首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A severe mosaic disease of pointed gourd (Trichosanthes dioica Roxb.) was observed with significant disease incidence in Gopalganj, India, during 2008. Begomovirus was detected from symptomatic leaf samples by polymerase chain reaction (PCR) using coat protein gene-specific primers of a well characterized begomovirus which revealed positive amplification of expected size ~800 bp DNA band. To confirm begomovirus association, the complete DNA-A was amplified using three sets of begomovirus DNA-A primers. The amplicons were cloned, sequenced, and sequence of the complete DNA-A (2757 nt) was determined by combining the sequence data of all amplicons (Accession no. GQ268327). The sequence data showed 99–93% sequence identities and close phylogenetic relationships with isolates of Ageratum enation virus (AgEV). The begomovirus associated with mosaic disease of T. dioica was identified as an isolate of Ageratum enation virus, which is a new record from India.  相似文献   

2.
The biological and molecular characterization of a virus recognized as a distinct begomovirus species, Tomato curly stunt virus (ToCSV), first observed in South Africa in 1997, is reported here. Whitefly‐transmission and host‐range studies were carried out using a Bemisia tabaci colony identified as the B‐biotype. The experimental host range of ToCSV spanned primarily species in the Solanaceae and Fabaceae. The complete ToCSV genome (2·766 kb) was amplified by PCR, cloned, and the DNA sequence determined. Phylogenetic analysis revealed that ToCSV was most closely related to Tobacco leaf curl Zimbabwe virus (TbLCZV), at 84% nucleotide identity, indicating that ToCSV is a new species in the genus Begomovirus that is probably endemic to southern Africa. The ToCSV genome sequence contained all of the hallmark coding and non‐coding features characteristic of other previously recognized monopartite begomoviruses. ToCSV is only the second begomovirus described from southern Africa that infects solanaceous species. Neither a begomoviral DNA‐B component nor a satellite‐like DNA molecule was detected by PCR in extracts of ToCSV‐infected plants.  相似文献   

3.
Begomoviruses were detected in Nicaraguan fields of tomato ( Lycopersicon esculentum ) and adjacently growing plants of pepper ( Capsicum annuum ), chilli pepper ( C . baccatum ), cushaw ( Cucurbita argyrosperma ) and Mexican fireplant ( Euphorbia heterophylla ) using polymerase chain reaction (PCR) and universal begomovirus primers. All tomato and Mexican fireplant plants showing symptoms were infected with begomoviruses, while only 30–46% of the pepper, chilli pepper and cushaw plants showing symptoms tested virus-positive. No begomoviruses were found in potato. The virus species were provisionally identified by sequencing 533 bp of the viral coat protein gene ( AV1 ). Tomato severe leaf curl virus (ToSLCV), Tomato leaf curl Sinaloa virus (ToLCSinV) and Pepper golden mosaic virus (PepGMV) were found to infect both tomato and pepper. A new provisional species designated Tomato leaf curl Las Playitas virus (ToLCLPV) was detected in a tomato plant. Squash yellow mottle virus (SYMoV) and PepGMV were found in cucurbits, the latter for the first time in this host. Euphorbia mosaic virus (EuMV) was detected in Mexican fireplant. Sequencing of a larger number of PCR-amplified clones from selected plants revealed intraspecific viral sequence variability, and also multiple begomovirus infections which could represent up to three species in a single tomato or cushaw plant. Phylogenetic grouping of virus sequences did not correlate with the host of origin.  相似文献   

4.
Characterization of a new potyvirus isolated from peanut (Arachis hypogaea)   总被引:1,自引:0,他引:1  
During a survey of viruses of peanuts in South Africa a mechanically transmissible virus was isolated from a plant exhibiting chlorotic ringspots and blotches on the leaves. Typical potyvirus-like flexuous particles were detected by electron microscope examination. Pinwheel-shaped and laminated inclusions in ultrathin sections, reaction with a monoclonal antibody directed to a potyvirus common epitope, a single 33 kDa coat protein and aphid transmission using Myzus persicae all confirmed that the virus was a subdivision II member of the Potyviridae. Host range studies suggested that the virus was none of the previously reported potyviruses of peanuts or of subdivision II potyviruses. The serological relationships of the virus were studied using a range of 17 antisera to potyviruses in ELISA and immunosorbent electron microscopy (ISEM). The isolate reacted weakly with antisera to plum pox virus and bean yellow mosaic virus in ISEM only. Nucleotide sequence of a 624 bp DNA product was obtained following immuno-capture with a potyvirus common epitope antiserum, cDNA synthesis and PCR amplification with potyvirus specific primers which amplify the 3' untranslated region and a part of the coat protein gene. The sequence was only distantly related to a number of potyviruses, whether amino acid or nucleotide sequences were used for comparisons. It is proposed that the virus be named peanut chlorotic blotch virus and be accepted as a new member of the genus Potyvirus in the family Potyviridae.  相似文献   

5.
Occurrence of Tomato infectious chlorosis virus (TICV) in Jordan   总被引:2,自引:1,他引:1  
A new disease on tomato ( Lycopersicon esculentum L.) caused by Tomato infectious chlorosis virus (TICV) has been detected for the first time in Jordan. Disease symptoms consisted of interveinal yellowing areas in older leaves followed by generalized yellowing. Using specific primers, Tomato infectious chlorosis virus was detected in symptomatic plants by RT-PCR. The amplified fragment (416 bp) was cloned and sequenced. Results of sequence analysis showed that the Jordanian isolate of TICV shared high nucleotide similarity (> 98%) with two other isolates from Japan and France. The distribution of TICV has been investigated in four regions in the Jordan Valley by non-radioactive dot blot hybridization. Data from the study showed high incidence of the disease in all surveyed regions. In addition, the expected size of the coat protein gene of TICV could be amplified from two symptomatic weeds species, Chenopodium album and Chenopodium murale , indicating that these weeds are natural hosts for the virus.  相似文献   

6.
Severe mosaic, yellowing and stunting symptoms were observed on petunia (Petunia hybrida L.) growing in pots at NBRI and in various gardens of Lucknow, India. The association of Cucumber mosaic virus (CMV) with the mosaic disease was detected based on positive bioassay on susceptible hosts, isometric cored virus particles of ~28?nm during electron microscopic observations in leaf dip preparations and positive amplification of expected size (~650?bp) during RT-PCR using coat protein gene specific primers. Further, the complete RNA 3 genomic fragment of virus isolate was amplified by RT-PCR using RNA 3 specific primers. The obtained amplicons of ~2.2 Kb were cloned and sequenced. The analysis of sequence data of RNA 3 revealed highest sequence identities (96%) with several CMV strains which belong to subgroup IB. The virus isolate also showed closest phylogenetic relationships with banana strain of CMV of subgroup IB (Acc. EF178298) reported from India. To the best of our knowledge, we report the first molecular characterization of CMV strain of subgroup IB causing severe mosaic disease on petunia in India.  相似文献   

7.
 利用电镜和酶联免疫吸附测定法(ELISA)在黑龙江省采集的南瓜病样中检测到西瓜花叶病毒2号(WMV-2)。再利用免疫PCR (IC-PCR)和反转录PCR (RT-PCR)方法,扩增获得其外壳蛋白(CP)基因片段,并克隆到pGEM-T载体中。核苷酸序列测定表明,该分离物CP基因全长为852个核苷酸,编码由284个氨基酸组成的31.8 kDa蛋白。与国外已报道的WMV-2 CP基因相比,其核苷酸序列同源性为92.2%~94.0%,由此推导的氨基酸序列同源性为94.5%~98.1%。与国内2个分离物相比,和山西分离物核苷酸和氨基酸的同源性都达到98.5%,和郑州分离物核苷酸和氨基酸的同源性分别为91.5%和95.0%。  相似文献   

8.
Natural occurrence of mosaic disease was observed on basil (Ocimum sanctum L.) in Aligarh, U. P., India, during 2008. The disease could be transmitted by sap inoculations from naturally infected O. sanctum to O. sanctum and some test plant species. Cucumber mosaic virus (CMV) was detected by RT-PCR using coat protein gene specific primers of CMV (Acc. AM180922 & AM180923), which resulted in the expected size ~650 bp amplicon in infected samples. The amplicon was cloned, sequenced and data were deposited in GenBank Acc. EU600216. The sequence data analysis revealed 97–99% identities at both nucleotide and amino acid levels with the CMV strains of subgroup II reported worldwide. Based on the high sequence identities and close phylogenetic relationships with CMV subgroup II strains, the virus under study has been identified as a new isolate of CMV subgroup II and designated as CMV-Basil.  相似文献   

9.
烟草花叶病毒丁香分离物的分离与鉴定   总被引:6,自引:0,他引:6  
 从表现花叶症状的丁香病株上获得一病毒分离物,其在电镜下为约300 nm×18nm的杆状粒子;电泳分析表明感病组织中ds RNA大约为6.4kbp,而其外壳蛋白分子量约为17.6k Da。以上实验结果初步将该病毒分离物鉴定为烟草花叶病毒属(Tobamovirus)。根据该属病毒复制酶基因序列设计通用引物,进行RT-PCR检测,扩增出约1000 bp的预期特异片段(Gen Bank AY566703)。将PCR产物克隆后测序,序列分析表明,与从蚕豆中分离的TMV-B株系序列(Gen Bank AJ011933.1)同源性为99.90%。根据烟草花叶病毒(Tobacco mosaic virus,TMV)的RNA CP基因序列设计引物,进行RT-PCR,扩增出约800 bp的预期特异片段(Gen Bank AY56672),序列分析表明,与TMV-B株系序列(Gen Bank AJ011933.1)同源性达99%,上述实验结果表明,该病毒分离物为TMV。由于该分离物与TMV-B在指示植物上的症状存在明显差异,所以,作者把该分离物暂命名为TMV-S。  相似文献   

10.
During the spring of 2001, approximately 10 000 yellow passion flower plants, from two orchards in the county of Livramento de Nossa Senhora, Bahia State, Brazil, exhibited intense yellow mosaic symptoms and drastic reduction of the leaf lamina and plant development. A large population of whiteflies ( Bemisia tabaci ) was also found colonizing the plants. All field samples collected tested positive for Passion fruit woodiness virus in DAS-ELISA. Five out of 20 passion flower plants inoculated with adult whiteflies collected from diseased plants in the field developed symptoms 20–30 days after inoculation. Two of these plants gave a positive reaction in TAS-ELISA using antiserum against a begomovirus. Degenerated PCR primers amplified viral DNA fragments from the DNA-A and DNA-B components of a begomovirus infecting these plants. The fragment corresponding to the core region of the coat protein (DNA-A) was cloned and sequenced. A phylogenetic analysis placed this begomovirus isolated from passion flower in the same clade of the New World begomoviruses as several other species from Brazil. Based on the symptoms induced by this virus alone, the disease was tentatively named passion flower little leaf mosaic.  相似文献   

11.
The nematode-borne Grapevine fanleaf nepovirus (GFLV) causes severe degeneration of grapevines in vineyards worldwide. In a recent survey of the sanitary status of grapevine plants in north Tunisian vineyards, we were interested to study the polymorphism of GFLV. Purified virus, from mechanically inoculated Chenopodium quinoa , was used to produce anti-GFLV antiserum, which specifically recognized GFLV in different Tunisian grapevine samples using the DAS-ELISA technique. Positive samples were subjected to oligoprobe-RT-PCR to amplify a 606 bp region of the viral coat protein sequence. PCR products used for RFLP analysis after digestion with endonuclease Alu I produced 3 restriction profiles. RFLP data allowed clear distinction of two GFLV strains in Tunisia. The nucleotide sequence of the PCR-generated amplicons from each strain was determined showing 93.4% identity at the nucleic acid level and 97.5% similarity at the aminoacid sequence level compared to the previously characterized GFLV-F13 French isolate. This paper is the first report on molecular variability of GFLV in Tunisia.  相似文献   

12.
Begomoviruses constitute a group of viruses of great economic importance in agriculture, mainly in tropical and subtropical regions, including southern Africa. Tomato curly stunt virus (ToCSV) is an important begomovirus described in South Africa and later reported in Mozambique impacting tomato cultivation. In Mozambique, the severe disease caused by ToCSV limits tomato cultivation and compromises the income of small and medium farms. Due to the scarcity of information about this pathogen, in this study we explored its genetic variability to elucidate the mechanisms that drive its evolution. In 2019, 27 ToCSV full-length sequences were obtained from tomato foliar samples with virus-like symptoms collected in the district of Chokue in Gaza province, Mozambique. Sequence analysis showed that isolates from Mozambique have a nucleotide identity of 90.9%–96.9% with the isolate from South Africa (AF261885) and are grouped into two distinct strains that we named ToCSV-Chok I and ToCSV-Chok II. The ToCSV-Chok II strain has a higher nucleotide diversity than ToCSV-Chok I in the Rep gene. Recombination is involved in the evolutionary history of ToCSV, with both intraspecific and interspecific recombination events detected in the Rep gene. Our results indicate a prevalence of ToCSV in tomato crops in the Chokue district of Mozambique (the major tomato-producing region of the country) and suggest that ToCSV is undergoing speciation due to the effect of recombination.  相似文献   

13.
Malvastrum leaf curl Guangdong virus is a distinct monopartite begomovirus   总被引:1,自引:0,他引:1  
Virus isolates GD6, GD7, GD8, GD9 and GD10 were obtained from Malvastrum coromandelianum showing leaf curl symptoms in Guangdong Province of China. A specific 500 bp product was consistently detected in total DNA extracts, amplified with universal primers specific for members of the genus Begomovirus. Analysis of their partial DNA sequences revealed that they are isolates of the same begomovirus species, sharing 92·8%–97·1% nucleotide sequence identity. The complete DNA sequences of both GD6 and GD9 were found to be 2767 nucleotides, with all the characteristic features of begomovirus genome organization. The two isolates have less than 85·2% nucleotide sequence identity with other reported begomoviruses. Consequently, GD6 and GD9 are considered to be isolates of a novel begomovirus species, for which the name Malvastrum leaf curl Guangdong virus (MLCuGdV) is proposed. Sequence analyses suggest that MLCuGdV may have arisen by recombination between viruses related to Papaya leaf curl China virus , Tomato leaf curl Philippines virus and other undiscovered virus ancestors. Neither the DNA-B component nor the DNAβ molecule associated with these begomovirus isolates was found. An infectious clone of GD6 was constructed. GD6 efficiently infected Nicotiana benthamiana , N. glutinosa and Petunia hybrida by agro-inoculation, and Malvastrum coromandelianum by whitefly transmission, inducing leaf curling, vein swelling and stunting symptoms. GD6 was also infectious in N. tabacum , but did not induce observable disease symptoms.  相似文献   

14.
甘蔗花叶病毒福建分离物外壳蛋白基因的克隆及序列分析   总被引:3,自引:0,他引:3  
 A fujian isolate of Sugarcane mosaic virus named SCMV-FJ was isolated from infected sugarcane. Cloning and sequence analysis of the coat protein gene of this isolate was carried out. A pair of primers was designed and synthesized based on the nucleotide sequences of coat protein genes of sugarcane mosaic viruses reported. The coat protein gene of SCMV-FJ was amplified from the extracted total RNA of the infected sugarcane by using RT-PCR, and cloned into the pMD18-T vector. The sequencing result indicated that the cloned segment included a 1137 bp open reading frame(ORF) and a 228 bp 3' untranslated region, in which the ORF comprised the whole coat protein and part of the nuclear inclusion b. The nucleotide and the deduced amino acid sequences of the coat protein gene were compared with those of the other isolates or strains of SCMV subgroup reported in GenBank. The result showed that it shares 56.8%-97.1% and 55.3%-99.4% homology in nucleotide and the putative amino acid sequences, respectively, with the highest amino acid homology of 99.4% with SCMV-D. Thus it was identified as a SCMV-D. This experiment provided a rapid, sensitive and relatively inexpensive method for RT-PCR detection of SCMV. At the same time, the cloning of SCMV-FJ coat protein gene provided the foundation for plant gene engineering against SCMV.  相似文献   

15.
16.
An RT-PCR based detection method for Cassava brown streak virus (CBSV)-infected cassava has been developed. The RT-PCR detection method described includes RNA extraction methods for cassava leaves, a distinct primer set for the virus and RT-PCR conditions. The primers were designed to the virus coat protein gene and generate a virus-specific product of 231 bp from infected cassava. The test can detect the virus in the new growth of cassava sticks before any disease symptoms are visible. This test was used successfully with infected cassava from both Tanzania and Mozambique. Three isolates from Tanzania were found to exhibit different symptoms on the secondary host plants Nicotiana benthamiana and N. tabacum SR1. They have nucleotide sequence variation within the coat protein region of up to 8% and amino acid differences of up to 6%.  相似文献   

17.
An association of a begomovirus with leaf curl symptoms on Cleome gynandra was detected using a polymerase chain reaction (PCR) with begomovirus-specific primers. Further, the complete DNA-A of the begomovirus was cloned and sequenced. BLAST analysis of the sequence data revealed 92–99% identities and close relationships with several isolates of Ageratum enation virus (AgEV); therefore, we identified the virus associated with leaf curl symptoms of C. gynandra as an isolate of AgEV. This report is the first on the detection of AgEV in plants of C. gynandra with leaf curl in India.  相似文献   

18.
Three begomovirus isolates were obtained from tomato plants showing leaf curl symptoms in Guangxi province of China. Typical begomovirus DNA components representing the three isolates (GX-1, GX-2 and GX-3) were cloned and their full-length sequences were determined to be 2752 nucleotides. Nucleotide identities among the three viral sequences were 98.9–99.7%, but all shared <86.7% nucleotide sequence identity with other reported begomoviruses. The sequence data indicated that GX-1, GX-2 and GX-3 are isolates of a distinct begomovirus species for which the name Tomato leaf curl Guangxi virus (ToLCGXV) is proposed. Further analysis indicated that ToLCGXV probably originated through recombination among viruses related to Ageratum yellow vein virus, Tomato leaf curl China virus and Euphorbia leaf curl virus. PCR and Southern blot analyses demonstrated that isolates GX-1 and GX-2 were associated with DNAβ components, but not isolate GX-3. Sequence comparisons revealed that GX-1 and GX-2 DNAβ components shared the highest sequence identity (86.2%) with that of Tomato yellow leaf curl China virus (TYLCCNV). An infectious construct of ToLCGXV isolate GX-1 (ToLCGXV-GX) was produced and determined to be highly infectious in Nicotiana benthamiana, N. glutinosa, tobacco cvs. Samsun and Xanthi, tomato and Petunia hybrida plants inducing leaf curl and stunting symptoms. Co-inoculation of tomato plants with ToLCGXV-GX and TYLCCNV DNAβ resulted in disease symptoms similar to that caused by ToLCGXV-GX alone or that observed in infected field tomato plants.  相似文献   

19.
20.
尚晓楠  吴蓓蕾 《植物保护》2016,42(3):165-169
马铃薯X病毒(Potato virus X,PVX)是危害茄科作物的一种重要病毒,为了建立特异性检测PVX的实时荧光定量PCR体系,本研究以PVX-1985分离物中外壳蛋白(coat protein,CP)基因序列为模板,设计引物构建重组质粒并选择扩增效率高、特异性强的引物成功构建出标准曲线。利用建立的体系,成功检测到以含pCaPVX440侵染性克隆载体的农杆菌C58C1接种后的本氏烟(Nicotiana benthamiana)中PVX病毒RNA的拷贝数。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号