首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although Ni is officially recognized as an essential micronutrient for all higher plants, the majority of the published research on soil availability of Ni focuses on its hazardous role as a heavy metal. The objective of the study was to evaluate certain Ni soil tests in uncontaminated soils for an initial estimation of its sufficiency critical levels. Nickel was extracted from 30 cultivated soils employing the following extraction methods: DTPA, AB‐DTPA, AAAc‐EDTA, Mehlich‐3, 0.1 M HCl, and 0.1 M HNO3. Ryegrass (Lolium perenne L.) was grown in pots containing the soils, harvested five times, certain plant parameters were determined, and the Cate–Nelson procedures were used for Ni critical levels determination. Among the six methods, HCl was the least reliable extractant for the evaluation of soil available Ni, whereas the most significant (p ≤ 5%) relationships between Ni concentration or Ni uptake by ryegrass and Ni soil tests were consistently obtained for AAAc‐EDTA or Mehlich‐3 extractable Ni. In many cases, > 80% of the variability of Ni concentration or uptake by ryegrass was explained by these two soil tests without the inclusion of other soil properties that affect Ni bioavailability. Sufficiency critical levels of Ni in soil were ≈ 2 mg kg–1 for both methods. Consequently, as an initial approach, concentrations of AAAc‐EDTA or Mehlich‐3 extractable Ni < 2 mg kg–1 are probably a good guide to indicate soils that will respond to Ni fertilization.  相似文献   

2.
Abstract

Optimum crop production depends, among other things, on the maintenance of adequate plant nutrients in the root zone. The objective of this study was to find a reliable index for assessing needs for supplemental phosphorus (P) in soils of Morogoro District, Tanzania. Six indices of P availability, namely: Bray and Kurtz No. 1 (BK1), Bray and KurtzNo.2 (BK2), Mehlich 1, Mehlich 3, Olsen and ammonium bicarbonate‐DTPA (AB‐DTPA), were evaluated. Evaluation of the P indices involved relating extractable P contents by different methods with crop response data expressed as relative yields. The response data was obtained from pot trials with soil samples from ten repesentative soils designated as benchmark soils of the district. Treatments were absolute control, 0, 10, 20, and 30 mg P kg‐1 of soil. Correlation of maize relative yields with soil test values by the six indices of P availability resulted in correlation coefficients ranging from 0.65 to 0.90. The Olsen method gave the highest r value suggesting that it was superior to the others. However, using the Cate and Nelson approach, the Olsen and ammonium bicarbonate‐DTPA methods were found to be at par and superior to the others. They each accounted for 76% of the variations observed in maize relative yields, respectively. The critical P levels for the indices were 10.50 mg P kg‐1 for Olsen and 2.80 mg P kg‐1 for the AB‐DTPA method. Phosphorus fertility categories were delineated in relation to Olsen extractable P as: low (<6.50 mg P kg‐1), medium (6.50 to 23.0 mg P kg‐1), and high (>23.0 mg P kg‐1). Based on this classification it was determined that 16%, 25 %, and 59% of the surveyed area had low, medium, and high P levels, respectively. About 40% of the surveyed area may, therefore, require fertilization with P for optimum yields.  相似文献   

3.
Abstract

Soil‐test correlation and calibration, a useful tool for fertilizer recommendations, has been little used in West Africa. Soils from a long‐term fertility experiment have been used to study the relationship between rice yields and soil extractable phosphorus (P) with Bray 1 and Olsen methods. The Cate and Nelson graphical method was used for critical limits of soil P determination. The critical limits of soil extractable P at 95% relative grain yield were 9 mg P for the Bray 1P and 17 mg P kg?1 for Olsen P. The Olsen P was more correlated (r=0.63) with rice grain yields than Bray P (r=0.50), but a strong correlation (r=0.92) was also observed between the values of the two methods. Results indicate that at levels less than these critical levels of extractable P, P fertilizers should be applied to increase rice yields.  相似文献   

4.
In this study, four soil extraction methods (Olsen, Soltanpour, Mehlich 3, and water saturation) were used to identify optimal concentrations of phosphorus (P) required for plant growth. Olsen soil extraction for P was the most appropriate method for soil types of this study as the greatest correlation coefficient for soil-test P and with plant factors was achieved. The optimal amount of soil features (pH, organic carbon, lime, gypsum, and clay) determined by using response surface methodology (a new optimization method) were 7.49, 0.66, 41.82, 4.21, and 31.34, respectively. More soil P was extracted when the soil had optimal amounts of these features, showing each feature had a significant effect on extracted soil P. Furthermore, the graphical method of Cate–Nelson determined the optimal amounts of P using Olsen, Soltanpour, Mehlich 3, and saturation extract methods for wheat as 15, 6.5, 35, and 1.5 mg kg?1 soil in nongypsic soils and 17, 3.5, 45, and 2.5 mg kg?1 soil in gypsic soils.  相似文献   

5.
Abstract

Water treatment residuals (WTR) can adsorb tremendous amounts of phosphorus (P). A soil that had biosolids applied eight times over 16 years at a rate of 6.7 Mg ha?1 y?1 contained 28 mg kg?1 ammonium–bicarbonate diethylenetriaminepentaacetic acid (AB‐DTPA), 57 mg kg?1 Olsen, 95 mg kg?1 Bray‐1, and 53 mg kg?1 Mehlich‐III extractable P. To 10 g of soil, WTRs were added at rates of 0, 0.1, 1, 2, 4, 6, 8, and 10 g, then 20 mL of distilled deionized H20 (DI) were added and the mixtures were shaken for 1 week, filtered, and analyzed for soluble (ortho‐P) and total soluble P. The soil–WTR mixtures were dried and P extracted using DI, AB‐DTPA, Olsen, Bray‐1, and Mehlich‐III. Results indicated that all methods except AB‐DTPA showed reduced extractable‐P concentrations with increasing WTR. The AB‐DTPA extractable P increased with increasing WTR rate. The water‐extractable method predicted P reduction best, followed by Bray‐1 and Mehlich‐III, and finally Olsen.  相似文献   

6.
Soil phosphorus (P) tests for flooded rice (Oryza sativa L.) generally present uncertainties for estimating P availability. Bray 1, 1% citric acid, Mehlich 3, Olsen extractants (dry samples), and Bray 1 extractant after 3 days (BI3) and 7 days (BI7) of anaerobic incubations were evaluated to estimate P availability for rice in 43 Uruguayan soils. Field trials were conduced at each site (0, 13, 26, and 39 kg P applied ha?1). Relative yield and absolute and relative yield increases were determined. Extracted P was variable for the different tests. For silty soils, P availability was better estimated by citric acid, Mehlich 3, and Bray 1, with similar soil P critical concentrations (6?8 mg P kg?1). The BI3 and BI7 tests showed greater soil P critical concentration but poorer correlations with yield indexes. This study contributes to the scientific basis of P fertilization for flooded rice, promoting more effective fertilizer use and minimizing environmental P losses.  相似文献   

7.
Abstract

Various soil tests are used to estimate phosphorus (P) availability for both crop uptake and potential loss to water. Conversion equations may provide a basis for comparison between different tests and regions, although the extent to which information can be interchanged is uncertain. The objective was to determine and quantify relationships between specific soil test extractants for samples taken annually in October and February over 4 years from four sites in each of eight soil series under grassland. The extractants comprised Mehlich‐3, Morgan, Olsen, Bray‐1, lactate–acetate, CaCl2 (1∶2 and 1∶10 soil–solution ratios), and resin. The results showed distinct relationships for each soil series, for which individual lines regression models (different intercepts and slopes) were superior to a single conversion equation across all soils. The ensuing difference between soils was large and ranged from 1.9 to 8.0 and 9.2 to 15.6 mg kg?1 P for Morgan and Olsen, respectively, at 20 mg kg?1 Mehlich‐3 P. Generally, the environmentally oriented tests CaCl2 and resin correlated best with Morgan. Some soil‐specific limitations were also observed. CaCl2 was less efficient than Morgan, and Morgan less efficient than Mehlich‐3 on a high Fe–P soil derived from Ordovician‐shale diamicton, compared with the general trend for other soils. This finding suggests that further disparity may arise where evaluation of critical, or other, limits across regions involves even a limited sequence of tests.  相似文献   

8.
Abstract

Soil nutrient extraction methods, which are currently being used in Malawi, are time consuming and require too many resources. The use of a universal soil extractant would greatly reduce resource requirements. The objectives of the study were to (i) compare the universal soil extractants, Mehlich 3 (M3) and Modified Olsen (MO) with ammonium acetate (AA), Bray P1 (BPl), and diethylene triamine penta acetic acid (DTPA) in the amount of nutrients extracted, (ii) determine the relationship among the extractants for the nutrients they extract, and (iii) determine the critical soil‐test levels of phosphorus (P), potassium (K), and zinc (Zn) for a maize crop. Missing nutrient trials involving P, K, and Zn were conducted on thirty sites across Malawi using maize (Zea mays L.). Phosphorus application rates ranged from 40 to 207 kg P2O5 ha‐1. Potassium and Zn were applied at 75 kg K2O and 10 kg Zn ha‐1, respectively. Procedures of Cate and Nelson were used to identify soil nutrient critical levels. Results showed that the correlations between M3 and BP1, and MO and BPl were highly significant (r=0.93, 0.94, respectively). Mehlich 3 extractable K and AA extractable K (r=0.90), MO and AA extractable K (r=0.94) were highly significant (P<0.01) and the correlations between M3 and AA and MO and AA extractable calcium (Ca) (r=0.92, 0.90, and 0.94, respectively) were also highly significant (P<0.01). The correlations between M3, MO, and AA extractable magnesium (Mg) (r=0.99) were highly significant (P<0.01). Zinc, copper (Cu), and manganese (Mn) extracted with M3 and DTPA were significantly correlated (r=0.89, 0.87, and 0.95, respectively). Correlations between MO and DTPA extractable Zn, Cu, and Mn were also highly correlated (r=0.89,0.85, and 0.95, respectively). Maize grain yields ranged from 730 to 9,400 kg ha‐1. Mehlich 3‐P and MO‐P critical levels were 31.5 and 28.0 μg g‐1, respectively. Mehlich 3 and MO gave a similar critical level of 0.2 cmol kg‐1 for K while Zn critical levels were 2.5, and 0.8 μg g‐1 for M3 and MO, respectively. Mehlich 3 and MO were equally effective in separating responsive to none responsive soils for maize in Malawi.  相似文献   

9.
A greenhouse experiment was conducted to evaluate the critical toxic limits of nickel (Ni) in french bean grown on a mollisol receiving varying levels of farmyard manure (FYM). Nickel levels beyond 10 mg kg?1 soil brought a significant reduction in the dry matter yields of french bean. Application of FYM, especially at the higher level (4.46 g kg?1 soil), had a favorable effect on the dry matter yields of french bean. The effect of FYM application was more pronounced at the medium levels of Ni. Application of higher level of FYM could decrease Ni concentration in plants significantly. Different soil extractants employed in the present study could be arranged in the following order of their Ni extraction power: Mehlich 3 > 0.1 N hydrochloric acid (HCl) > double acid > ammonium bicarbonate (AB)-diethylenetriaminepentaacetic acid (DTPA) > DTPA. Among different extractants evaluated in the study, DTPA (pH 7.3) appeared to be most promising for predicting Ni concentration in french bean. The threshold toxic levels of Ni in french bean and also in terms of extractable soil Ni contents were influenced by FYM application.  相似文献   

10.
Abstract

Eighteen soils from northwestern Switzerland were used to study the value of seven universal extractants (CaCl2; DB‐DTPA; Mehlich 1, 2, and 3; Morgan‐Wolf; and NH4OAc‐EDTA) for predicting plant available potassium (K) as compared to a bioassay (a modified Neubauer test with winter rye). These extractants were evaluated on the basis of K uptake by the bioassay test and the soil K status. In order to create the sufficiency level of exchangeable K for plant growth, soils were treated with 0, 20, 40, 80, and 160 mg K/kg of soil. The range of K uptake by the bioassay tests was between 89.2 and 403.0 mg/kg of soil for the control pots, and 136.6 to 495.8 for the K treatments with optimal conditions for plant growth. The average amounts of K extracted by the seven universal extractants, in ascending order, were: CaCl2 < Morgan‐Wolf < Mehlich 1 < Mehlich 2 < NH4OAc‐EDTA < Mehlich 3 < DB‐DTPA. The highest simple correlation with K uptake versus the bioassay test was obtained with the DB‐DTPA (r = 0.89) extractant and the lowest with the Mehlich 1 (r = 0.53) extractant. The DP‐DTPA, NH4OAc‐EDTA and Mehlich 3‐K procedures showed an advantage over K procedures based on water soluble and exchangeable K pools in the investigated soils in order to predict the amount of plant‐available K. A simple regression and the Cate‐Nelson graphic method offer the possibility of assessing the soil‐K status using K values obtained by these universal extractants and to calibrate them against K forms as follows: exchangeable, water soluble, and non‐exchangeable.  相似文献   

11.
Abstract

Use of adequate rates of phosphorus (P) in crop production on high‐P‐fixing acid soils is essential because of high crop response to P fertilization and the high cost of P fertilizers. Information on lowland rice response to thermophosphate fertilization grown on Inceptisols is limited, and data are also lacking for soil‐test‐based P fertilization recommendations for this crop. The objective of this study was to evaluate response of lowland rice to added thermophosphate and to calibrate P soil testing for making P fertilizer recommendations. A field experiment was conducted for two consecutive years in central Brazil on a Haplaquept Inceptisol. The broadcast P rates used were 0, 131, 262, 393, 524, and 655 kg P ha?1, applied as thermophosphate Yoorin. Rice yield and yield components were significantly increased with the application of P fertilizer. Average maximum grain yield was obtained with the application of 509 kg P ha?1. Uptake of macro‐ and micronutrients had significant quadratic responses with increasing P rates. Application of thermophosphate significantly decreased soil acidity and created favorable macro‐ and micronutrient environment for lowland rice growth. Across 2 years, soil‐test levels of Mehlich 1–extractable P were categorized, based on relative grain yield, as very low (0–17 mg P kg?1 soil), low (17–32 mg P kg?1 soil), medium (32–45 mg P kg?1 soil), or high (>45 mg P kg?1 soil). Similarly, soil‐test levels of Bray 1–extractable P across 2 years were very low (0–17 mg P kg?1 soil), low (17–28 mg P kg?1 soil), medium (28–35 mg P kg?1 soil), or high (>35 mg P kg?1 soil). Soil P availability indices for Mehlich 1 extractant were slightly higher at higher P rates. However, both the extracting solutions had highly significant association with grain yield.  相似文献   

12.
A greenhouse experiment with 11 soil series and two zinc (Zn) rates (0 and 15 mg Zn kg?1 as zinc sulfate) was performed to determine critical deficiency level of Zn for corn (Zea mays L.) on calcareous salt-affected soils in central Iran. In addition, the most important soil properties affecting Zn phytoavailability were determined. Critical Zn deficiency levels were determined using the Cate-Nelson and Mitscherlich procedures. In most soils, application of Zn increased the dry matter yield, and Zn concentration and content in the shoot and root of corn. A positive correlation was observed between the soil electrical conductivity (EC) with Zn concentration in shoots, roots and whole plant while shoot Zn content was negatively correlated with buffer capacity of Zn in soil. Critical deficiency levels of Zn in soil for corn based on the Cate-Nelson and Mitscherlich method were 1.35 and 1.23 mg kg?1 for diethylenetriaminepentaacetic acid (DTPA)-extracted soil Zn, respectively.  相似文献   

13.
Abstract

Five soil extractants, namely, 0.005 M diethylene triamine pentaacetic acid (DTPA) (pH 7.3), 0.005 M DTPA+1 M ammonium bicarbonate (pH 7.6), Mehlich 3, 0.01 M ethylene diamine tetraacetic acid (EDTA)+0.05 M ammonium carbonate (pH 8.6), and 1 M magnesium chloride (MgCl2) (pH 6.0), were evaluated to predict the response of wheat to zinc (Zn) application in Mollisols. These extractants could be arranged in the following decreasing order of their Zn extracting power: Mehlich 3>0.005 M DTPA+1 M ammonium bicarbonate>0.01 M EDTA+0.05 M ammonium carbonate>0.005 M DTPA>1 M MgCl2. The critical limits of Zn in soil, below which the yield response to late sown wheat (var. UP‐2338) to Zn application could be expected, were 0.57 mg 0.005 M DTPA (pH 7.3) extractable and 1.72 mg Mehlich 3–extractable Zn kg?1 soil. The critical limit of Zn in whole shoot at 60 days after emergence was found to be 26.1 mg Zn kg?1 plant tissue. The DTPA and Mehlich 3–extractable soil Zn also correlated significantly and positively with Zn concentration in whole shoot at 60 days after emergence and total Zn uptake by wheat at harvest.  相似文献   

14.
Seventeen Mollisols having pH(1:2) in the range of 6.00 to 8.42 were analyzed with five extractants, and the extractable zinc (Zn) ranges were 0.84 to 2.75 mg Zn kg?1 soil for diethylenetriaminepentaacetic acid (DTPA) (pH 7.3), 0.91 to 2.72 mg Zn kg?1 soil for DTPA + ammonium bicarbonate (pH 7.6), 1.82 to 7.18 mg Zn kg?1 soil for Mehlich 3, 1.22 to 3.83 mg Zn kg?1 soil for ethylenediaminetetraacetic acid (EDTA) + ammonium carbonate, and 0.88 to 1.18 mg Zn kg?1 soil for 1 mol L?1 magnesium chloride (MgCl2) (pH 6.0). Zinc extracted by DTPA (pH 7.3) and Mehlich 3 showed significant positive correlation with sand content, whereas only Mehlich 3 showed negative correlation with soil pH. All extractants showed significant positive correlation with each other except for 1 mol L?1 MgCl2‐extractable Zn, which had significant positive correlation with only Mehlich 3– and EDTA + ammonium carbonate–extractable Zn. A greenhouse experiment showed that Bray's percentage yield of rice was poorly correlated to extractable soil Zn but had a significant and negative linear correlation with soil pH (r = ?0.662, significant at p = 0.01). Total Zn uptake by rice had a significant positive correlation with 1 mol L?1 MgCl2– and Mehlich 3–extractable Zn. A proposed parameter (p extractable Zn + p OH?) involving both soil extractable Zn and pH terms together showed significant and positive correlation with Bray's percentage yield and total Zn uptake of rice. The calculated values of critical limits of soil Zn in terms of the proposed parameter were 14.1699 for DTPA (pH 7.3), 13.9587 for DTPA + ammonium bicarbonate, 13.7016 for Mehlich 3, 13.9402 for EDTA + ammonium carbonate, and 14.1810 for 1 mol L?1 MgCl2 (pH 6.0). The critical limits of Zn in rice grain and straw were 17.32 and 22.95 mg Zn kg?1 plant tissue, respectively.  相似文献   

15.
Abstract

A study was undertaken to evaluate the agreement among different university laboratories performing the Olsen, Bray P1, and Mehlich I tests for P on a diverse group of noncalcareous agricultural soils and to develop relationships among the Olsen, Bray P1, Mehlich I, and Mehlich III soil tests. For each test, the results from the individual laboratories were highly correlated (r2 0.90) and in almost all instances the slopes of the equations describing the relationships among laboratories approached one, The results indicate that the Olsen, Bray P1 and Mehlich I soil tests may be performed with a high degree of precision when standard soil test procedures are followed.

Of the three most commonly performed tests in the U.S. (Olsen, Bray P1, and Mehlich I), the Olsen and Mehlich I tests were the most highly correlated (r2 = 0.87) although the Mehlich I test removed approximately one and one half times more P than did the Olsen test. Bray P1 and Olsen and Mehlich I P were less highly correlated (r2 ≤ 0.72) and the relationships between these variables were influenced by the texture of the soils. The quantity of P removed by the Bray P1 test was on the order of two and three times greater than that removed by the Olsen and Mehlich I tests, respectively. The Bray P1 and Mehlich III soil tests were highly correlated (r2 = 0.97) and similar quantities of P were extracted from the soil by the two tests.  相似文献   

16.
Abstract

Critical limit (CL) determination of zinc (Zn) is very important for predicting response of maize crop to its application in soils and for the crop’s actual fertilizer requirement. This study was conducted at Bangladesh Agricultural Research Institute, Gazipur, to determine the CL of Zn for maize grown in 20 soils collected from the five Agro–Ecological Zones during January to March, and April to June of 2017. The available Zn content of soils and maize biomass were estimated utilizing the extraction method with 0.005?M diethylene triamine pentaacetic acid (DTPA). During January to March and April to June 2017, the amount of DTPA extractable Zn in different soils ranged from 0.60–3.25?mg?kg?1 and 0.50–1.68?mg?kg?1, respectively. During both periods of crop growth (January to March and April to June, 2017), the soil available zinc was negatively significantly correlated with soil pH, available P, exchangeable Ca, exchangeable Mg and positively significantly correlated with relative dry matter (DM) yield. Soil Zn also positively significantly correlated with maize tissue Zn content (r?=?0.521*). However, the CL of Zn were estimated to be 0.84?mg kg?1 in soils and 26.1?mg kg?1 in maize tissue for maize cropping as determined by Cate and Nelson’s (1965 Cate, R. B., and L. A. Nelson. 1965. A rapid method for correlation of soil test analysis with plant response data. International soil testing series technical Bulletin No. I North Caroline State University, Agricultural Experiment Statistics, Releigh, USA, pp. 135–136. [Google Scholar]) graphical procedure. Maize crop may respond to Zn application in soils containing Zn at/below the above level. This data may be used for predicting plant response to Zn fertilizer and development of crop Zn nutrition guide for maximum production.  相似文献   

17.
Abstract

The Egnér‐Riehm method for estimating plant‐available soil phosphorus (P) has been used as the standard soil testing method in Portugal for making fertilizer recommendations. However, this method does not accurately reflect the available P status for wheat in some representative soils from the South Region of the country. Therefore, a pot experiment was established with four Luvisols (LVx, LVv, and two different LVh soils) from the South Region of Portugal in order to evaluate the Egnér‐Riehm, Bray I, Bray II, Olsen, and Anion Exchange Resin (AER) methods for their ability to estimate available P in those soils. Wheat (Triticum aestivum L., cv. Panda) was used as test the crop. The experiment was arranged into a randomized complete block design with three replications and five rates (0, 50, 100,150, and 200 mg kg‐1) of P added to each soil. Critical soil P levels for LVx were established in case for Bray I (27.9 mg kg‐1), Bray II (33.5 mg kg‐1), Egnér‐Riehm (25.4 mg kg‐1), and AER (14.7 mg kg‐1) soil test procedures. Regarding the other soils, the critical soil P levels could not be estimated. The obtained results confirm that the development of an universal soil test P exti action is of great importance, and that further research should be conducted in order to evaluate routine soil fertility tests in different pedoclimatic environments.  相似文献   

18.
Abstract

Different chemical reagents are used to assess plant‐available nutrients from soils with similar properties. The use of different extractants is a serious limitation when comparing results between different soil‐testing laboratories, often leading to large differences in fertilizer recommendations for similar crops.

In this study, 80 samples from acid soils from Galicia (Spain) were used to compare several soil nutrient extractants. Traditional and tested extractants for acid soil such as Bray 2 and ammonium acetate were used to evaluate multielement extractants such as ethylenediaminetetraacetic acid–ammonium acetate (EDTA‐aa), ammonium bicarbonate–diethylenetriaminepentaacetic acid (AB‐DTPA), and Mehlich 3.

Linear regression analyses were performed to relate the amount of each nutrient obtained by traditional soil extractants to the amount obtained by multielement extractants. Strong correlation was found between extractable Bray 2 P and Mehlich 3 P (r2=0.97, slope=0.87, and intercept=?0.48). The slope of the regression line between EDTA‐aa‐extractable calcium (Ca) and that from ammonium acetate (Aa) approached 1∶1 (r2=0.86). Similar results were obtained for magnesium (Mg) (r2=0.99). Soil zinc (Zn) concentrations extracted by Mehlich 3 and EDTA‐aa were similar; slope of the regression line was 0.95 (r2=0.88). With regard to copper (Cu), Mehlich 3 extracted approximately 20% more Cu than EDTA‐aa.

The results showed that Mehlich 3 and EDTA‐aa are suitable for assessment of plant available phosphorus (P), potassium (K), Ca, Mg, Cu, Zn, and iron (Fe) in acid soils.  相似文献   

19.
Abstract

Agricultural use of sewage sludges can be limited by heavy metal accumulations in soils and crops. Information on background levels of total heavy metals in soils and changes in soil metal content due to sludge application are; therefore, critical aspects of long‐term sludge monitoring programs. As soil testing laboratories routinely, and rapidly, determine, in a wide variety of agricultural soils, the levels of some heavy metals and soil properties related to plant availability of these metals (e.g. Cu, Fe, Mn, Zn, pH, organic matter, texture), these labs could participate actively in the development and monitoring of environmentally sound sludge application programs. Consequently, the objective of this study was to compare three soil tests (Mehlich 1, Mehlich 3, and DTP A) and an USEPA approved method for measuring heavy metals in soils (EPA Method 3050), as extractants for Cd, Cu, Ni, Pb and Zn in representative agricultural soils of Delaware and in soils from five sites involved in a state‐monitored sludge application program.

Soil tests extracted less than 30% of total (EPA 3050) metals from most soils, with average percentages of total metal extracted (across all soils and metals) of 15%, 32%, and 11% for the Mehlich 1, Mehlich 3, and DTPA, respectively. Statistically significant correlations between total and soil test extractable metal content were obtained with all extractants for Cu, Pb, and Zn, but not Cd and Ni. The Mehlich 1 soil test was best correlated with total Cu and Zn (r=0.78***, 0.60***, respectively), while the chelate‐based extractants (DTPA and Mehlich 3) were better correlated with total Pb (r=0.85***, 0.63***). Multiple regression equations for the prediction of total Cu, Ni, Pb, and Zn, from soil test extractable metal in combination with easily measured soil properties (pH, organic matter by loss on ignition, soil volume weight) had R2 values ranging from 0.41*** to 0.85***, suggesting that it may be possible to monitor, with reasonable success, heavy metal accumulations in soils using the results of a routine soil test.  相似文献   

20.
We assessed the response of the tomato variety “Tiny Tom” to the application of copper (Cu) and zinc (Zn) fertilizers in three tropical peat soils of Sarawak: mixed swamp forest, Alan forest and Padang Alan forest. Limed soils were used because peat soils in their natural condition are unsuitable to sustain healthy growth of most crops. Yield responses were correlated with added Cu and Zn using Mitscherlich model. Adequate levels of applied Cu and Zn were calculated as those which resulted in 90% of the maximum obtainable shoot dry weight. Application of Cu and Zn significantly (P ≤ 0.05) increased the shoot dry weight and the shoot Cu and Zn concentrations of tomato. Application of the equivalent of 8.3 kg Cu and 5.2 kg Zn per ha was required to achieve 90% of the maximum shoot dry weight. In tomato shoots, the critical concentration for Cu was 18 mg/kg and for Zn, 92 mg/kg. The corresponding concentrations for diethylenetriaminepentaaceticacid (DTPA) extractable Cu and Zn in the soils were 2.3 mg Cu kg ?1 and 3.6 mg Zn kg ?1 . However, the addition of Cu fertilizer also increased Zn uptake by tomato plant, probably by displacing native Zn that was weakly sorbed to the soil solid phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号