首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The water balance of a certain soil profile in a certain time interval is subjected to changes of soil water content within the respective profile, and fluxes at its upper and lower boundary. Weighing lysimeters are valuable instruments for water‐balance studies. Typically, mass changes—thus, changes of soil profile water content—are detected by a weighing system, while seepage water outflow is measured by a tipping bucket, and precipitation data originate from a rain gauge. Hence, evapotranspiration as unknown component can be determined by solving a simple water‐balance equation. However, using separately measured precipitation data may cause implausible (negative) evapotranspiration. In this study, change of soil profile water content, seepage water, precipitation, and evapotranspiration were determined directly from 10‐min lysimeter data from 2011. Precipitation measured with the lysimeter was in total 20% greater than rain‐gauge values. Even dew formation was measured and considered as water‐balance component; however, its total amount was rather low. Evapotranspiration calculated on daily and hourly base indicated a sound correlation with measured data, but measured values were considerably smaller. Both calculated and measured dew amount were of the same magnitude. Comparison of lysimeter evapotranspiration with daily calculations (neglecting dew) and hourly computation (considering dew) delivered similar results. Generally, the utilized lysimeter facility and the specific data management provided sound water‐balance components with high accuracy and temporal resolution, respectively.  相似文献   

2.
Presently, the soil water balance of flood‐influenced soils in fluvial plains is insufficiently described. The new development of a weighable groundwater lysimeter is the basis for recording the water‐balance components precipitation, evapotranspiration, groundwater recharge, capillary rise, and interaction with the water course. Soil‐hydrologic measuring setups at two floodplain sites of the Elbe river serve for direct comparability of lysimeter measurements with data obtained on site. A groundwater control was designed for lysimeters that automatically adjusts the current groundwater level at the floodplain measuring setups and quantifies inflow into or outflow from the lysimeter. It turned out that the lysimeter developed is capable of identifying the individual water‐balance quantities at high accuracy. Contrary to previous assumptions, it was possible to prove groundwater recharge for the floodplain sites.  相似文献   

3.
A three‐year long lysimeter experiment with a fine‐grained aluminum (Al) recycling by‐product and a mixture of this by‐product and a coal combustion waste was conducted. The wastes were proposed as possible soil substitutes in an engineered surface barrier covering a potash mining residue mount. To evaluate the suitability of the wastes as surface barrier material, their hydrological behavior under field conditions must be known. Lysimeter experiments provide one means to study the hydrological behavior of soils or soil‐like materials. However, it is difficult to estimate the long‐term hydrological behavior from short‐term lysimeter studies. The present study was conducted therefore to derive from short‐term lysimeter observations the long‐term hydrological behavior of the two waste materials. The lysimeter data were used to calibrate the one‐dimensional soil water flow model HYDRUS‐1D. With the calibrated model, hydrological simulations for the site of the residue mount were carried out for a period of 31 yr. Calculated long‐term annual seepage from the lysimeters was 237 mm for the pure Al waste and 186 mm for the mixture, or 39% and 24% of the average annual precipitation (764 mm). The average discharge of the bare mount is 482 mm or 63%. We conclude that a soil cover could considerably reduce the discharge and that the mixture is better suited as surface barrier than the pure Al waste.  相似文献   

4.
Concurrent observations of leaf water potential, stomatal diffusion resistance and canopy temperature were made on two plots of wheat (Triticum aestivum L. cv. Anza) growing at Phoenix, Arizona under two different soil water conditions. These data were further complemented by weather observations and lysimeter measurements of total evaporative water loss from the plots. Transpiration fluxes for each plot were estimated by an aerodynamic-energy balance approach and compared with the lysimeter data. Plant resistances were computed from the transpiration flux results and the leaf water potential measurements using van den Honert's equation, while canopy resistances were also computed from the transpiration flux using Monteith's equation. The calculated plant resistance decreased by a factor of almost two from morning to mid-afternoon whereas the ratio of canopy and stomatal resistances was constant during most of the day.  相似文献   

5.
A two-domain model of water movement, storage and drainage in a cracked clay soil has been applied and tested in the field by irrigating an instrumented lysimeter constructed around a 2.0 m length of mole drain. Measurements of drain outflow rates and of increases in soil water content were compared with model predictions. The model predicted satisfactorily the peak drain outflow rate and subsequent drain recession although there was a tendency for the model to underestimate the time to the start of drainage. Good agreement with the measured recharge profile was generally found.  相似文献   

6.
The determination of precipitation (P) is still a challenge, but central for quantifying soil water and element balances. Time series of mass changes (ΔM) from high precision weighing lysimeter may be used to estimate P if deep drainage rates are determined independently. High temporal resolution, however, is accompanied by problems such as correlated data and noise. The objective was to analyze the temporal autocorrelation (AC) in ΔM time series and to identify temporal resolutions for determining uncorrelated P rates. Minute‐based time series of ΔM are analyzed; the data have been recorded at the UMS Science Lysimeters that are located in Dedelow (northeast Germany) as part of the TERENO SoilCan lysimeter network. Periods in 2012 and 2013 were selected in which the wind speed was below 6 ms?1. Data noise‐correction was carried out by using a moving average before the ΔM values cumulated over 60, 30, and 10 min intervals were compared. On a monthly basis, the temporal AC lengths for ΔM were larger in spring (68 min), autumn (62 min), and winter (76 min) than in the summer (23 min). These AC lengths reflected mainly the effect of differences in P‐rates and ‐duration between lower‐intensity rainfall and shorter summer storms. The monthly sums of P based on the 60‐min interval were up to 20% lower than those obtained by using the 10‐min intervals. For P‐values obtained by summing up the ΔM over periods shorter than the autocorrelation length, oscillated fluctuations in ΔM did not cancel out within an interval. The temporal autocorrelation in the highly‐resolved lysimeter data limited the evaluation of ΔM time series. Compared to rain gauge data, the P‐rates obtained from the weighing lysimeters were generally higher. However, this difference decreased when increasing the time interval for cumulating mass changes. Cumulated positive ΔM values based on time intervals larger than the AC length (e.g., 60 min) provided an optimal approximation of the quantity of P, but on the expense of a loss in temporal resolution limited by the AC lengths. Smoothing could reduce noise in the original lysimeter data; however, not the validity problems that are related to the temporal AC.  相似文献   

7.
Empirical field evidence for changing chemical processes in soils caused by atmospheric deposition of pollutants consists of: (1) Long-term water quality data including total dissolved solids, concentrations of specific metals (e.g. Ca), and conductivity; (2) Cation exchange capacity and base saturation values for soils located on precipitation pH gradients; (3) Lysimeter studies; and (4) Chemical analysis of organic soils on precipitation pH and metal gradients. For well-drained organic soils, as precipitation pH decreases, metals are differentially leached at an accelerated rate (Mn>Ca>Mg≥Zn>Cd and Na>Al). Experimental field and laboratory lysimeter studies on soil columns yield similar results, with increases in leaching rates for soil solutions with pH=3 up to 100 × values for soil solutions with pH=5. Nearly 100% of the Pb from precipitation is accumulating in the organic soil layer or sediments. Zn is accumulating in soils and sediments where the pH's of precipitation, soil solutions, and surface waters are generally above 5 to 5.5. At lower pH values Zn and other chemically similar elements are desorbed/leached (net) at an accelerated rate. Chemical analyses of dated sediment cores from high and low altitude lakes, with drainage basins relatively undisturbed for the last 200+ yr, reveal that increased deposition of metals on a regional scale started in the northeastern United States as early as 1880, consistent with increased fossil fuel consumption. This suggests acidified precipitation as early as 1880. Cores from historically acidified lakes (pH<≈5.3 to 5.5) indicate that, as acidification of surface waters occurs (caused by acidic deposition), concentrations of Zn, Mn, and Ca decrease in the sediment. Apparently the metals are leached from the detritus prior to sedimentation. This conclusion results from data from experimental acidification of sediment cores and the general observation that precipitation pH is generally ≥0.5 pH units lower than lake water pH. Accelerated leaching of soil in New England dates to earlier than 1900.  相似文献   

8.
民勤沙区非称量式蒸渗仪组扩容及其自动化监控系统设计   总被引:1,自引:0,他引:1  
为解决民勤沙区非称量式蒸渗仪观测系统自动化程度低、尺度扩展性不足及可靠性差等问题,建立民勤沙区非称量蒸渗仪试验场720 m~2,更新改造30个荒漠植物个体蒸渗仪,扩容建造12个荒漠植物小群体蒸渗仪,设计非称量式蒸渗仪自动化监控系统,该系统采用分布式监控方案,以上位工控机为中心,基于智能仪表(RS485总线通讯、ISM无线)、ISM频段无线通信及TCP/IP网络协议,布设了多个下位机监控点,可自动控制蒸渗仪恒定水位,能及时补水、排水并进行水量计算,自动监测蒸渗仪土壤水分含量,同时具备实时数据采集与处理、信息通信、数据库录入、历史数据存储、数据报表打印、故障报警、现场设备运行状况显示等功能,用户可通过因特网对现场设备工作状态进行远程监控、异常情况报警处理。系统测试得到,压力传感器数据回归分析误差±2.2%,点滴计数器为±2.0%,水分传感器±12.5%。该研究扩展了荒漠植物定位观测的尺度范围,实现了荒漠植物蒸渗观测的自动化监控,为荒漠植物蒸渗研究提供可靠的试验平台。  相似文献   

9.
针对Penman Monteith模型冠层阻力的参数化问题,以南京地区2012-2013年水稻为研究对象,参照Jarvis的气孔阻力模型,建立了水稻的冠层阻力rc与气象、环境因子(太阳净辐射、饱和水汽压差、气温和土壤水分)的关系模型,并以蒸渗仪实测蒸散量资料为对照,对模型的精度进行检验。结果表明,所建水稻冠层阻力模型的拟合度2012年为0.911,2013年为0.810,将模型应用于Penman Monteith公式计算稻田蒸散量,两年的拟合精度分别为0.967和0.953,能较精确地估算稻田耗水量。对模型的敏感性分析表明,饱和水汽压差的拟合参数a2对模型的影响最显著。模型在一定程度上解决了冠层阻力计算复杂,观测量大且易产生观测误差的问题,可作为稻田蒸散的计算方法之一。  相似文献   

10.
Quantification of soil water flow is a prerequisite to accurate prediction of solute transfer within the unsaturated zone. The monitoring of these fluxes is challenging because the results are required to answer both scientific and practical questions regarding protection of groundwater, sustainable management of agricultural, forestry, mining or set‐aside industrial areas, reducing leachate loss from landfills or explaining the fate of environmentally harmful substances. Both indirect and direct methods exist for estimating water‐flux rates and have been used with varying success. In Europe, the use of direct lysimetry methods for measuring water and solute fluxes in soils has increased in recent years. This technique ensures reliable drainage data, but requires relatively large investment and maintenance expenses. Other research groups, especially in the USA, have developed alternative techniques. In this paper we compare the functioning of a passive‐wick sampler, especially the deep‐drainage meter type (DDM), with two different types of drainage lysimeters (weighing and non‐weighing) under field conditions in Germany for the measurement period from May 2004 until April 2009. The study showed that under sandy soil conditions no significant differences occurred between the measurements from DDM and both drainage lysimeter types. Only in periods with increased precipitation was there a tendency of drainage over‐estimation by the DDM in comparison with the lysimeters tested. For longer periods, no significant differences in the amount of drainage or the pattern of drainage formation were found between weighing and non‐weighing gravitation lysimeters. The practical use of DDMs is restricted because the groundwater level must be >2 m from the soil surface. Suggestions are made for the technical improvement of the DDM as well as the testing of the device with more cohesive soils.  相似文献   

11.
农田耗水构成、规律及影响因素分析   总被引:5,自引:2,他引:3  
农业用水占总用水量的70%左右, 对农田耗水规律和过程的研究对发展区域节水农业有着非常重要的作用。本文通过回顾中国科学院栾城农业生态系统试验站建站以来在农田水分循环和节水方面的研究进展,对长期定位试验下不同灌溉水量的耗水规律、农田耗水过程及影响农田耗水的因素进行了分析。通过利用水量平衡法和大型蒸渗仪测定等方法确定蒸散量, 用小型蒸发器测定土壤蒸发。长期定位试验的结果表明: 在该区域冬小麦-夏玉米一年两作的种植方式下, 这两种作物耗水量相似, 随着灌溉量的增加, 农田耗水有增加的趋势; 冬小麦的农田耗水量在283~493 mm 之间, 灌溉水量较小处理的变异系数较大。利用大型称重式蒸渗仪和自制的微型蒸发器(MLS)测定的冬小麦和夏玉米季的棵间蒸发均占蒸散量的1/3。因此, 在此基础上可以利用秸秆覆盖减少土壤蒸发且效果非常明显, 20 年的试验表明秸秆覆盖每年可以减少土壤蒸发40~50 mm, 冬小麦秸秆覆盖夏玉米田可以抑制棵间蒸发的58.0%, 夏玉米秸秆覆盖冬小麦田可以抑制蒸发40.4%。长期耕作的定位试验表明: 不同耕作方式下的土壤蒸发也存在明显的差异, 免耕加秸秆覆盖处理的蒸发最小, 而深耕的最大。同时, 不同灌溉制度、种植方式和冠层结构均会对农田耗水产生影响。这些研究结果为以后的节水理论和技术发展提供了依据。  相似文献   

12.
This study aimed to quantify the water balance components at a grassland and a forest site representative of the Atlantic Forest biome in southern Brazil using drainage lysimeters. Since it was not possible to place mature trees on the forest lysimeter, it was planted with young trees and understory vegetation. Data from this lysimeter and computations with the water balance and the Penman-Monteith equation were then used to assess the values of the water balance components for the mature forest.Total precipitation during the study period was 2308 mm. In the forest environment, 46% thereof was intercepted by the canopy from where it later evaporated. Hence, much less rain reached the ground than under grassland. Runoff from both sites was <1% of precipitation and therefore not a significant factor in the water balance. Cumulative drainage amounted to 1136 mm from grassland: from the mature forest, it was estimated to be 389 mm. There were two reasons for this low value under forest: Interception prevented a lot of water from reaching the ground, and the actual evapotranspiration from the mature forest was much higher than from grassland (1231 mm compared to 1964 mm).  相似文献   

13.
喷灌对冠层水汽交换的影响   总被引:2,自引:0,他引:2  
以冬小麦为研究对象,研究了喷灌对冠层内外水汽交换的影响。研究结果表明喷灌影响了冠层内外水汽交换的过程。喷灌对冠层顶部的蒸发力影响不显著,对冠层内的蒸发力影响较大,喷灌冠层内的农田蒸发力小于地面灌冠层内同一高度的农田蒸发力。在地面灌和喷灌同时灌溉的情况下,地面灌农田的土面蒸发量大于喷灌农田;与白天相比,夜间地面灌和喷灌农田的土面蒸发都大大减少。喷灌农田的作物蒸散量通常小于地面灌农田。喷灌小麦晚上出现凝结水的量大于地面灌农田。  相似文献   

14.
Exact information about soil water flow is needed to quantify solute transfer within the unsaturated zone. Water flux densities are often measured indirectly, e.g., with water‐balance, water content–change, or tracer methods, and, therefore, often predicted with notable uncertainties. Over the last years, direct lysimetry methods have been increasingly used to study water and solute migration in soil profiles. A large weighable lysimeter is the best method to obtain reliable drainage data, but it requires relatively high investment and maintenance expenses. To reduce cost and improve comparability with undisturbed sites, a new technology to collect large monolithic soil columns with a surface area of 0.5–2 m2 and a depth of 1–3 m as well as a containerized polyethylene (PE‐HD) lysimeter station were developed. In addition, the station was fitted with a new high‐precision weighing technique. In this paper, the latter is demonstrated with data from a newly constructed gravitation lysimeter. Besides recording rainfall and seepage, its weighing precision makes it possible to register mass input by dew, fog, or rime. It also permits a very accurate calculation of actual evapotranspiration. Because this new type of lysimeter allows a very high temporal resolution, it is ideally suited to develop and test models for soil hydrologic processes.  相似文献   

15.
Modelling soil water flow and solute transport under field conditions requires the knowledge of many parameters that are difficult to determine directly. Values determined on small isolated samples in the laboratory are often not representative of field situations. We investigated the applicability of inverse modelling to a soil–plant system in lysimeter experiments. We also tested whether parameters obtained from one experiment could be applied to another with the same soil. In a lysimeter planted with young trees, we first did a multistep drainage experiment and then a long‐term bromide tracer experiment with atmospheric boundary conditions at the soil surface. To estimate the unsaturated hydraulic properties, we linked the inverse program SUFI (Sequential Uncertainty FItting) to the flow and transport model HYDRUS5. A comparison of several scenarios showed that the resulting values of parameters depended strongly on the data used for calibration and the formulation of the objective function. The results suggested that inverse modelling could be used to identify important processes. Inversely obtained parameters gave better predictions for a second experiment when more variables were considered in the objective function and when the range of hydraulic conditions was wider. Furthermore, with retention curves directly fitted to measured water retention data we achieved acceptable results. Despite some limitations, the inverse approach was found to be a sound and useful procedure for estimating parameters of a complex system involving water uptake by roots, solute transport and unsaturated flow.  相似文献   

16.
In earlier crop rotation studies in which grain sorghum (Sorghum bicolor (L.) Moench) followed winter wheat (Triticum aestivum L.) after a 10- to 11-month fallow period during which the wheat residues were managed by different tillage methods, sorghum yields increased in response to increases in soil water content at sorghum planting time. Similar results were obtained when residues were placed on the surface at the start of the fallow period. The soil water contents at planting time were positively correlated with amounts of wheat residue maintained on the soil surface during fallow.

The studies also suggested that sorghum responded positively to growing season precipitation when increasing of residue remained on the soil during the growing season. The objective of this study was to evaluate this response to growing season precipitation through statistical analyses of data from five earlier tillage and residue placement studies. Regression analyses of data from the studies showed that sorghum grain yields increased with increasing amounts of surface residues at planting time. Differences in response of grain yield to precipitation were greatest in the vegetative period. For the period, grain yields increased 0.014 Mg ha−1 per mm of precipitation when residue amounts ranged from 0 to 0.4 Mg ha−1 per mm of precipitation when residue amounts ranged from 0 to 0.4 Mg ha−1, and 0.027 Mg ha−1 per mm of precipitation when residue amounts were 3.2 Mg ha−1.

Differences in response to rainfall in the heading and grain filling period were lower or negligible. High responses for the vegetative period were attributed to the residues which increased infiltration and reduced evaporation before canopy development. Lower responses during heading and lack of responses during grain filling were attributed to: (1) canopy development, which minimized the effect of residues on imfiltration and evaporation; (2) soil cracking, which resulted in similar infiltration with all treatments; and (3) residue decomposition, which minimized differences among residue amounts on the soil with different treatments.  相似文献   


17.
农田表面温度是土壤、作物和大气之间进行水/热交换传输的重要参数,也是灌区遥感反演模型的重要参量。在利用热红外传感器连续获取农田表面温度数据时,由于作物的生长发育处于动态变化中,农田表面温度数据往往混合了作物冠层温度和土壤表面温度。为精准甄别和区分田间海量监测数据,该研究结合Logistic作物生长模型,通过考虑作物生长状态指标叶面积指数(Leaf Area Index,LAI)和作物冠层高度及其关键节点,构建了农田表面温度监测数据的甄别算法。以内蒙古永济试验站玉米和向日葵实测数据对算法进行验证,并利用解放闸灌域和吉林省长春试验站的玉米和向日葵田间观测数据进行校核。结果表明:考虑LAI和作物冠层高度并利用Logistic模型模拟的关键节点来建立甄别算法,能够为农田稀疏植被表面温度数据甄别提供高效判定。与人工测量值对比,冠层温度优化幅度在10%左右(相对误差),土壤表面温度优化幅度超过5%;甄别方法可以明显提升冠层和土壤表面温度的获取精度。甄别算法中校正因子数值需根据作物种植密度及LAI确定,其中玉米校正因子选择作物冠层温度校正因子0.9,土壤表面温度校正因子1.1;向日葵校正因子以叶面积指数最大值4为基础,选取冠层温度校正因子0.7,土壤表面温度校正因子1.2;在不同地区应用时,向日葵叶面积指数最大值每增加1,推荐冠层温度校正因子调高0.35,土壤表面温度校正因子调低0.18。研究结果为精量灌溉提供技术支撑,提高了农田监测数据的性能,为无人机遥感和卫星遥感数据的精量甄别提供算法和验证。  相似文献   

18.
Abstract

Concerns about surface water pollution with phosphorus (P) from biosolids and manures are prompting land application guidelines that limit residual application rates to those based on crop‐P removals (typically, no more than 2 Mg ha?1). Such rates are so low that the beneficial recycling of residuals is seriously threatened. Greater application rates [i.e., nitrogen (N) based] require judicious selection of residuals (low soluble P contents) and/or soil amendments, such as drinking‐water treatment residuals (WTRs) to control soluble P concentration. Although in the short term, WTR is effective in reducing soluble P levels, field studies to evaluate the stability of WTR‐immobilized P are scarce. The initial objective of this study was to determine the effects of WTR on P losses to surface and groundwater from Florida sand amended with different P sources (biosolids, manure, and inorganic fertilizer) applied at P‐ and N‐based rates. However, this objective could not be pursued to its logical conclusion because of severe flooding of the field 17 months after amendment application. The flooding appears to have compromised the treatments (moved soil and associated amendments across plots), which forced early termination of the experiment. Measurements taken after the flooding, however, provided a unique opportunity to assess the usefulness of WTR in controlling P solubility following severe flooding of WTR‐amended plots. Soluble P values measured from WTR‐amended A horizon plots were significantly lower than the plots without WTR amendment throughout the study. Phosphorus‐specific measurements in the Bh horizon suggest that excessive P leaching apparently occurred in the plots without WTR amendment and the control plots, whereas very little or no P leaching occurred in the WTR‐amended plots. Thus, despite extensive hurricane‐induced flooding of the fields, the WTR was able immobilize P and prevent excessive P leaching. We conclude that WTR could reduce offsite P transport, which will lower P loads into nutrient‐sensitive surface water systems, and that WTR‐immobilized P is stable even under severe flooding conditions.  相似文献   

19.
A proportion of dissolved organic phosphorus (DOP) in soil leachates is readily available for uptake by aquatic organisms and, therefore, can represent a hazard to surface water quality. A study was conducted to characterise DOP in water extracts and soil P fractions of lysimeter soils (pasture before and after, and cultivated soil after leaching to simulate a wet winter-autumn) from a field trial. Data on DOP in drainage waters from the field trial were also generated. In water extracts, used as a surrogate for soil solution and drainage water, 70-90% of the total dissolved P (TDP) concentration was made up of DOP, of which 40% was hydrolysable by phosphatase enzymes. Proportions of hydrolysable DOP to TDP in drainage waters of the field trial were less than in water extracts due to enhanced DRP loss via dung inputs, but still large at 35% of DOP. Analysis of lysimeter soils by sequential fractionation indicated that several organic P fractions changed with land use and due to leaching. Further investigation using NaOH-EDTA extracts and 31P nuclear magnetic resonance spectroscopy indicated that the greatest changes were a decrease in the concentrations of orthophosphate diester P and an increase in orthophosphate monoester P. This was attributed to mineralization by cultivation and plant roots and also to the leaching of mobile diester P. This study suggests that in such soils with a dynamic soil organic P pool, the concentration of readily bioavailable P in soil solution and drainage waters and the potential to impair surface water quality cannot be determined from the DRP concentration alone.  相似文献   

20.
A simple model to predict soil water components and the CO2 release for peat soils is presented. It can be used to determine plant water uptake and the CO2 release as a result of peat mineralization for different types of peat soils, various climate conditions, and groundwater levels. The model considers the thickness of the root zone, its hydraulic characteristics (pF, Ku), the groundwater depth and a soil‐specific function to predict the CO2 release as a result of peat mineralization. The latter is a mathematical function considering soil temperature and soil matric potential. It is based on measurements from soil cores at varying temperatures and soil water contents using a respiricond equipment. Data was analyzed using nonlinear multiple regression analysis. As a result, CO2 release equations were gained and incorporated into a soil water simulation model. Groundwater lysimeter measurements were used for model calibration of soil water components, CO2 release was adapted according long‐term lysimeter data of Mundel (1976). Peat soils have a negative water balance for groundwater depth conditions up to 80—100 cm below surface. Results demonstrate the necessity of a high soil water content i.e. shallow groundwater to avoid peat mineralization and soil degradation. CO2 losses increase with the thickness of the rooted soil zone and decreases with the degree of soil degradation. Especially the combination of deep groundwater level and high water balance deficits during the vegetation period leads to tremendous CO2 losses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号