首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 15 毫秒
1.
The effects of tree species on the N cycle in forest systems are still under debate. However, contradicting results of different 15N labeling techniques of trees and N tracers in the individual studies hamper a generalized mechanistic view. Therefore, we compared Ca(15NO3)2 and 15NH4Cl leaf‐labeling method to investigate: (1) N allocation patterns from aboveground to belowground, (2) the cycles of N in soil‐plant systems, and (3) to allow the production of highly 15N enriched litter for subsequent decomposition studies. 20 beeches (Fagus sylvatica ) and 20 ashes (Fraxinus excelsior ) were 15N pulse labeled from aboveground with Ca(15NO3)2 and 40 beeches and 40 ashes were 15N pulse labeled from aboveground with 15NH4Cl. 15N was quantified in tree compartments (leaves, stem, roots) and in soil after 8 d. Beech and ash incorporated generally more 15N from the applied 15NH4Cl compared to Ca(15NO3)2 in all measured compartments, except for ash leaves. Ash had highest 15N incorporation [45% of the applied with Ca(15NO3)2] in its leaves. Both tree species kept over 90% of all fixed 15N from Ca(15NO3) in their leaves, whereas only 50% of the 15N from the 15NH4Cl tracer remained in the leaves and 50% were allocated to stem, roots, and soil. There was no damage of the leaves by both salts, and thus both 15N tracers enable long‐term labeling in situ field studies on N rhizodeposition and allocation in soils. Nonetheless, the 15N incorporation by both salts was species specific: the leaf labeling with 15NH4Cl results in a more homogenous distribution between the tree compartments in both tree species and, therefore, 15NH4Cl is more appropriate for allocation studies. The leaf labeling with Ca(15NO3)2 is a suitable tool to produce highly enriched 15N leaf litter for further long term in situ decomposition and turnover studies.  相似文献   

2.
The suitability of three 15N application methods (15NH3 fumigation, split‐root technique, 15N pre‐cultivation) for the estimation of N net rhizodeposition (NRD) of wheat plants into soil has been tested and compared under similar conditions and at the same developmental stage. The results were as follows: 1. The use of the 15N tracer technique allows the detection of the net N release by roots under soil conditions. NRD was considerable and can be estimated to be at least 15 kg N ha−1 a−1. 2. All three methods applied are practicable under non‐sterile experimental conditions. The distribution of applied 15N in the system and NRD can be balanced totally only by using the 15NH3 fumigation and the 15N pre‐cultivation methods. The split‐root technique leads to an overestimation of NRD. 3. The split‐root technique allows a qualitative separation of the NRD under nearly undisturbed conditions. With the 15N precultivation, a higher 15N‐labelling can be achieved for long‐term balance studies. 4. Despite the required high 15N abundance, the 15NH3 fumigation method works best to evaluate the influence of microbes on NRD and to quantify the gaseous 15N release.  相似文献   

3.
Understanding rhizodeposited carbon (C) dynamics of winter wheat (Triticum aestivum L.) is important for improving soil fertility and increasing soil C stocks. However, the effects of nitrogen (N) fertilization on photosynthate C allocation to rhizodeposition of wheat grown in an intensively farmed alkaline soil remain elusive. In this study, pot‐grown winter wheat under N fertilization of 250 kg N ha?1 was pulse‐labeled with 13CO2 at tillering, elongation, anthesis, and grain‐filling stages. The 13C in shoots, roots, soil organic carbon (SOC), and rhizosphere‐respired CO2 was measured 28 d after each 13C labeling. The proportion of net‐photosynthesized 13C recovered (shoots + roots + soil + soil respired CO2) in the shoots increased from 58–64% at the tillering to 86–91% at the grain‐filling stage. Likewise, the proportion in the roots decreased from 21–28% to 2–3%, and that in the SOC pool increased from 1–2% to 6–7%. However, the 13C respired CO2 allocated to soil peaked (17–18%) at the elongation stage and decreased to 6–8% at the grain‐filling stage. Over the entire growth season of wheat, N fertilization decreased the proportion of net photosynthate C translocated to the below‐ground pool by about 20%, but increased the total amount of fixed photosynthate C, and therefore increased the below‐ground photosynthate C input. We found that the chase period of about 4 weeks is sufficient to accurately monitor the recovery of 13C after pulse labeling in a wheat–soil system. We conclude that N fertilization increased the deposition of photoassimilate C into SOC pools over the entire growth season of wheat compared to the control treatment.  相似文献   

4.
Trees interact in a complex manner with soils: they recycle and redistribute nutrients via many ecological pathways. Nutrient distribution via leaf litter is assumed to be of major importance. Beech is commonly known to have lower nutrient concentrations in its litter than other hardwood tree species occurring in Central Europe. We examined the influences of distribution of beech (Fagus sylvatica L.), ash (Fraxinus excelsior L.), lime (Tilia cordata Mill. and T. platyphyllos Scop.), maple (Acer spp. L.), and clay content on small‐scale variability of pH and exchangeable Ca and Mg stocks in the mineral soil and of organic‐C stocks in the forest floor in a near‐natural, mature mixed deciduous forest in Central Germany. The soil is a Luvisol developed in loess over limestone. We found a positive effect of the proportion of beech on the organic‐C stocks in the forest floor and a negative effect on soil pH and exchangeable Ca and Mg in the upper mineral soil (0 to 10 cm). The proportion of ash had a similar effect in the opposite direction, the other species did not show any such effect. The ecological impact of beech and ash on soil properties at a sample point was explained best by their respective proportion within a radius of 9 to 11 m. The proportion of the species based on tree volume within this radius was the best proxy to explain species effects. The clay content had a significant positive influence on soil pH and exchangeable Ca and Mg with similar effect sizes. Our results indicate that beech, in comparison to other co‐occurring deciduous tree species, mainly ash, increased acidification at our site. This effect occurred on a small spatial scale and was probably driven by species‐related differences in nutrient cycling via leaf litter. The distribution of beech and ash resulted not only in aboveground diversity of stand structures but also induced a distinct belowground diversity of the soil habitat.  相似文献   

5.
13C示踪是精准量化植物碳源贡献土壤碳的有效途径。为建立经济适用的甘蔗13C脉冲标记方法,同时获得13C富集蔗叶,本研究采用自制全密闭标记室进行标记试验,供试甘蔗品种为桂糖58号,设置0(CK)、0.32(T1)、0.64(T2)和1.28 g·m-3(T3)4个Na213CO3标记浓度,每隔7 d进行6 h的13CO2脉冲标记,共标记6次。于第6次脉冲标记开始及结束后采集标记室内气体,测定CO2浓度和δ13C-CO2。并于第2、第4和第6次标记7 d后破坏性采集植株,测定蔗叶和根系δ13C值及全碳和N、P、K含量,计算蔗叶和根系13C标记效率。结果表明,在密闭标记时间内,外源释放的13CO2 95%以上被甘蔗光合作用利用。蔗叶δ...  相似文献   

6.
The aim of this study was to determine the influence of leaf‐litter type (i.e., European beech—Fagus sylvatica L. and European ash—Fraxinus excelsior L.) and leaf‐litter mixture on the partitioning of leaf‐litter C and N between the O horizon, the topsoil, the soil microbial biomass, and the CO2 emission during decomposition. In a mature beech stand of Hainich National Park, Thuringia, Germany, undisturbed soil cores (?? 24 cm) were transferred to plastic cylinders and the original leaf litter was either replaced by 13C15N‐labeled beech or ash leaf litter, or leaf‐litter‐mixture treatments in which only one of the two leaf‐litter types was labeled. Leaf‐litter‐derived CO2‐C flux was measured every second week over a period of one year. Partitioning of leaf‐litter C and N to the soil and microbial biomass was measured 5 and 10 months after the start of the experiment. Ash leaf litter decomposed faster than beech leaf litter. The decomposition rate was negatively related to initial leaf‐litter lignin and positively to initial Ca concentrations. The mixture of both leaf‐litter types led to enhanced decomposition of ash leaf litter. However, it did not affect beech leaf‐litter decomposition. After 5 and 10 months of in situ incubation, recoveries of leaf‐litter‐derived C and N in the O horizon (7%–20% and 9%–35%, respectively) were higher than in the mineral soil (1%–5% and 3%–8%, respectively) showing no leaf‐litter‐type or leaf‐litter‐mixture effect. Partitioning of leaf‐litter‐derived C and N to microbial biomass in the upper mineral soil (< 1% of total leaf‐litter C and 2%–3% of total leaf‐litter N) did not differ between beech and ash. The results show that short‐term partitioning of leaf‐litter C and N to the soil after 10 months was similar for ash and beech leaf litter under standardized field conditions, even though mineralization was faster for ash leaf litter than for beech leaf litter.  相似文献   

7.
Land application of animal wastes from intensive grassland farming has caused growing environmental problems during the last decade. This study aimed to elucidate the short‐term sequestration of slurry‐derived C and N in a temperate grassland soil (Southwest England) using natural abundance 13C and 15N stable isotope techniques. Slurry was collected from cows fed either on perennial ryegrass (C3) or maize (C4) silages. 50 m3 ha—1 of each of the obtained C3 or C4 slurries (δ13C = —30.7 and —21.3‰, δ15N = +12.2 and + 13.8 ‰, respectively) were applied to a C3 soil with δ13C and δ15N values of —30.0 ± 0.2‰ and + 4.9 ± 0.3‰, respectively. Triplicate soil samples were taken from 0—2, 2—7.5, and 7.5—15 cm soil depth 90 and 10 days before, at 2 and 12 h, as well as at 1, 2, 4, 7, and 14 days after slurry application and analyzed for total C, N, δ13C, and δ15N. No significant differences in soil C and N content were observed following slurry application using conventional C and N analysis techniques. However, natural abundance 13C and 15N isotope analysis allowed for a sensitive temporal quantification of the slurry‐derived C and N sequestration in the grassland soil. Our results showed that within 12 hours more than one‐third of the applied slurry C was found in the uppermost soil layer (0—2 cm), decreasing to 18% after 2 days, but subsequently increasing to 36% after 2 weeks. The tentative estimate of slurry‐derived N in the soil suggested a decrease from 50% 2 hours after slurry application to only 26% after 2 weeks, assuming that the increase in δ15N of the slurry plots compared to the control is proportional to the amount of slurry‐incorporated N. We conclude that the natural abundance tracer technique can provide a rapid new clue to the fate of slurry in agricultural C and N budgets, which is important for environmental impacts, farm waste management, and climate change studies.  相似文献   

8.
Residue retention and reduced tillage are both conservation agricultural practices that may enhance soil organic carbon (SOC) stabilization in soil. We evaluated the long‐term effects of no‐till (NT) and stover retention from maize on SOC dynamics in a Rayne silt loam Typic Hapludults in Ohio. The six treatments consisted of retaining 0, 25, 50, 75, 100 and 200% of maize residues on each 3 × 3 m plot from the crop of previous year. Soil samples were obtained after 9 yrs of establishing the experiment. The whole soil (0–10 and 10–20 cm of soil depths) samples under different treatments were analysed for total C, total N, recalcitrant C (NaOCl treated sample) and 13C isotopic abundance (0–10 cm soil depth). Complete removal of stover for a period of 9 yrs significantly (P < 0.01) decreased soil C content (15.5 g/kg), whereas 200% of stover retention had the maximum soil C concentration (23.1 g/kg). Relative distribution of C for all the treatments in different fractions comprised of 55–58% as labile and 42–45% as recalcitrant. Retention of residue did not significantly affect total C and N concentration in 10–20 cm depth. 13C isotopic signature data indicated that C4‐C (maize‐derived C) was the dominant fraction of C in the top 0–10 cm of soil layer under NT with maize‐derived C accounting for as high as 80% of the total SOC concentration. Contribution of C4‐C or maize‐derived C was 71–84% in recalcitrant fraction in different residue retained plots. Residue management is imperative to increase SOC concentrations and long‐term agro‐ecosystem necessitates residue retention for stabilizing C in light‐textured soils.  相似文献   

9.
研究了黄土高原南部地区不同土壤类型及不同利用方式下土壤微生物摄碳、氮和可溶性有机碳、氮的含量。结果表明:不同土地利用方式下,土壤微生物量碳、氮和可溶性有机碳、氮含量均为林地〉农田,其中林地枯枝落叶层〉林地O~20cm土层。农田土壤微生物量碳、氮的含量均为红油土〉黑垆土〉淋溶褐土;农田土壤中可溶性有机碳含量为淋溶褐土〉红油土〉黑垆土,而可溶性有机氮含量则为黑垆土〉红油土〉淋溶褐土。方差分析表明,不同土壤类型土壤微生物量氮含量之间的差异达显著水平,而不同土壤类型间土壤微生物量碳、可溶性有机碳、氯含量之间的差异未达显著水平。土壤微生物量碳、氮占土壤有机碳和全氮的比例明显高于可溶性有机碳、氮占土壤有机碳和全氮的比例。相关分析发现,土壤微生物量碳与可溶性有机碳之间以及土壤微生物量氮与可溶性有机氮之间的相关性达显著或极显著水平,说明土壤微生物量碳、氮和土壤可溶性有机碳、氮之间有密切联系。  相似文献   

10.
Long‐term no‐tillage management and crop residue amendments to soil were identified as an effective measure to increase soil organic carbon (SOC). The SOC content, SOC stock (SOCs), soil carbon sequestration rate (CSR), and carbon pool management index (CPMI) were measured. A stable isotopic approach was used to evaluate the contributions of wheat and maize residues to SOC at a long‐term experimental site. We hypothesized that under no‐tillage conditions, straw retention quantity would affect soil carbon sequestration differently in surface and deep soil, and the contribution of C3 and C4 crops to soil carbon sequestration would be different. This study involved four maize straw returning treatments, which included no maize straw returning (NT‐0), 0.5 m (from the soil surface) maize straw returning (NT‐0.5), 1 m maize straw returning (NT‐1), and whole maize straw returning (NT‐W). The results showed that in the 0–20 cm soil layer, the SOC content, SOCs, CSR and CPMI of the NT‐W were highest after 14 years of no‐tillage management, and there were obvious differences among the four treatments. However, the SOC, SOCs, and CSR of the NT‐0.5 and NT‐W were the highest and lowest in 20–100 cm, respectively. The value of δ13C showed an obviously vertical variability that ranged from –22.01‰ (NT‐1) in the 0–20 cm layer to –18.27‰ (NT‐0.5) in the 60–80 cm layer, with enriched δ13C in the 60–80 cm (NT‐0.5 and NT‐1) and 80–100 cm (NT‐0 and NT‐W) layers. The contributions of the wheat and maize‐derived SOC of the NT‐0.5, NT‐1 and NT‐W increased by 11.4, 29.5 and 56.3% and by 10.7, 15.1 and 40.1%, relative to those in the NT‐0 treatment in the 0–20 cm soil layer, respectively. In conclusion, there was no apparent difference in total SOC sequestration between the NT‐0.5, NT‐1, and NT‐W treatments in the 0–100 cm soil layer. The contribution of wheat‐derived SOC was higher than that of maize‐derived SOC.  相似文献   

11.
Increasing evidence suggests that accretion of microbial turnover products is an important driver for isotopic carbon (C) and nitrogen (N) enrichment of soil organic matter (SOM). However, the exact contribution of arbuscular mycorrhizal fungi (AMF) to soil isotopic patterns remains unknown. In this study, we compared 13C and 15N patterns of glomalin-related soil protein (GRSP), which includes a main fraction derived from AMF, litter, and bulk soil in four temperate rainforests. GRSP was an abundant C and N pool in these forest soils, showing significant 13C and 15N enrichment relative to litter and bulk soil. Hence, cumulative accumulation of recalcitrant AMF turnover products in the soil profile likely contributes to 13C and 15N enrichment in forest soils. Further research on the relationship between GRSP and AMF should clarify the exact extent of this process.  相似文献   

12.
Identifying the transformation process of amino acid enantiomers was essential to probe into the fate, turnover and aging of soil nitrogen due to their important roles in the biogeochemical cycling. If this can be achieved by differentiating between the newly biosynthesized and the inherent compounds in soil, then the isotope tracer method can be considered most valid. We thereby developed a gas chromatography/mass spectrometry (GC/MS) method to trace the 15N or 13C isotope incorporation into soil amino acid enantiomers after being incubated with 15NH4+ or U-13C-glucose substrates. The most significant fragments (F) as well as the related minor ions were monitored by the full scan mode and the isotope enrichment in amino acids was estimated by calculating the atom percentage excess (APE). 15NH4+ incorporation was evaluated according to the relative abundance increase of m/z F+1 to F for neutral and acidic amino acids and F+2 to F (mass 439) for lysine. The assessment of 13C enrichment in soil amino acids was more complicated than that of 15N due to multi-carbon atoms in amino acid molecules. The abundance ratio increment of m/z F+n to F (n is the original skeleton carbon number in each fragment) indicated the direct conversion from the added glucose to amino acids, but the total isotope incorporation from the added 13C can only be calculated according to all target isotope fragments, i.e. the abundance ratio increment summation from m/z (Fa+1) through m/z (Fa+T) represented the total incorporation of the added 13C (Fa is the fragment containing all original skeleton carbons and T is the carbon number in the amino acid molecule). This method has a great advantage especially for the evaluation of high-abundance isotope enrichment in organic compounds compared with GC/C/IRMS. And in principle, this technique is also valid for amino acids besides enantiomers if stereoisomers are not concerned. Our assessment approach could shine a light on investigating the biochemical mechanism of microbial transformation of N and C in soils of terrestrial ecosystem.  相似文献   

13.
Silvicultural treatments of fertilization (F) and competing vegetation suppression (H) have continued to increase as demands for forest products have grown. The effects of intensive annual F and H treatments on soil C, N, microbial biomass, and CO2 efflux were examined in a two-way factorial experiment (control, F, H, FxH) in late-rotation (20+ years) loblolly pine stands. This study is unique in testing the cumulative effects of continual H and repeated F treatments for the first 20 years of stand growth, an uncommon operational practice, and in having treatments replicated upon four different soil types in the state of Georgia, USA. Annual fertilization included applications of N, P, K and periodic additions of micronutrients while competing vegetation suppression was maintained for all non-pine vegetation with herbicides throughout the rotation. Measurements included total O-horizon (forest floor) organic matter, C, and N, and 0-10 cm mineral soil pH, C, N, microbial biomass C and N, and surface CO2 efflux. Sample collections and analyses were conducted seasonally for 1.5 yrs. Competing vegetation suppression was associated with a decrease of total soil C, soil microbial biomass C and N, and soil surface CO2 efflux, while increasing O-horizon C:N. The fertilization treatment greatly reduced soil microbial biomass C and N, soil pH, and O-horizon C:N, while increasing O-horizon mass, N content, and soil carbon. No significant interactions between F and H were found. The combination of F and H treatments acted additively to achieve the greatest loss of soil microbial biomass, which may possibly have negative implications for long-term soil fertility.  相似文献   

14.
外源水稻根系和茎叶碳氮在稻田土壤中释放的特征   总被引:2,自引:0,他引:2  
东北地区气候寒冷,稻田土壤休耕期长,多处于冻结状态;水稻生长期短,土壤温度高且季节性淹水.外源水稻秸秆碳氮在东北地区稻田土壤休耕期和水稻生长期不同水热条件下的释放特征尚不完全清楚.通过室外培养试验方法,利用双标记(13C和15N)水稻根系和茎叶示踪技术和稳定同位素质谱分析技术,研究水稻根系和茎叶在稻田土壤中的腐解率、有...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号