首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Soil bulk density (BD) and effective cation exchange capacity (ECEC) are among the most important soil properties required for crop growth and environmental management. This study aimed to explore the combination of soil and environmental data in developing pedotransfer functions (PTFs) for BD and ECEC. Multiple linear regression (MLR) and random forest model (RFM) were employed in developing PTFs using three different data sets: soil data (PTF‐1), environmental data (PTF‐2) and the combination of soil and environmental data (PTF‐3). In developing the PTFs, three depth increments were also considered: all depth, topsoil (<0.40 m) and subsoil (>0.40 m). Results showed that PTF‐3 (R2; 0.29–0.69) outperformed both PTF‐1 (R2; 0.11–0.18) and PTF‐2 (R2; 0.22–0.59) in BD estimation. However, for ECEC estimation, PTF‐3 (R2; 0.61–0.86) performed comparably as PTF‐1 (R2; 0.58–0.76) with both PTFs out‐performing PTF‐2 (R2; 0.30–0.71). Also, grouping of data into different soil depth increments improves the estimation of BD with PTFs (especially PTF‐2 and PTF‐3) performing better at subsoils than topsoils. Generally, the most important predictors of BD are sand, silt, elevation, rainfall, temperature for estimation at topsoil while EVI, elevation, temperature and clay are the most important BD predictors in the subsoil. Also, clay, sand, pH, rainfall and SOC are the most important predictors of ECEC in the topsoil while pH, sand, clay, temperature and rainfall are the most important predictors of ECEC in the subsoil. Findings are important for overcoming the challenges of building national soil databases for large‐scale modelling in most data‐sparse countries, especially in the sub‐Saharan Africa (SSA).  相似文献   

2.
ABSTRACT

Pedotransfer functions (PTFs), as an indirect forecasting method, offer an alternative for labor-intensive bulk density (BD) measurements. In order to improve the forecasting accuracies, support vector machine (SVM) method was first used to develop PTFs for predicting BD. Cross-validation and grid-search methods were used to automatically determine the SVM parameters in the forecasting process. Soil texture and organic matter content were selected as input variables based on results of predecessors, coupled with gray correlation theory. And additional properties were added as inputs for improving PTF's accuracy and reliability. The performance of the PTF established by SVM method was compared with artificial neural network (ANN) method and published PTFs using two indexes: root-mean-square error (RMSE) and coefficient of determination(R2). Results showed that the average RMSE of published PTFs was 0.1053, and the R2 was 0.4558. The RMSE of ANN–PTF was 0.0638, and the R2 was 0.7235. The RMSE of SVM–PTF was 0.0558, and the R2 was 0.7658. Apparently, the SVM–PTF had better performance, followed by ANN–PTF. Additionally, performances could be improved when accumulated receiving water was added as predictor variable. Therefore, the first application of SVM data mining techniques in the prediction of soil BD was successful, improved the accuracy of predictions, and enhanced the function of soil PTFs. The idea of developing PTFs using SVM method for predicting soil BD in the study area could provide a reference for other areas.  相似文献   

3.
以长三角3省1市为研究区,旨在构建长三角地区土壤水分长时间序列,为农业生产和遥感算法提供数据支撑。研究基于空间匹配的站点土壤水分数据和气象数据,利用主成分分析得到4个有效主成分作为线性回归和BP神经网络模型的输入因子,建立土壤水分与气象因子间的定量关系,并评估所构建模型的精度。结果表明,基于全部站点数据建立的单一BP神经网络模型优于单一线性回归模型。单一线性回归模型的R 2=0.34,RMSE=0.046 m3/m3,MAE=3.67%;而单一BP神经网络模型的训练、验证和测试3个数据集的R 2均在0.64以上,RMSE<0.043 m3/m3,MAE低于3.4%。根据逐个站点分别构建分站点的BP神经网络模型,其总体精度高于基于全部站点数据构建的单一BP神经网络模型。分站点构建的BP神经网络模型的总体精度方面,3个数据集的R 2均值在0.75以上,RMSE<0.039 m3/m3,MAE低于3%。通过对逐个站点分别构建BP神经网络模型,获得了精度较高、较稳定的土壤水分拟合结果。  相似文献   

4.
Using pedotransfer functions (PTF) is a useful way for field capacity (FC) and permanent wilting point (PWP) prediction. The aim of this study was to model PTF to estimate FC and PWP using regression tree (RT) and stepwise multiple linear regressions (SMLR). For this purpose, 165 and 45 soil samples from UNSODA and HYPRES datasets were used for development and validation of new PTFs, respectively. %Clay, geometric mean diameter (dg), and bulk density (BD) were selected as predictor variables due to the highest correlation and lowest multicollinearity. The results showed that clay percentage with W* = 0.89 and dg with W* = ?0.57 were the most effective variables to predict PWP and FC, respectively. The RT method had a better performance (R2 = 0.80, ME = ?0.002 cm3cm?3, RMSE = 0.05 cm3cm?3 for FC and R2 = 0.85, ME = 0.003 cm3cm?3, RMSE = 0.03 cm3 cm?3 for PWP) than SMLR in estimation of FC and PWP.  相似文献   

5.
This study investigated the potential for visible–near‐infrared (vis–NIR) spectroscopy to predict locally volumetric soil organic carbon (SOC) from spectra recorded from field‐moist soil cores. One hundred cores were collected from a 71‐ha arable field. The vis–NIR spectra were collected every centimetre along the side of the cores to a depth of 0.3 m. Cores were then divided into 0.1‐m increments for laboratory analysis. Reference SOC measurements were used to calibrate three partial least‐squares regression (PLSR) models for bulk density (ρb), gravimetric SOC (SOCg) and volumetric SOC (SOCv). Accurate predictions were obtained from averages of spectra from those 0.1‐m increments for SOCg (ratio of performance to inter‐quartile (RPIQ) = 5.15; root mean square error (RMSE) = 0.38%) and SOCv (RPIQ = 5.25; RMSE = 4.33 kg m?3). The PLSR model for ρb performed least well, but still produced accurate results (RPIQ = 3.76; RMSE = 0.11 Mg m?3). Predictions for ρb and SOCg were combined to compare indirect and direct predictions of SOCv. No statistical difference in accuracy between these approaches was detected, suggesting that the direct prediction of SOCv is possible. The PLSR models calibrated on the 10‐cm depth intervals were also applied to the spectra originally recorded on a 1‐cm depth increment. While a bigger bias was observed for 1‐cm than for 10‐cm predictions (1.13 and 0.19 kg m?3, respectively), the two populations of estimates were not distinguishable statistically. The study showed the potential for using vis–NIR spectroscopy on field‐moist soil cores to predict SOC at high depth resolutions (1 cm) with locally derived calibrations.  相似文献   

6.
7.
Abstract

To determine the rates of increase in C and N stocks in the soil and organic layers following afforestation in Andisols, we measured C and N densities in the organic and soil layers at depths of 0–5, 5–15 and 15–30?cm, together with a chronosequence analysis of 4-year-old, 14-year-old and 23-year-old Japanese cedar (Cryptomeria japonica) and 4-year-old, 12-year-old and 25-year-old Hinoki cypress (Chamaecyparis obtusa) plantations. The short-term changes in C and N were confirmed by repeated sampling 5?years after the first sampling. Tree growth, biomass accumulation and organic layers were much greater in Japanese cedar than in Hinoki cypress plantations. Soil C density (kg?m?3) increased and bulk density decreased with stand age in the surface layer (0–5?cm). The average soil C accumulation rate was 22.9?g?C?m?2?year?1 for Japanese cedar and 21.1?g?C?m?2?year?1 for Hinoki cypress. Repeated sampling showed that the rate of increase in C in the surface soil was relatively slow in young stands and that soil C density (kg?m?3) in the subsurface soil did not change over a 5-year period. Although N accumulated in the tree biomass and organic layers, the soil N density (kg?m?3) did not change after afforestation. Although the andic properties of the soil and differences in the planted species did not influence the rate of increase in soil C, soil C density was expected to increase to a concentration greater than 80?g?kg?1, possibly because of the large C accumulation capacity of Andisols.  相似文献   

8.
In Brazil, most Eucalyptus stands have been planted on Cerrado (shrubby savanna) or on Cerrado converted into pasture. Case studies are needed to assess the effect of such land use changes on soil fertility and C sequestration. In this study, the influence of Cerrado land development (pasture and Eucalyptus plantations) on soil organic carbon (SOC) and nitrogen (SON) stocks were quantified in southern Brazil. Two contrasted silvicultural practices were also compared: 60 years of short‐rotation silviculture (EUCSR) versus 60 years of continuous growth (EUCHF). C and N soil concentrations and bulk densities were measured and modelled for each vegetation type, and SOC and SON stocks were calculated down to a depth of 1 m by a continuous function. Changes in SOC and SON stocks mainly occurred in the forest floor (no litter in pasture and up to 0.87 kg C m?2 and 0.01 kg N m?2 in EUCSR) and upper soil horizons. C and N stocks and their confidence intervals were greatly influenced by the methodology used to compute these layers. C/N ratio and 13C analysis showed that down to a depth of 30 cm, the Cerrado organic matter was replaced by organic matter from newly introduced vegetation by as much as 75–100% for pasture and about 50% for EUCHF, poorer in N for Eucalyptus stands (C/N larger than 18 for Eucalyptus stands). Under pasture, 0–30 cm SON stocks (0.25 kg N m?2) were between 10 and 20% greater than those of the Cerrado (0.21 kg N m?2), partly due to soil compaction (limit bulk density at soil surface from 1.23 for the Cerrado to 1.34 for pasture). Land development on the Cerrado increased SOC stocks in the 0–30 cm layer by between 15 and 25% (from 2.99 (Cerrado) to 3.86 (EUCSR) kg C m?2). When including litter layers, total 0–30 cm carbon stocks increased by 35% for EUCHF (4.50 kg C m?2) and 53% for EUCSR (5.08 kg C m?2), compared with the Cerrado (3.28 kg C m?2), independently of soil compaction.  相似文献   

9.
ABSTRACT

Sandy soils are usually dominant in tropical monsoon regions, due to the high weathering potential associated with high temperatures and precipitation. The organic matter content of sandy soils is low due to low clay content and high microbial activity. Therefore, soil management practices that alter the soil organic carbon (SOC) content may be important for the sustainable management of crop yields. Thus, the present study investigates the distribution of rice yield and SOC content under different land management practices and analyzes the relationship between rice yield and SOC with pertinent management practices (manure and fertilizer applications). The soil horizons from 0- to 40-cm depths were collected in each layer to measure SOC and soil properties at 64 sites. At each sampling site, farmers were given questionnaires and the record book for the standards for good agricultural practices of farm owners were gathered to assimilate information on rice yield and their practices during 2010–2014. The mean rice yield of the whole crop year and SOC were 2.93 Mg ha?1 and 47.09 Mg C ha?1, respectively, in the irrigated areas, and were 2.38 Mg ha?1 and 32.08 Mg C ha?1 in the rain-fed areas. Significantly higher values were obtained in the irrigated areas (p < 0.05). There was a significant positive correlation between rice yield and SOC in both the irrigated areas (R2 = 0.72, p < 0.01) and the rain-fed areas (R2 = 0.85, p < 0.01); however, the slopes of these regression equations were significantly different. In both irrigated and rain-fed areas, manure should be applied every year, with an optimal application rate of N, P, and K fertilizers being selected. The combination of manure, fertilizer, and increasing irrigation facilities the maintenance of SOC levels and substantially increases rice yields.  相似文献   

10.
Biochar is used as a soil amendment for improving soil quality and enhancing carbon sequestration. In this study, a loamy sand soil was amended at different rates (0%, 25%, 50%, 75%, and 100% v/v) of biochar, and its physical and hydraulic properties were analyzed, including particle density, bulk density, porosity, infiltration, saturated hydraulic conductivity, and volumetric water content. The wilting rate of tomato (Solanum lycopersicum) grown in soil amended with various levels of biochar was evaluated on a scale of 0–10. Statistical analyses were conducted using linear regression. The results showed that bulk density decreased linearly (R2 = 0.997) from 1.325 to 0.363 g cm?3 while the particle density decreased (R2 = 0.915) from 2.65 to 1.60 g cm?3 with increased biochar amendment, with porosity increasing (R2 = 0.994) from 0.500 to 0.773 cm3 cm?3. The mean volumetric water content ranged from 3.90 to 14.00 cm3 cm?3, while the wilting rate of tomato ranged from 4.67 to 9.50, respectively, for the non-amended soil and 100% biochar-amended soil. These results strongly suggest positive improvement of soil physical and hydraulic properties following addition of biochar amendment.  相似文献   

11.
What processes control the accumulation and storage of carbon (C) in the mineral subsoil beneath peat? To find out we investigated four podzolic mineral subsoil profiles from forest and beneath peat in Lakkasuo mire in central boreal Finland. The amount of C in the mineral subsoil ranged from 3.9 to 8.1 kg m?2 over a thickness of 70 cm and that in the organic horizons ranged from 1.8 to 144 kg m?2. Rates of increase of subsoil C were initially large (14 g m?2 year?1) as the upland forest soil was paludified, but decreased to < 2 g m?2 year?1 from 150 to 3000 years. The subsoils retained extractable aluminium (Al) but lost iron (Fe) as the surrounding forest podzols were paludified beneath the peat. A stepwise, ordinary least‐squares regression indicated a strong relation (R2 = 0.91) between organic C concentration of 26 podzolic subsoil samples and dithionite–citrate–bicarbonate‐extractable Fe (negative), ammonium oxalate‐extractable Al (positive) and null‐point concentration of dissolved organic C (DOCnp) (positive). We examined the ability of the subsoil samples to sorb dissolved organic C from a solution derived from peat. Null‐point concentration of dissolved C (DOCnp) ranged from 35 to 83 mg l?1, and generally decreased from the upper to the lower parts of the profiles (average E, B and C horizon DOCnp concentrations of 64, 47 and 42 mg l?1). The DOCnp was positively correlated with percentage of soil C and silt and clay content. The concentration of dissolved organic C in pore water in the peat ranged from 12 to 60 mg l?1 (average 33 mg l?1), suggesting that the sorptive capacity of the subsoil horizons for C had been exhausted. We suggest that the increase of C contents in the subsoil beneath mires is related to adsorption of dissolved organic C and slow mineralization under anaerobic conditions.  相似文献   

12.
ABSTRACT

The performance of DNDC (DeNitrification-DeComposition) and RothC (Rothamsted Carbon model) in simulating soil organic carbon (SOC) storage in soils under rice (Oryza sativa L.) – wheat (Triticum aestivum L.), maize (Zea mays L.) – wheat and cotton (Gossypium hirsutum L.) – wheat cropping systems was evaluated on field and regional scale. Field experiments consisted of N, NP, NK, PK, NPK, FYM, N + FYM, NPK + FYM, and control (UF) treatments. DNDC and RothC over-estimated SOC storage by 0.35–1.16 Mg C ha?1 (6–21%) in surface layer with manure application, compared with inorganic fertilizer treatments by 1.01–1.16 Mg C ha?1 (14–18%). Although RothC only slightly over-estimated SOC stocks, DNDC provided a better match for measured versus simulated SOC stocks (R 2 = 0.783*, DNDC; 0.669*, RothC, p < .05). Model validation on independent datasets from long-term studies on rice–wheat (R 2 = 0.935**, DNDC; R 2 = 0.920**, RothC, p < .01) and maize–wheat (R 2 = 0.895** for DNDC and R 2 = 0.967** for RothC, p < .01) systems showed excellent agreement between measured and simulated SOC stocks. On a regional scale, change in SOC storage under Scenario 1 (NPK) was significant up to 8 years of simulation, with no change thereafter. In Scenario 2 (NPK + FYM), DNDC simulated SOC storage after 10 years was 2.0, 0.4, and 1.4 Mg C ha?1 in three systems, respectively. Amount of C sequestered in silt + clay fraction varied between 0.31 and 0.97 kg C 10 years?1 (Mg silt + clay)?1 under Scenario 1, and between 0.78 and 2.67 kg C 10 years?1 (Mg silt + clay)?1 under Scenario 2.  相似文献   

13.
The transition of grasslands to forests influences many ecosystem processes, including water and temperature regimes and the cycling of nutrients. Different components of the carbon biogeochemical cycle respond strongly to woody plant encroachment; as a consequence, the carbon balance of the invaded grasslands can change markedly. In our research, we studied the response of soil respiration (RS) to natural succession of calcareous grassland. We established two research sites, called grassland and invaded site, at each of which eddy flux measurement were also performed. Within these sites, triplicate plots were fenced for soil flux measurements. At the invaded site, measurements were performed for forest patches and grassy spaces separately. Soil respiration was strongly dependent on temperature and reached 8–12 µmol CO2 m?2 s?1 in mid‐summer; it was greater at the grassland than at the invaded site. RS dependence on temperature and soil water content was similar between the different vegetation covers (grassland, gaps and forest patches). At a reference temperature of 10°C, the average RS was 2.71 µmol CO2 m?2 s?1. The annual sums of RS were also similar between years and sites: 1345 ± 47 (2009) and 1150 ± 37 g C m?2 year?1 (2010) for grassland and 1324 ± 26 (2009) and 1268 ± 26 g C m?2 year?1 (2010) for the invaded site, which is at the upper range of the values reported in the literature. Cumulative RS peaked in July, with about 200 g C m?2. Large mid‐summer RS rates rely on strong biological activity supported by high, but non‐extreme soil temperatures and by regular summer precipitation. A coupling of photosynthesis and RS was revealed by a 24‐hour measurement, which showed asymmetrical clockwise hysteresis patterns.  相似文献   

14.
Abstract

The investigations aimed to: 1) evaluate water erosion rates on undulating slopes in Lithuania under different land use systems; 2) study changes in soil physical properties on the differently eroded slopes; and 3) better understand relationships between soil physical properties and soil erodibility. Research data were obtained on loamy sand and clay loam Eutric Albeluvisols located on the undulating hilly relief of the ?emai?iai Uplands of Western Lithuania. The results of 18 years of water erosion investigations under different land use systems on slopes of varying steepness are presented. Attention is focused on changes in soil physical properties in relation to soil erosion severity. Measured water erosion rates in the field experiments were: 3.2–8.6 m3 ha?1 yr?1 under winter rye, 9.0–27.1 m3 ha?1 yr?1 under spring barley and 24.2–87.1 m3 ha?1 yr?1 under potatoes. Perennial grasses completely prevented water erosion, while erosion-preventive grass-grain crop rotations (67% grasses, 33% cereal grains) decreased soil losses by 75–80% compared to the field crop rotation, containing 17% tillage crops (potatoes), 33% grasses and 50% cereal grains. The grain-grass crop rotation (33% grasses and 67% cereal grains) decreased soil erosion rates by 23–24%. The percentage of clay-silt and clay fractions of arable soil horizons increased, while the total soil porosity and moisture retention capacity decreased with increased soil erosion. Phytocenoses, including sod-forming perennial grasses and grass-grain crop rotations, led to changes in the physical properties of eroded soils; soil bulk density decreased and percentage total porosity and moisture retention capacity increased. The grass-grain crop rotations increased the water-stable soil structure (measured as water-stable soil aggregates) by 11.03 per cent units and sod-forming perennial grasses increased aggregate stability by 9.86 per cent units compared with the grain-grass crop rotation on the 10–14° slope. Therefore, grass-grain crop rotations and sod-forming perennial grasses decreased soil erodibility and thus could assist both erosion control and the ecological stability of the vulnerable hilly-undulating landscape.  相似文献   

15.
Crop yields and yield potentials on Danish coarse sandy soils are strongly limited due to restricted root growth and poor water and nutrient retention. We investigated if biochar amendment to subsoil can improve root development in barley and significantly increase soil water retention. Spring barley (Hordeum vulgare cv. Anakin) was grown in soil columns (diameter: 30 cm) prepared with 25 cm topsoil, 75 cm biochar‐amended subsoil, and 30 cm un‐amended subsoil lowermost placed on an impervious surface. Low‐temperature gasification straw‐biochar (at 0, 0.50, 1.0, 2.0, and 4.0 wt%) and slow pyrolysis hardwood‐biochar (at 2 wt%) were investigated. One wt% can be scaled up to 102 Mg/ha of char. After full irrigation and drainage, the in‐situ moisture content at 30‐80 cm depth increased linearly (R2 = 0.99) with straw‐biochar content at a rate corresponding to 0.029 m3/m3/%. The lab determined wilting point also increased linearly with char content (R2 = 0.99) but at a much lower rate (0.003 m3/m3/%). Biochar at concentrations up to 2% significantly increased the density of roots in the 40–80 cm depth interval. Addition of 1% straw‐biochar had the most positive effect on root penetration resulting in the highest average root density (54% coverage compared to 33% without biochar). This treatment also resulted in the greatest spring barley grain yield increase (22%). Improving the quality of sandy subsoils has global potentials, and incorporation of the right amount of correctly treated residues from bioenergy technologies such as straw‐biochar is a promising option.  相似文献   

16.
《Soil Use and Management》2018,34(2):236-248
Efficient monitoring of soil moisture is becoming increasingly important. To understand soil–plant–water dynamics, we evaluate the potential of using a multiple‐coil‐array electromagnetic induction instrument and inversion software to map soil moisture beneath an olive tree. On twelve different days, we collected apparent electrical conductivity (EC a) data using a DUALEM ‐21S and the volumetric soil moisture (θ ) using a bank of soil moisture sensors on opposite sides of the tree. Using EM 4Soil, we inverted the EC a data on five of the days and established a site‐specific calibration between estimates of true electrical conductivity (σ ) and θ . The strongest calibration relationship between σ and θ (R 2 = 0.65) was obtained for a full‐solution, S2 algorithm and damping factor of 1.2. A leave one out cross‐validation (LOOCV ) showed the calibration was robust, with a root mean square error (RMSE ) of 0.046 m3/m3, a mean error (ME ) of 0.001 m3/m3 and a Lin's concordance of 0.72. We subsequently evaluated the calibration relationship on the seven remaining days and over a drying period of 120 days. This approach provides information about the temporal evolution of θ by a LOOCV of validation with a RMSE of 0.037, ME of −0.003 and a Lin's concordance of 0.54. Improvement could be achieved by aligning the DUALEM ‐21S in the same orientation as the sensors, with time‐lapse inversion also being advantageous.  相似文献   

17.
Abstract

Soil salinization and sodication affect large areas of agricultural land in the world. Amelioration of these soils to make them suitable for agricultural production depends on understanding sodium dynamics and chemical interactions governing nutrient availability. Three locations in eastern Croatia were characterized to the 5‐m depth. The two solonetz‐solonchak soils were alkaline, whereas the solonetz soil had near‐neutral A/E horizon and alkaline deeper horizons. Electrical conductivity of the saturated extract (ECe) was greater than 4 dS m?1 in the top horizons in the solonetz‐solonchak soils. The solonetz soil had 2.8–4.7 dS m?1 in shallow A/E, CG, and G horizons and up to 6.3 dS m?1 below 1.5 m. Highly alkalinized sodic horizons (exchangeable sodium percentage, ESP >20) had 24–47% Ca2+ and 27–33% Mg2+ on the cation exchange complex. Sodium adsorption ratio (SAR) was high (18–26) in the P horizon and even more so in Bt,na horizon (35–36) of solonetz‐solonchak soils. A strong negative exponential relationship existed between soluble Ca2+ and SAR (SAR increased greatly when Ca2+ dropped to around 3 mg dm?3). An increase in pH to greater than 8.4 resulted in an exponential increase in SAR. Leaching of Na+ with successive volumes of water was similarly effective for the P and Bt,na horizons in the solonetz‐solonchak soils, but SAR remained greater than 15 even after six successive cycles of leaching. In conclusion, extensive amelioration of tested soils with gypsum and leaching will be required to overcome poor physical and chemical characteristics caused by various degrees of alkalization and sodication to bring these soils into production.  相似文献   

18.
The total mineralization of nitrogen in the AO-A1 (0–6 cm), A1 (6–11 cm), and A2 (11–21 cm) horizons of a soddy pale-podzolic soil under an oxalis birch forest in Yaroslavl oblast was measured from May to November in 2009 and 2010 and comprised 6.7 ± 0.9, 3.0 ± 0.4, and 5.5 ± 0.6 g of N/m2 in 2009 and 5.6 ± 0.5, 2.5 ± 0.2, and 2.1 ± 0.5 g of N/m2 in 2010, respectively. The total nitrification reached 0.4 ± 0.1, 1.1 ± 0.2, and 1.4 ±0.1 g of N/m2 in 2009 and 1.0, 0.6, and 0.7 g of N/m2 in 2010. Overall, the amount of mineralized nitrogen in the 21-cm-deep soil layer in 2009 and 2010 constituted 15.2 ± 1.1 and 10.2 ± 0.7 g of N/m2, respectively. The contribution of nitrification to the nitrogen mineralization amounted to 20%. The seasonal variations in the soil temperature and moistening affected the concentrations of ammonium in the upper horizons and the accumulation of ammonium in the AO-A1 and A1 horizons. The combined effect of the temperature and moisture controlled the ammonification in the AO-A1 horizon (R = 0.83 at p = 0.16 in 2010), the nitrification in all the studied horizons (R = 0.86 at p= 0.13 in 2009), and the ammonia emission from the soil surface (R = 0.92 at p = 0.06 in 2010). A correlation between the seasonal dynamics of the ammonification and the CO2 emission was found for the AO-A1 horizon (r = 0.64 at p = 0.16 in 2010) and was absent in the deeper layers of the soil profile. The nitrogen losses from the soil surface due to the ammonia emission in the investigated periods reached 95 ± 31 g of N/ha (2009) and 33 ± 30 g of N/ha (2010).  相似文献   

19.
A field experiment was conducted to study the effects of tillage and mulch on weed growth, soil moisture storage, productivity and profitability of upland rice during 2012–2013 at Lembucherra, India. Tillage treatments included CT-RI: conventional tillage with 100% residue incorporation and NT-RR: no-till with 100% residue retention. Mulches included rice straw (SM), Gliricidia (GM), brown manuring (BM) and none (NM). CT-RI registered the highest total weed density (89–168 weeds m?2) and biomass (9.6–183 g dry weight m?2) than those for the NT-RR (75–161 weed m?2 and 8–155 g dry weight m?2). In addition, NT-RR stored (122–172 mm) more soil moisture (0–40 cm soil depth) in comparison with that for the CT-RI treatment (110–161 mm) during crop growing season. Tillage treatments did not have the significant effect on yields. NT-RR reduced the cost of cultivation by 31.5% compared with that for the CT-RI. Thus, the net returns under NT-RR were more than those for the CT-RI. The BM recorded the lowest weed biomass and density as compared to that under other mulches. Therefore, cultivation of upland rice using NT along with BM mulching enhanced productivity and profitability of rice cultivation in India.  相似文献   

20.
Abstract

Silicon (Si) is a beneficial nutrient for sugarcane (Saccharum spp.) and yield responses to Si amendment have been determined on soils with low soluble Si. Because a soil test Si calibration has not been published for sugarcane grown on Florida mineral soils, the objectives were to determine sugarcane yield response to silicon soil amendment on two mineral soils (Entisol and Spodosol) and to relate sucrose yield to soil-extractable Si. Calcium silicate application rates were 0, 3.4, and 6.7?Mg ha?1 (Site 1) and 0, 2.2, 4.5, and 6.7?Mg ha?1 (Site 2) in small-plot (120 m2 plot?1) experiments, with Si application resulting in significant increases in biomass and sucrose ha?1. Calcium silicate requirements of 6.7 and 4.3?Mg ha?1 were determined with initial acetic acid-extractable Si of 21 and 46?g m?3, respectively. Nonlinear models indicated that Si amendments will be required with acetic acid-extractable Si <105?g m?3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号