be soil-specific.  相似文献   

2.
Field experiments were conducted during summer (2013/2014) and winter (2014) in two different soil types to evaluate the effect of biochar and P fertilizer application on growth, yield, and water use efficiency of chickpea. Soil types include Rhodic Ferralsols (clay) in Thohoyandou and Leptic Cambisols (loamy sand) in Nelspruit, South Africa. Treatments consisted of a factorial combination of four biochar levels (0, 5, 10 and 20 t ha?1) and two phosphorus fertilizer levels (0 and 90 kg ha?1) arranged in a randomized complete block design and replicated three times. Biochar application at 5 t ha?1 significantly increased biomass, grain yield and water use efficiency of biomass production (WUEb) in the clay soil compared to 10 and 20 t ha?1. However, the increase was attributed to the addition of P fertilizer. Biochar application had no effect on yield components in the loamy sand soil, but P fertilizer addition increased number of seeds/pod in the loamy sand soil and number of pods/plant in the clay soil. Biochar and P fertilizer application on growth and yield of chickpea varied in soil types and seasons, as the effect was more prominent in the clay soil than the loamy sand soil during the summer sowing.  相似文献   

3.
This research aimed to determine the optimum nitrogen fertilization rate on three soils for producing biomass sweet sorghum (Sorghum bicolor cultivar M81E) and corn (Zea mays cultivar P33N58) grain yield and to compare their responses. The research was conducted in Missouri in rotations with soybean, cotton, and corn. Seven rates of nitrogen (N) were applied. Sweet sorghum dry biomass varied between 11 and 27.5 Mg ha?1) depending on year, soil type, and N rate. Nitrogen fertilization on the silt and sandy loam soils had no effect (P > 0.05) on sweet sorghum yield grown after cotton and soybean. However, yield increased in the clay soil. Corn grain yielded from 1.3 to 12.9 Mg ha?1, and 179 to 224 kg N ha?1 was required for maximum yield. Increasing biomass yield required N application on clay but not on silt loam and sandy loam in rotations with soybean or cotton.  相似文献   

4.
Annual potassium (K) balances have been calculated over a 40‐year period for five field experiments located on varying parent materials (from loamy sand to clay) in south and central Sweden. Each experiment consisted of a number of K fertilizer regimes and was divided into two crop rotations, mixed arable/livestock (I) and arable only (II). Annual calculations were based on data for K inputs through manure and fertilizer, and outputs in crop removal. Plots receiving no K fertilizer showed negative K balances which ranged from 30 to 65 kg ha?1 year?1 in rotation I, compared with 10–26 kg ha?1 year?1 for rotation II. On sandy loam and clay soils, the K yield of nil K plots (rotation I) increased significantly with time during the experimental period indicating increasing release of K from soil minerals, uptake from deeper soil horizons and/or depletion of exchangeable soil K (Kex). Significant depletion of Kex in the topsoil was only found in the loamy sand indicating a K supply from internal sources in the sandy loam and clay soils. On silty clay and clay soils, a grass/clover ley K concentration of ~2% (dry weight) was maintained during the 40‐year study period on the nil K plots, but on the sandy loam, loam and loamy sand, herbage concentrations were generally less than 2% K.  相似文献   

5.
Land application of municipal solid waste (MSW) compost increases soil organic matter content and influences soil physical properties. This study was conducted to measure the effect of compost on the water holding capacity of soil and water status in corn (Zea mays L.) from 1993 to 1995. The soil was a Hubbard loamy sand (sandy, mixed, Udorthentic Haploboroll) cropped to irrigated corn at the Sand Plain Research Farm at Becker, MN. Compost treatments on dry weight basis were 0 and 90 Mg ha?1 yr?1 from 1993 to 1995, and a one time application at 270 Mg ha?1 in 1993. The soil moisture retention curves were generated in 1994 and corn leaf water potential and soil bulk density were measured each growing season. Based on water retention curves, the addition of compost increased the water holding capacity of soil without significant increase in the estimated available water. This was contradicted by field measurements which showed that compared to a fertilized control one compost source at the 270 Mg ha?1 rate in the year of application increased plant water stress by 0.22 MPa, likely due to salt loading. In the year after the application of the 270 Mg ha?1, two compost sources increased soil water content and corn yield 0.14 cm3 cm?3 and 0.9 Mg ha?1 respectively. The yield increase was also associated with a reduction in plant water stress of 0.14 MPa due to one of the compost sources.  相似文献   

6.
It was hypothesized that the application of eucalyptus biochar enhances nutrient use efficiencies of simultaneously supplied fertilizer, as well as provides additional nutrients (i.e., Ca, P, and K), to support crop performance and residual effects on subsequent crops in a degraded sandy soil. To test this hypothesis, we conducted an on‐farm field experiment in the Khon Kaen province of Northeastern Thailand to assess the effects of different application rates of eucalyptus biochar in combination with mineral fertilizers to upland rice and a succeeding crop of sugarcane on a sandy soil. The field experiment consisted of three treatments: (1) no biochar; (2) 3.1 Mg ha?1 biochar (10.4 kg N ha?1, 3.1 kg P ha?1, 11.0 kg K ha?1, and 17.7 kg Ca ha?1); (3) 6.2 Mg ha?1 biochar (20.8 kg N ha?1, 6.2 kg P ha?1, 22.0 kg K ha?1, and 35.4 kg Ca ha?1). All treatments received the same recommended fertilizer rate (32 kg N ha?1, 14 kg P ha?1, and 16 kg K ha?1 for upland rice; 119 kg N ha?1, 21 kg P ha?1, and 39 kg K ha?1 for sugarcane). At crop harvests, yield and nutrient contents and nitrogen (N) use efficiency were determined, and soil chemical properties and pH0 monitored. The eucalyptus biochar material increased soil Ca availability (117 ± 28 and 116 ± 7 mg kg?1 with 3.1 and 6.2 Mg ha?1 biochar application, respectively) compared to 71 ± 13 mg kg?1 without biochar application, thus promoting Ca uptake and total plant biomass in upland rice. Moreover, the higher rate of eucalyptus biochar improved CEC, organic matter, available P, and exchangeable K at succeeding sugarcane harvest. Additionally, 6.2 Mg ha?1 biochar significantly increased sugarcane yield (41%) and N uptake (70%), thus enhancing N use efficiency (118%) by higher P (96%) and K (128%) uptake, although the sugar content was not increased. Hence, the application rate of 6.2 Mg ha?1 eucalyptus biochar could become a potential practice to enhance not only the nutrient status of crops and soils, but also crop productivity within an upland rice–sugarcane rotation system established on tropical low fertility sandy soils.  相似文献   

7.
Two field experiments in which straw has been removed or incorporated for 17 yr (loamy sand) and 10 yr (sandy clay loam) were sampled to examine the effect of straw on the C and N contents in whole soil samples, macro-aggregate fractions and primary particle-size separates. The particle size composition of the aggregate fractions was determined. Aggregates were isolated by dry sieving. Straw incorporation increased the number of 1–20 mm aggregates in the loamy sand but no effect was noted in the sandy clay loam. Straw had no effect on the particle size composition of the various aggregate fractions. After correction for loose sand that accumulated in the aggregate fractions during dry sieving, macro-aggregates appeared to be enriched in clay and silt compared with whole soil samples. Because of the possible detachment of sand particles from the exterior surface of aggregates during sieving operations, it was inferred that the particle size composition of macro-aggregates is similar to that of the bulk soil. The organic matter contents of the aggregate fractions were closely correlated with their clay + silt contents. Differences in the organic matter content of clay isolated from whole soil samples and aggregate fractions were generally small. This was also true for the silt-size separates. In both soils, straw incorporation increased the organic matter content of nearly all clay and silt separates; for silt this was generally twice that observed for clay. The amounts of soil C, derived from straw, left in the loamy sand and sandy clay loam at the time of sampling were 4.4 and 4.5 t ha?1, corresponding to 12 and 21% of the straw C added. The C/N ratios of the straw-derived soil organic matter were 11 and 12 for the loamy sand and sandy clay loam, respectively.  相似文献   

8.
Because of the focus on renewable energy, new biogas digesters are being built with the consequence of an increased production of anaerobic digestates (AD) as a by‐product. Although they can be used as organic fertilizer on arable fields, negative impacts of these digestates also may occur. Therefore, it was the aim of this laboratory study to investigate the effect of a normally applied volume of 30 m3 ha?1 of anaerobic digestates derived from a ground input substrate of maize (Zea mays L.) , sugar beet (Beta vulgaris L.), and wheat (Triticum aestivum L.) in different ratios (100 /80 / 20%) on the properties of two soils. The soils, which were homogenized (sieved to ≤ 2 mm) and placed in columns with a defined bulk density of 1.45 g cm?3, were a Cambic Luvisol (sandy loam) derived from glacial till and a Podzol (sandy sand) derived from glazial outwash. Physicochemical parameters [pH, electrical conductivity (EC)] and the wetting behavior of the soils were analyzed by measuring the contact angle (CA) by using the Wilhelmy–Plate‐Method (WPM) and the Repellency Index (RI) from the sorptivity of water and ethanol. To determine the risk of soil dispersion as a consequence of digestate amendment, the amount of readily dispersible clay (RDC) was determined by detecting the turbidity of a soil suspension. The application of 30 m3 ha?1 of AD decreased the wettability of the sandy sand as compared to the untreated soil, while the wettability of the loamy sand remained unaffected by the digestate amendment. The amount of RDC was higher in the loamy sand compared to the sandy sand, but the AD‐amended soil did not exhibit a significant change in dispersibility. While the loamy soil exhibited acidification of the soil after digestate application, the sandy soil showed an alkalinization of soil columns. Overall, the soil texture was identified to be a main factor controlling the effect of the digestates on soil properties. The results of this lab study showed that this study can be used as a first approach for the quantification of digestate amendment under practical conditions.  相似文献   

9.
In a greenhouse pot study, we examined the availability of N to grain sorghum from organic and inorganic N sources. The treatments were15N-labeled clover residues, wheat residues, and fertilizer placed on a sandy clay loam and loamy sand soil surface for an 8-week period. Soil aggregates formed under each soil texture were measured after 8 weeks for each treatment. Significantly greater 15N was taken up and recovered by grain sorghum in sandy clay loam pots compared with loamy sand pots. Greater 15N recovery was consistently observed with the inorganic source than the organic sources regardless of soil texture or time. Microbial biomass C and N were significantly greater for sandy clay loam soil compared with the loamy sand. Microbial biomass 15N was also significantly greater in the sandy clay loam treatment compared to the loamy sand. The fertilizer treatment initially had the greatest pool of microbial biomass 15N but decreased with time. The crop residue treatments generally had less microbial biomass 15N with time. The crop residues and soil texture had a significant effect on the water-stable aggregates formed after 8 weeks of treatments. Significantly greater water-stable aggregates were formed in the sandy clay loam than the loamy sand. Approximately 20% greater water-stable aggregates were formed under the crop residue treatments compared to the fertilizer only treatment. Soil texture seemed to be one of the most important factors affecting the availability of N from organic or inorganic N sources in these soils.Contribution from the MissouriAgricultural Experiment Station, Journal Series No.12131  相似文献   

10.
To evaluate the benefits of application of biochar to coastal saline soil for climate change mitigation, the effects on soil organic carbon (SOC), greenhouse gases (GHGs) and crop yields were investigated. Biochar was applied at 16 t ha?1 to study its effects on crop growth (Experiment I). The effects of biochar (0, 3.2, 16 and 32 t ha?1) and corn stalk (7.8 t ha?1) on SOC and GHGs were studied using 13C stable isotope technology and a static chamber method, respectively (Experiment II). Biochar increased grain mass per plant of the wheat by 27.7% and increased SOC without influencing non‐biochar SOC. On average, 92.3% of the biochar carbon and 16.8% of corn‐stalk carbon were sequestered into the soil within 1 year. The cumulative emissions of CO2, CH4 and N2O were not affected significantly by biochar but cornstalk application increased N2O emissions by 17.5%. The global warming mitigation potential of the biochar treatments (?3.84 to ?3.17 t CO2‐eq. ha?1 t?1 C) was greater than that of the corn stalk treatment (?0.11 t CO2‐eq ha?1 t?1 C). These results suggest that biochar application improves saline soil productivity and soil carbon sequestration without increasing GHG emissions.  相似文献   

11.
To establish a national inventory of soil organic carbon (SOC) stocks and their change over time, soil was sampled in 1986, 1997 and 2009 in a Danish nation‐wide 7‐km grid and analysed for SOC content. The average SOC stock in 0–100‐cm depth soil was 142 t C ha?1, with 63, 41 and 38 t C ha?1 in the 0–25, 25–50 and 50–100 cm depths, respectively. Changes at 0–25 cm were small. During 1986–97, SOC in the 25–50‐cm layer increased in sandy soils while SOC decreased in loam soils. In the subsequent period (1997–2009), most soils showed significant losses of SOC. From 1986 to 2009, SOC at 0–100 cm decreased in loam soils and tended to increase in sandy soils. This trend is ascribed to dairy farms with grass leys being abundant on sandy soils while cereal cropping dominates on loamy soils. A statistical model including soil type, land use and management was applied separately to 0–25, 25–50 and 50–100 cm depths to pinpoint drivers for SOC change. In the 0–25 cm layer, grass leys added 0.95 t C ha?1 year?1 and autumn‐sown crops with straw incorporation added 0.40 t C ha?1 year?1. Cattle manure added 0.21 t C ha?1 year?1. Most interestingly, grass leys contributed 0.58 t C ha?1 year?1 at 25–50 cm, confirming that inventories based only on top‐soils are incomplete. We found no significant effects in 50–100 cm. Our study indicates a small annual loss of 0.2 t C ha?1 from the 0–100 cm soil layer between 1986 and 2009.  相似文献   

12.
Substitution of mineral fertilizers with organic soil amendments is postulated to improve productivity‐relevant soil properties such as aggregation and organic matter (OM) content. However, there is a lack of studies analyzing the effects of biochar and biogas digestate versus mineral fertilizer on soil aggregation and OM dynamics under temperate field conditions. To address this research gap, a field experiment was sampled four years after establishment on a sandy Cambisol in Germany where mineral fertilizer or liquid biogas digestate was applied with or without 3 or 40 Mg biochar ha?1 (produced at 650°C). Soil samples were analyzed for soil organic carbon (SOC) content, pH, cation exchange capacity, bulk density, water‐holding capacity, microbial biomass, aggregate size class distribution, and the SOC content associated with these size classes. 40 Mg biochar ha?1 significantly increased SOC content in all fractions, especially free particulate OM and the 2–0.25 mm fraction. The yield of small macroaggregates (2–0.25 mm) was increased by biochar, but cation exchange capacity, water‐holding capacity, and pH were not consistently improved. Thus, high‐temperature biochar applied to a sandy soil under temperate conditions is primarily recommended to increase SOC content, which could contribute to climate change mitigation if this C remains sequestered over the long‐term. Fertilizer type did not significantly affect SOC content or other measured properties of the sandy Cambisol, suggesting that replacement of mineral fertilizer with digestate has a neutral effect on soil fertility. Co‐application of biochar with digestate provided no advantages for soil properties compared to co‐application with mineral fertilizer. Thus, independent utilization of these organic amendments is equally suitable.  相似文献   

13.
Biochar added to agricultural soils may sequester carbon and improve physico-chemical conditions for crop growth, due to effects such as increased water and nutrient retention in the root zone. The effects of biochar on soil microbiological properties are less certain. We addressed the effects of wood-based biochar on soil respiration, water contents, potential ammonia oxidation (PAO), arylsulfatase activity (ASA), and crop yields at two temperate sandy loam soils under realistic field conditions. In situ soil respiration, PAO, and ASA were not significantly different in quadruplicate field plots with or without biochar (20 Mg ha?1); however, in the same plots, volumetric water contents increased by 7.5 % due to biochar (P?=?0.007). Crop yields (oat) were not significantly different in the first year after biochar application, but in the second year, total yields of spring barley increased by 11 % (P??1, applied during two consecutive years, substantiated that biochar was not inhibitory to PAO and ASA as reference plots consistently showed lowest activities. For PAO, it was found that soil pH, rather than biochar rates, was a driving environmental variable. For ASA, the methodological approach was challenged by product sorption, but results did not suggest that biochar significantly stimulated the enzyme activity. Crop yields of maize in field experiments with 10–100 Mg biochar ha?1 were unaffected by biochar except for a negative effect of the highest annual rates of 50 Mg ha?1 in the first year after application. In conclusion, the present wood-based biochar poorly affected the measured microbial processes and generally resulted in similar crop yields in reference and biochar-amended soil plots.  相似文献   

14.
Impacts of crop residue biochar on soil C and N dynamics have been found to be subtly inconsistent in diverse soils. In the present study, three soils differing in texture (loamy sand, sandy clay loam and clay) were amended with different rates (0%, 0.5%, 1%, 2% and 4%) of rice-residue biochar and incubated at 25°C for 60 days. Soil respiration was measured throughout the incubation period whereas, microbial biomass C (MBC), dissolved organic C (DOC), NH4+-N and NO3N were analysed after 2, 7, 14, 28 and 60 days of incubation. Carbon mineralization differed significantly between the soils with loamy sand evolving the greatest CO2 followed by sandy clay loam and clay. Likewise, irrespective of the sampling period, MBC, DOC, NH4+-N and NO3N increased significantly with increasing rate of biochar addition, with consistently higher values in loamy sand than the other two soils. Furthermore, regardless of the biochar rates, NO3-N concentration increased significantly with increasing period of incubation, but in contrast, NH4+-N temporarily increased and thereafter, decreased until day 60 in all soils. It is concluded that C and N mineralization in the biochar amended soils varied with the texture and native organic C status of the soils.  相似文献   

15.
Abstract

Rice is a plant that requires high levels of silica (Si). As a silicate (SiO2) source to rice, coal fly ash (hereafter, fly ash), which has an alkaline pH and high available silicate and boron (B) contents, was mixed with phosphor‐gypsum (hereafter, gypsum, 50%, wt wt?1), a by‐product from the production of phosphate fertilizer, to improve the fly ash limitation. Field experiments were carried out to evaluate the effect of the mixture on soil properties and rice (Oryza sativa) productivity in silt loam (SiL) and loamy sand (LS) soils to which 0 (FG 0), 20 (FG 20), 40 (FG 40), and 60 (FG 60) Mg ha?1 were added. The mixture increased the amount of available silicate and exchangeable calcium (Ca) contents in the soils and the uptake of silicate by rice plant. The mixture did not result in accumulation of heavy metals in soil and an excessive uptake of heavy metals by the rice grain. The available boron content in soil increased with the mixture application levels up to 1.42 mg kg?1 following the application of 60 Mg ha?1 but did not show toxicity. The mixture increased significantly rice yield and showed the highest yields following the addition of 30–40 Mg ha?1 in two soils. It is concluded that the fly ash and gypsum mixture could be a good source of inorganic soil amendments to restore the soil nutrient balance in rice paddy soil.  相似文献   

16.
Soil degradation affects soil properties such as structure, water retention, porosity, electrical conductivity (EC), sodium adsorption ratio (SAR), and soil flora and fauna. This study was conducted to evaluate the response of contrasting textured soils irrigated with water having different EC:SAR ratios along with amendments: gypsum (G), farm manure (FM), and mulch (M). Water of different qualities viz. EC 0.6 + SAR 6, EC 1.0 + SAR 12, EC 2.0 + SAR 18, and EC 4.0 + SAR 30 was used in different textured soils with G at 100% soil gypsum requirement, FM at 10 Mg ha?1, and M as wheat straw was added on surface soil at 10 Mg ha?1. Results revealed that the applied amendments in soils significantly decreased pHs and electrical conductivity (ECe) of saturated paste and SAR. Four pore volumes of applied water with leaching fraction 0.75, 0.77, and 0.78 removed salts 3008, 4965, and 5048 kg ha?1 in loamy sand, silty clay loam, and sandy clay loam soils, respectively. First four irrigations with LF of 0.82, 0.79, 0.75, and 0.71, removed 5682, 5000, 3967, and 2941 kg ha?1 salts, respectively. The decreasing order for salt removal with amendments was FM > G > M > C with LF = 0.85, 0.84, 0.71, and 0.68, respectively. This study highlights a potential role of soil textures to initiate any mega program for reclamation of saline-sodic soils in the perspective of national development strategies.  相似文献   

17.
The continuous use of heavy machinery and vehicular traffic on agricultural land led to an increase in soil compaction, which reduces crop yield and deteriorates the physical conditions of the soil. A pot experiment was conducted under greenhouse conditions to study the effects of induced soil compaction on growth and yield of two wheat (Triticum aestivum) varieties grown under two different soil textures, sandy loam and sandy clay loam. Three compaction levels [C0, C1, and C2 (0, 10 and 20 beatings)], two textural classes (sandy loam and sandy clay loam), and two genotypes of wheat were selected for the experiment. Results indicated that induced soil compaction adversely affected the bulk density (BD) and total porosity of soil in both sandy loam and sandy clay loam soils. Compaction progressively increased soil BD from 1.19 Mg m?3 in the control to 1.27 Mg m?3 in C1 and 1.40 Mg m?3 in C2 in sandy loam soil while the corresponding increase in BD in sandy clay loam was 1.56 Mg m?3 in C1 and 1.73 Mg m?3 in C2 compared to 1.24 Mg m?3 in the control. On the other hand, compaction tended to decrease total porosity of soil. In case of sandy loam, porosity declined by 5% and 17% in C1 and C2, respectively, and declined in sandy clay loam by 29% and 54%, respectively. Averaged over genotypes and textures, shoot length decreased by 15% and 26% at C1 and C2, respectively, and straw yield decreased by 21% and 61%, respectively. The compaction levels C1 and C2 significantly decreased grain yield by 12% and 41%, respectively, over the control. The deleterious effect of compaction was more pronounced on root elongation and root mass, and compaction levels C1 and C2 decreased root length by 47% and 95% and root mass by 41% and 114%, respectively, over the control. Response of soil texture to compaction was significant for almost all the parameters, and the detrimental effects of soil compaction were greater in sandy clay loam compared to sandy loam soil. The results from the experiment revealed that soil compaction adversely affected soil physical conditions, thereby restricting the root growth, which in turn may affect the whole plant growth and grain yield. Therefore, appropriate measures to avoid damaging effects of compaction on soil physical conditions should be practiced. These measures may include soil management by periodic chiseling, controlled traffic, conservation tillage, addition of organic manures, and incorporating crops with deep tap root systems in a rotation cycle.  相似文献   

18.
Abstract

Four rates of straw (0, 4, 8 and 12 t ha?1 yr?1) were incorporated in a field experiment with continuous spring barley. The experiment was conducted on a sandy soil (5.5% clay) and a sandy loam soil (11.2% clay). After eight years, the straw incorporation was combined with catch-crop growing with and without winter application of animal slurry and also spring fertilization with mineral fertilizer (0, 50, 100 or 125 kg N ha?1 yr?1). The combined experiment was conducted for three lyears on the sandy soil and for four years on the sandy loam soil. The effects on barley dry matter yield and N uptake are presented together with the long-term effects of the straw incorporations on crop growth and soil C and N. Grain yield on the sandy loam was unaffected by straw incorporation. On the sandy soil the highest straw application rates reduced grain yield in the unfertilized barley. When the barley received mineral fertilizer at recommended levels (100 kg N ha?1 yr?1), grain yield on this soil was also unaffected by the high straw rates. Including a catch crop had a positive effect on the grain yield of barley on both soils. The total N uptake in grain and straw generally increased with straw application up to 8 t ha?1 yr?1. With the highest straw application rate (12 t ha?1 yr?1), the total N uptake decreased but still exceeded N uptake in barley grown with straw removal. The barley accumulated higher amounts of N when a catch crop was included. The total N uptake in the barley was significantly higher after animal slurry application. The extra N uptake, however, was much lower than the amounts of N applied with the slurry. Incorporation of straw had only a small influence on N uptake after slurry application. The straw, therefore, was not able to store the applied N during winter. In the two four-year periods before the combined experiment, grain yield on the sandy loam was generally negatively affected by straw incorporations. In the second period, N uptake began to show a positive effect of the straw. On the sandy soil, grain yield and N uptake during the whole period were generally positively affected by the straw incorporations except for the highest straw rate (12 t ha?1 yr?1). The sandy loam soil showed higher increases in C and N content after the repeated straw incorporations and catch-crop growing than the sandy soil. When application of animal slurry was combined with the catch crop, no further increases in soil C and N were found relative to soil where a catch crop was grown without slurry application. Large amounts of the N applied with the slurry may therefore have been lost by denitrification or nitrate leaching.  相似文献   

19.
In extensive farmer‐led trials practicing conservation farming (CF) in three regions of Zambia (Mongu: sandy soils; Kaoma: sandy or loamy sand soils; Mkushi: sandy loam or loamy soils), we studied the effects of biochar made of maize cobs (0, 2, and 6 t ha?1 corresponding to 0, 0.8, and 2.5% per basin) at different fertilizer rates of NPK and urea on crop yield of maize (Zea mays) and groundnuts (Arachis hypogaea). Conservation farming in this case combines minimum tillage (how basins), crop rotation and residue retention. For the first time, the effect of biochar on in situ soil nutrient supply rates [determined by buried Plant Root Simulator (PRS?) exchange resins] was studied, as well as the effects of biochar on elemental composition of maize. Effects of 0–10% (w:w) biochar addition on soil physical and soil chemical properties were determined in the laboratory. At all sites there was a consistent positive response in crop yield upon the addition of biochar. However, due to a great variability between farms there were no significant differences in absolute yields between the treatments. In the sandy soils at Mongu, relative yields (i.e., percentage yield with biochar relative to the same fertilizer rate without biochar) of maize grains and maize stover were significantly increased at recommended fertilizer rates (232 ± 60%) and at half the recommended rate (128 ± 6%), respectively. In addition, biochar significantly increased concentrations of K and P in maize stover. In situ soil nutrient supply rates as measured by PRS?‐probes were highly spatially variable with no consistent effects of the different treatments in the three regions. By contrast, the fraction of plant available water (Vol.‐%) significantly increased upon the addition of biochar in all three soils. The increase caused by 10% biochar addition was of factor 2.5 in Mongu (from 4.5% to 11.2%) and 1.2 in both Kaoma (from 14.7% to 18.2%) and Mkushi (from 18.2% to 22.7%). Cation exchange capacity, pH, and exchangeable K significantly increased upon the addition of 10% (w:w) biochar in all three regions with a subsequent increase in base saturation and decrease of available Al3+. Our findings suggest that the addition of biochar in combination with CF might have a positive impact on crop growth and that this positive effect is mainly caused by increases in plant‐available water and decreased available Al.  相似文献   

20.
Switchgrass (Panicum virgatum L.) is a perennial biofuel crop with a high production potential and suitable for growth on marginal land. This study investigates the long-term planting effect of switchgrass on the dynamics of soil moisture, pH, organic carbon (SOC), total nitrogen (TN), nitrate nitrogen (NO3-N) and ammonium nitrogen (NH4+-N) for soils to a depth of 90-cm in a sandy wasteland, Inner Mongolia, China. After crop harvesting in 2015, soil samples were collected from under switchgrass stands established in 2006, 2008, and 2009, native mixture, and a control that was virgin sand. Averaged across six layers, soil moisture and pH was significantly higher under the native mixture than switchgrass or virgin sand. However, SOC and TN were significantly higher under the 2006 switchgrass stand when compared with all other vegetation treatments and the control. The SOC and TN increased from 2.37 and 0.26 g kg?1, respectively, for 2009 switchgrass stand, and to 3.21 and 0.42 g kg?1, respectively, for 2006 switchgrass stand. Meanwhile, SOC and TN contents were 2.51 and 0.27 g kg?1, respectively, under the native mixture. The soil beneath switchgrass and native mixture showed the highest NO3-N and NH4+-N, respectively. The soil moisture increased with depth while SOC, TN, and NO3-N decreased. An obvious trend of increasing moisture, SOC, TN, and mineral N was observed with increasing switchgrass stand age. Thus, growing switchgrass on sandy soils can enhance SOC and TN, improve the availability of mineral N, and generate more appropriate pH conditions for this energy cropping system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号