首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
[目的]在卢旺达山地丘陵区开展土壤侵蚀调查,分析该区土壤侵蚀特征及成因,为尼罗河上游山地丘陵区土壤侵蚀预报和水土流失防治提供科学依据。[方法]在卢旺达布设4条调查路线并选择调查点,于2019年10月17—22日对调查点土壤侵蚀特征、成因及水土保持措施等进行了调查。[结果]卢旺达多山地且以农牧业为主,土壤侵蚀主要发生在坡耕地、损毁林地、建设用地等。坡耕地以片蚀和细沟侵蚀为主。损毁林地以片蚀和细沟侵蚀为主,部分出现沟蚀;当裸露地表形成草地或幼林后均较少发生土壤侵蚀。公路边坡、开挖边坡、土路路面及边坡等在降雨及径流的作用下产生沟蚀,部分路段偶有勤侵蚀发生。梯田是该国最主要的水土保持措施,具有较好的生态和经济效益。[结论]卢旺达土壤侵蚀主要以水力侵蚀为主,重力侵蚀次之。不合理的开垦坡地、毁林,加之多山的地形,导致侵蚀较为严重,威胁当地的生态安全及粮食安全。该区缺乏水土流失监测资料,需要重视水土保持基础理论研究,加强水土流失基础数据的监测和采集,同时需要加强其水土保持措施及土地管理工作,保障卢旺达农业的可持续绿色发展。  相似文献   

2.
Land shortages are forcing more smallholder farmers to cultivate tropical steeplands. Resulting accelerated soil erosion is being countered by the promotion of soil conservation (SC) technologies, such as cross‐slope barriers, which aim to reduce soil loss and preserve land productivity. However, farmer adoption rates tend to be low. This is often attributed to the farmers' conservatism or lack of education. Research in Honduras's steeplands demonstrates that farmers value SC, provided that it promotes agricultural production. Field research from 1995–98, involving farmed test plots on slopes greater than 35 per cent (19 degrees), demonstrates that at least one typical SC technology—live barriers of Vetiveria zizanioides (vetiver grass)—has little or no impact on maize yield. This means that farmers see little benefit from their investment in the SC method. They find that erratic rainfall, pests and diseases and a lack of economic resources are far greater threats to their livelihoods than soil erosion. Consequently, SC has a low priority. Keeping soil in place avoids major off‐farm disbenefits. However, the SC technique tested here made no discernible difference to slope foot sediment yields during the life of this study. In sum, a new approach is needed. Promoting ‘Better Land Husbandry’ strategies, which seek to combine farmers' concerns about productivity with conservationists' concerns about reducing soil erosion—often via cover‐management—seem to be the best way forward. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

3.
[目的]研究区域土壤侵蚀,揭示水土流失的空间分异规律,为区域水土保持和生态农业建设提供理论指导依据。[方法]应用GIS和RUSLE模型对云南省泸水县的土壤侵蚀进行研究。RUSLE模型中的因子包括降雨侵蚀力、土壤可蚀性、坡度坡长因子、植被覆盖和水土保持措施因子,运用GIS空间分析模块,获取泸水县土壤侵蚀模数空间分布图,根据SL 190-2007的分级标准进行土壤侵蚀强度分级,并分析该区土壤侵蚀强度空间分布格局。[结果](1)从各强度侵蚀面积上看,泸水县2014年土壤侵蚀以微度侵蚀为主,占总面积的86.86%,但从平均土壤侵蚀模数看,土壤侵蚀量为4.24×10~6 t,平均侵蚀模数为1 373.1t/(km~2·a),土壤侵蚀强度属于轻度侵蚀;(2)土壤侵蚀较严重区与未利用地、耕地空间分布基本一致,在坡度25°~50°的范围内,侵蚀面积占总侵蚀面积的75%,并且在该坡度段上的耕地面积占总耕地的63%,剧烈侵蚀集中分布在未利用地上,中度以上剧烈以下强度侵蚀集中分布在该坡度段上的耕地上,说明该坡耕地、未利用地对土壤侵蚀的贡献最大,要加强对未利用地的生态治理。[结论]坡度大,陡坡垦殖和未利用地的不合理利用是该区土壤侵蚀加重的主要原因,坡度在25°以上的地区不适宜耕种,应优化农业产业结构如实施退耕还林还草等措施,才能有效的保持水土。  相似文献   

4.
密云水库上游不同土地利用方式下的土壤侵蚀特征   总被引:2,自引:1,他引:2  
[目的]为了合理配置北京密云水库水土流失重点治理区的水土保持综合措施。[方法]基于石匣小流域坡面径流小区定位观测资料,分析了不同土地利用方式及水土保持措施的坡面土壤侵蚀特征。[结果](1)5种土地利用方式的土壤侵蚀量差异明显,与裸地相比较,耕地、人工草地、封禁荒草地和林地的减沙率达63.88%~99.63%;(2)梯田比坡耕地措施小区的土壤侵蚀量减少了95.62%,起到了显著的水土保持作用;(3)采用水平条和鱼鳞坑措施林地小区的减沙率分别为83.56%和96.53%,具有十分明显的减蚀作用;(4)与人工草地相比较,封禁荒草地的侵蚀产沙量减少了98.25%,可以有效地控制水土流失。[结论]增加地表植被覆盖,减少人为干扰以及合适地配置梯田、鱼鳞坑和水平条等水土保持工程措施具有良好的水土保持作用。  相似文献   

5.
关于土地退化及其综合整治   总被引:7,自引:0,他引:7  
水土保持对于山区、丘陵区和风沙区退化土地的治理 ,对于协调人与自然的关系具有重要作用。我国退化土地广泛分布 ,土壤水蚀是严重的土地退化现象。长江上游水蚀面积 3 5 2万km2 ,年土壤侵蚀量达 15 6亿t。综合整治长江上中游山地环境 ,要合理调整土地利用结构 ,坚决实行陡坡退耕还林 ,积极推广坡地改梯田、坡地绿篱、横坡种植等措施 ,对城镇、矿山、道路等基础设施建设实行严格的管理和监测  相似文献   

6.
基于CSLE模型的贵州省水土流失规律分析   总被引:7,自引:1,他引:6  
应用第一次全国水利普查水土保持专项数据,分析了喀斯特地区实际土地利用单元地块空间统计特征及相应侵蚀规律。结果表明:喀斯特地区土地利用类型以林地、耕地为主,共占调查总面积的86.2%。由于地形破碎,地势陡峭,土地表现出破碎化特征,地块面积、坡长、坡度均值分别为3.45hm~2,45.3 m,21.7°。坡度对土壤侵蚀的影响大于坡长,陡坡耕作是导致耕地土壤侵蚀严重的主要原因,68.6%的耕地位于陡坡,其侵蚀量占总侵蚀量的65.6%。贵州省土壤侵蚀程度由西向东递减,以黔西南地区侵蚀最为严重。工程措施能够有效防治土壤侵蚀,减沙效益在75%以上,但随坡度增大而减小,林草地减沙效益优于工程措施。在区域水土保持规划时,应重点考虑土壤侵蚀强烈地区,减少陡坡耕作,推广还林还草。  相似文献   

7.
Soil erosion in the upper reaches of the Yangtze River in China is a major concern and the Central Government has initiated the Grain‐for‐Green Programme to convert farmland to forests and grassland to improve the environment. This paper analyses the relationship between land use and soil erosion in Zhongjiang, a typical agricultural county of Sichuan Province located in areas with severe soil erosion in the upper reaches of the Yangtze River. In our analysis, we use the ArcGIS spatial analysis module with detailed land‐use data as well as data on slope conditions and soil erosion. Our research shows that the most serious soil erosion is occurring on agricultural land with a slope of 10∼25 degrees. Both farmland and permanent crops are affected by soil erosion, with almost the same percentage of soil erosion for corresponding slope conditions. Farmland with soil erosion accounts for 86·2 per cent of the total eroded agricultural land. In the farmland with soil erosion, 22·5 per cent have a slope of < 5 degrees, 20·3 per cent have a slope of 5∼10 degrees, and 57·1 per cent have a slope of > 10 degrees. On gentle slopes with less than 5 degrees inclination, some 6 per cent of the farmland had strong (5000∼8000 t km−2 y−1) or very strong (8000∼15000 t km−2 y−1) erosion. However, on steep slopes of more than 25 degrees, strong or very strong erosion was reported for more than 42 per cent of the farmland. These numbers explain why the task of soil and water conservation should be focused on the prevention of soil erosion on farmland with steep or very steep slopes. A Feasibility Index is developed and integrated socio‐economic assessment on the feasibility of improving sloping farmland in 56 townships and towns is carried out. Finally, to ensure the success of the Grain‐for‐Green Programme, countermeasures to improve sloping farmland and control soil erosion are proposed according to the values of the Feasibility Index in the townships and towns. These include: (1) to terrace sloping farmland on a large scale and to convert farmland with a slope of over 25 degrees to forests or grassland; (2) to develop ecological agriculture combined with improving the sloping farmland and constructing prime farmland and to pay more attention to improving the technology for irrigation and cultivation techniques; and (3) to carry out soil conservation on steep‐sloping farmland using suggested techniques. In addition, improving ecosystems and the inhabited environment through yard and garden construction for households is also an effective way to prevent soil erosion. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

8.
高速公路生态护坡技术的水土保持效应研究   总被引:22,自引:1,他引:22  
对高速公路生态护坡工程开展试验观测。研究探讨生态护坡技术的水土保持效应。结果表明,在高速公路高陡边坡上采用生态护坡技术建植草本植被。在短期内可完全覆盖坡面,水土保持效果显著,可抑制边坡侵蚀的发育,有效控制坡面沟蚀的发生,在中雨到暴雨的情况下,边坡径流系数在15.97%以下,土壤流失量极小。生态护坡技术的水土保持机理主要与草本植被对降雨的截留、雨滴能量的削减、坡面径流的抑制、根系的锚固与加筋作用,以及生态护坡技术本身的工艺特性有关。  相似文献   

9.
10.
Throughout Rwanda, terracing was reintroduced in 1973 as the major conservation practice to minimize soil loss on its steep agricultural lands.1 Terracing has been partially successful in reducing soil losses resulting from nonchannelized runoff, the goal of this practice. However, because of the widespread fragile environmental conditions in the highlands, soil fertility has decreased and soil acidity increased in numerous fields as a direct result of the terracing. To maintain sufficient agricultural yields, within the constraints of a low resource agricultural system, farmers have responded to the acidity and soil fertility problems by systematically removing a portion of the terrace berm during field preparation. This practice, in response to the changing environmental situation due to terracing, results in significant amounts of soil displaced downslope year after year. This human-induced soil erosion process seriously counters many of the intended benefits of terrace construction and is contributing to the land degradation problem. The results of this study emphasize the need for both conservation strategies and the measurement of soil loss to be sensitive to human-induced as well as natural erosional processes. By not considering the human response to terrace construction, the benefits of this conservation practice have been seriously offset.  相似文献   

11.
First impressions suggest that the risk of soil loss through fluvial erosion from land under cultivation is considerable in the Southern Highlands Province of Papua New Guinea. the climate is very wet all year round, The terrain precipitous, and people regularly farm on steep slopes. the Wola-speaking people, who occupy a series of valleys in the centre of the province, and who practice a semi-shifting form of cultivation, are nonetheless off-hand about soil conservation and declare that erosion is not a serious problem. This paper assesses the status of their assertions by calculating potential soil loss rates. It applies the universal soil loss equation to data on rainfall erosivity, soil erodibility, slope length and steepness, vegetation cover and conservation measures, to compute likely runoff losses. the calculations suggest that, The steep slopes cultivated and wet climate notwithstanding, The local population's assessment of the dangers of erosion is realistic and not reckless. Although rainfall is high, it is rarely of an intensity sufficient to threaten serious soil erosion losses. the physical properties of the soils, which feature volcanic ash components and high organic matter levels, are such that they are particularly resistant to erosion. the staple crop of the region, sweet potato (Ipomoea batatas), also gives particularly good ground cover and protection when established, effectively shielding the soil from erosive rainfall.  相似文献   

12.
A wide range of mechanical soil conservation techniques commonly used in Africa are reviewed in a politico-economic framework. Three factors within this framework play a significant role in the adoption of mechanical soil conservation techniques. These are: (a) land considerations, such as land availability and tenure, and farm size; (b) capital and labour constraints; and (c) access to, and functioning of, institutions. Hypotheses which are concerned with the relationships between these factors and the likelihood of farmers adopting soil conservation techniques are introduced. Case studies drawn from Kenya, Lesotho, Malawi, Swaziland and Sierra Leone, as well as from Jamaica, are used to test these hypotheses in relationship to such techniques as terracing, grass strip cultivation, bunding, and contour cultivation. Greater reliance on local knowledge and indigenous soil conservation techniques seems to provide the best solution to the introduction of mechanical soil conservation techniques.  相似文献   

13.
A soil and water conservation (SWC) extension programme, promoting erosion control measures and soil fertility measures, has been going on in southern Mali since 1986. Five factors that influence farmer adoption of SWC measures were analysed: land pressure, cotton‐growing area, possession of ploughing equipment, possession of a donkey cart and farmer training in SWC. Interviews were carried out with 298 farmers and two to three fields per farmer were visited, in 30 representative villages and 30 villages with high SWC adoption. Correlation, regression and factor analysis led to the following conclusions:
  • (1) Farmers in the high land‐pressure area adopt more soil fertility measures.
  • (2) Farmers in the cotton‐growing area adopt less SWC measures.
  • (3) Farmers with more ploughing equipment adopt more SWC measures.
  • (4) Farmers with a donkey cart adopt more soil fertility measures.
  • (5) Trained farmers adopt more erosion control measures.
There is a strong correlation between the adoption of erosion control measures and soil fertility measures that could not be explained by these five factors only. This suggests that there are additional factors that trigger the adoption of SWC measures. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

14.
湖北省坡耕地现状分析及宜耕性评价   总被引:1,自引:0,他引:1  
陈芳  高宝林  李杰  刘琨  徐昕 《水土保持研究》2023,30(1):418-422,429
坡耕地是耕地资源的重要组成部分,也是土壤侵蚀的策源地和水土保持的重点区域。为探究湖北省坡耕地资源现状及其宜耕性,利用GIS技术,构建了湖北省坡耕地的坡度、土壤侵蚀、土壤剖面构型和理化特性等数据库,筛选耕地坡度、土层厚度、土壤质地、土壤pH值和土壤侵蚀程度5个代表性指标,采用“限制因子法”对湖北省全域坡耕地进行了宜耕性评价。结果表明:湖北省坡耕地总面积为9 438.64 km2,占总耕地面积的18.87%,不宜耕坡耕地总面积为2 178.36 km2,占现有坡耕地面积的23.08%;砾石含量和坡度过高是造成坡耕地不宜耕的主要因素,其中砾石含量>15%的坡耕地总面积为1 205.72 km2,坡度≥25°的坡耕地总面积为1 097.32 km2;其次不宜耕主导因素是土壤过酸,pH值≤4.5造成坡耕地不宜耕的面积为669.60 km2,土壤侵蚀严重(极强烈以上侵蚀强度)和土层浅薄(土层厚度<30 cm)造成的不宜耕坡耕地面积分别为336.48 km2...  相似文献   

15.
In areas susceptible to erosion, there is the need for a comprehensive soil conservation programme so as to be able to prevent catastrophic soil erosion problems. The absence of such a programme in central eastern Nigeria, that has a total land area of 20 000 km2, necessitated the drawing up of a soil conservation strategy for the area. The aim was to provide information for better land-use planning and proper environmental and soil management. To achieve this, topographic, soil and landform maps of the area at the scale of 1:50 000 were used to delineate into slope land units, viz: 0–4 per cent, <4 per cent, drainage basins and headwaters. These slope units and estimated soil erosion hazard units using the revised universal soil loss equation (RUSLE) were employed to form a general purpose land classification based on the USDA land capability classification and FAO framework on land evaluation.The soil loss tolerance of the area falls between 1·16 and 1·30 Mg ha−1 yr−1, while the erosion hazard units are considered generally suitable for the various land utilization types, with a number of limitations the main ones being erosion and waterlogging. The soil conservation measures proposed involved the application of bioenvironmental processes in the area and appropriate watershed management. The techniques proposed are those based on low input technology, affordable by rural farmers. It is concluded that these soil conservation measures will be adequate for sustainable agricultural production in the area. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

16.
Purple soils are widely distributed in the Sichuan Hilly Basin and are highly susceptible to erosion, especially on the cultivated slopes. Quantitative assessment of the erosion rates is, however, difficult due to small size of the plots of the manually-tilled land, the complex land use, and steep hillslopes. 137Cs and 210Pbex (excess 210Pb) tracing techniques were used to investigate the spatial pattern of soil erosion rates associated with slope-land under hoe tillage in Neijiang of the Sichuan Hilly Basin. The 137Cs and 210Pbex inventories at the top of the cultivated slope were extremely low, and the highest inventories were found at the bottom of the cultivated slope. By combining the erosion rates estimates provided by both 137Cs and 210Pbex measurements, the weighted mean net soil loss from the study slope was estimated to be 3100 t km-2 year-1, which was significantly less than 6930 t km-2 year-1 reported for runoff plots on a 10°cultivated slope at the Suining Station of soil Erosion. The spatial pattern of soil erosion rates on the steep agricultural land showed that hoe tillage played an important role in soil redistribution along the slope. Also, traditional farming practices had a significant role in reducing soil loss, leading to a lower net erosion rate for the field.  相似文献   

17.
Intensification of land use can become a threat to agricultural sustainability if they lead to increased soil erosion. This study examines land‐use changes, soil and water conservation, soil erosion and soil productivity in the Highlands of Kenya. In addition, it examines farmers' perception of livelihood changes. Land‐use changes were determined from interpretations of aerial photographs taken in 1960 and 1996. Additional information on land use, soil and water conservation and livelihood changes were obtained from discussions and interviews with farmers, as well as from field verifications of the most recent aerial photographs. Soil samples were analysed and soil erosion assessed according to the PLUS classification scheme. The results indicate that substantial changes in land use, such as introduction of coffee and high‐yielding maize, and fragmentation of land holdings have taken place. Less land was conserved in 1996 as compared to 1960. Moreover, SWC practices have changed from fanya chini terraces and shifting cultivation to bench terraces and permanent cultivation. Rates of soil nutrients (organic C, N and K) and maize‐yield levels decreased significantly with increasing erosion. Farmers' perception of livelihood changes was differentiated according to farmers' off‐farm resource 60 per cent of the farmers depended on income from the land and thought livelihoods were better in the 1960s. It is concluded that more efforts to decrease soil erosion and investments in land and labour are necessary to sustain soil productivity and hence secure rural livelihoods. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

18.
This paper investigates the adoption of bench terraces by applying a three‐stage analysis using data from 301 households in the highlands of Rwanda. Ongoing adoption of bench terraces is ‘unpacked’ to consider both adopters willing to retain and increase the intensity of using terraces already constructed and new adopters willing to develop new bench terraces. Results suggest that farmers' inability to maintain existing terraces may explain the reluctance to adopt new terraces. The same inability explains why some of the terraces constructed earlier are not well maintained and fully used by farmers in northern and southern Rwanda. Policy actions aimed at improving farmer's capacity to invest in complementary inputs will sustain future generations of soil and water conservation measures in Rwanda. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
湘赣两省水土保持工作调查报告   总被引:11,自引:4,他引:7  
林地是两省水土流失的主要源地之一。林地水土流失年侵蚀量占总侵蚀量湖南为30%~40%,江西为40%~50%。其原因是乱砍滥伐、全垦造林、经济林垦复、针叶纯林比例过高等;坡耕地水土流失年侵蚀量占总侵蚀量湖南为40%~50%,江西约为10%;开发建设活动引起的水土流失问题日趋严重,重力侵蚀也不容忽视。主要对策是:实施坡改梯工程,解决农民的基本农田;把林地纳入水土保持监督管理之中;强化对开发建设活动的监督管理,全面实施水土保持法;加强水土保持科研工作等。  相似文献   

20.
Soil conservation measures including cutoff drains, tree planting, Crops diversifications and destocking were implemented in Kondoa eroded area (KEA) for decades. This study assessed soil erosion changes in KEA and examined drivers of changes using Universal Soil Loss Equation, Geographic Information Systems and socioeconomic survey. Soil erosion was predicted by using data on soil, digital elevation model, rainfall and land use/cover visually interpreted from multitemporal satellite imageries. The predicted average soil erosions were 14·7, 23 and 15.7 Mg ha−1y−1 during 1973, 1986 and 2008, respectively. The area under very high soil erosion severity that was 30% in 1973, 26% in 1986 and 25% in 2008, whereas the area with high erosion severity was 26% in 1973 changed into 49% in 1986 and 2008 indicating recent stabilization. The area with moderate erosion increased from 15%, 16% and 18% during the same period. Field survey confirms a decrease of soil erosion in KEA compared with the past showing better soil conservation. Age of farmers, long‐term adoption of conservation practices and on‐farm tree planting were found to be the major factors contributing toward reduced soil erosion. Major limitations in soil conservation were poor mainstreaming of conservation activities on local production systems and lack of institutions promoting conservation at the community level. The study concluded that long‐term conservation investment for restoration, protection and socioeconomic support contributes significantly in land rehabilitation in KEA. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号