共查询到20条相似文献,搜索用时 15 毫秒
1.
Anthropogenic nitrogen (N) deposition is a serious threat to biodiversity and the functioning of many ecosystems, particularly so in N-limited systems, such as many forests. Here we evaluate the associations between soil nitrate and changes in plant community structure and soil biota along nitrate gradients from croplands into closed forests. Specifically, we studied the composition of the understory plant and earthworm communities as well as soil microbial properties in two deciduous forests (Echinger Lohe (EL) and Wippenhauser Forst (WF)) near Munich, Germany, which directly border on fertilized agricultural fields. Environmental variables, like photosynthetically active radiation, distance to the edge and soil pH were also determined and used as co-variates. In both forests we found a decrease in understory plant coverage with increasing soil nitrate concentrations. Moreover, earthworm biomass increased with soil nitrate concentration, but this increase was more pronounced in EL than in WF. Soil microbial growth after addition of a nitrogen source increased significantly with soil nitrate concentrations in WF, indicating changes in the composition of the soil microbial community, although there was no significant effect in EL. In addition, we found changes in earthworm community composition along the soil nitrate gradient in WF. Taken together, the composition and functioning of forest soil communities and understory plant cover changed significantly along soil nitrate gradients leading away from fertilized agricultural fields. Inconsistent patterns between the two forests however suggest that predicting the consequences of N deposition may be complicated due to context-dependent responses of soil organisms. 相似文献
2.
The long-term effect of fertilizers on plant diversity and productivity is well known, but long-term effects on soil biota
communities have received relatively little attention. Here, we used an exceptional long-lasting (>40 years) grassland fertilization
experiment to investigate the long-term effect of Ca, N, PK, and NPK addition on the productivity and diversity of both vegetation
and soil biota. Whereas plant diversity increased by liming and decreased by N and NPK, the diversity of nematodes, collembolans,
mites, and enchytraeids increased by N, PK, or NPK. Fertilization with NPK and PK increased plant biomass and biomass of enchytraeids
and collembolans. Biomass of nematodes and earthworms increased by liming. Our results suggest that soil diversity might be
driven by plant productivity rather than by plant diversity. This may imply that the selection of measures for restoring or
conserving plant diversity may decrease soil biota diversity. This needs to be tested in future experiments. 相似文献
3.
We studied the effect of five fertilizers (including two adjusted manure slurries) and an untreated control on soil biota
and explored the effect on the ecosystem services they provided. Our results suggest that the available N (NO 3− and NH 4+) in the soil plays a central role in the effect of fertilizers on nematodes and microorganisms. Microorganisms are affected
directly through nutrient availability and indirectly through grass root mass. Nematodes are affected indirectly through microbial
biomass and grass root mass. A lower amount of available N in the treatment with inorganic fertilizer was linked to a higher
root mass and a higher abundance and proportion of herbivorous nematodes. A higher amount of available N in the organic fertilizer
treatments resulted in a twofold higher bacterial activity (measured as bacterial growth rate, viz. thymidine incorporation),
a higher proportion of bacterivorous nematodes, a 30% higher potential N mineralization (aerobic incubation), and 25–50% more
potentially mineralizable N (anaerobic incubation). Compared to inorganic fertilizer, organic fertilization increased the
C total, the N total, the activity of decomposers, and the supply of nutrients via the soil food web. Within the group of
organic fertilizers, there was no significant difference in C total, abundances of soil biota, and the potential N mineralization
rate. There were no indications that farmyard manure or the adjusted manure slurries provided the ecosystem service “supply
of nutrients” better than normal manure slurry. Normal manure slurry provided the highest bacterial activity and the highest
amount of mineralizable N and it was the only fertilizer resulting in a positive trend in grass yield over the years 2000–2005.
The number of earthworm burrows was higher in the treatments with organic fertilizers compared to the one with the inorganic
fertilizer, which suggests that organic fertilizers stimulate the ecosystem service of water regulation more than inorganic
fertilizer. The trend towards higher epigeic earthworm numbers with application of farmyard manure and one of the adjusted
manure slurries, combined with the negative relation between epigeic earthworms and bulk density and a significantly lower
penetration resistance in the same fertilizer types, is preliminary evidence that these two organic fertilizer types contribute
more to the service of soil structure maintenance than inorganic fertilizer. 相似文献
4.
To investigate the effects of individual plant species on microbial community properties in soils of differing fertility, a microcosm experiment was carried out using plant species representative of the dominant flora in semi-fertile temperate grasslands of northern England. Soil microbial biomass and activity were found to be significantly greater in the more fertile, agriculturally improved soil than in the less productive unimproved meadow soil. Differences in microbial community structure were also evident between the two soils, with fungal abundance being greater in the unimproved soil type. Individual plant species effects significantly differed between the two soils. Holcus lanatus and Anthoxanthum odoratum stimulated microbial biomass in the improved soil type, but negatively affected this measure in the unimproved soil. In both soil types, herb species generally had negative effects on microbial biomass. Patterns for microbial activity were less consistent, but as with microbial biomass, A. odoratum and H. lanatus promoted respiration, whereas the herbs negatively affected this measure. All plant species grown in the improved soil increased the abundance of fatty acids synthesised by bacteria (bacterial phospholipid fatty acid analysis) relative to bare soil, but they negatively impacted on this group of fatty acids in unimproved soil. Similarly, the abundance of the fungal fatty acid 18:26 was increased by all plants in the more fertile improved soil only, albeit non-significantly. Our data indicate that effects of plant species on microbial properties differ markedly in soils of differing fertility, making general predictions about how individual plants impact on soil properties difficult to make. 相似文献
5.
Many studies have examined how human-induced atmospheric changes will influence ecosystems. The long-term consequences of human induced climate changes on terrestrial ecosystems may be determined to a large extend by how the belowground compartment will respond to these changes. In a free-air ozone enrichment experiment running for 5 years, we reciprocally transplanted soil cores from ambient and elevated ozone rings to test whether exposure to elevated ozone results in persistent changes in the soil biota when the plant and soil are no longer exposed to elevated ozone, and how these legacy effects of elevated ozone influenced plant growth as compared to current effects of elevated ozone. After one growing season, the current ozone treatment enhanced plant growth, but in soil with a historical legacy of elevated ozone the plant biomass in that soil was reduced compared to the cores originated from ambient rings. Current exposure to ozone increased the phospholipid fatty acids of actinomycetes and protozoa, however, it decreased dissolved organic carbon, bacterivorous and fungivorous nematodes. Interestingly, numbers of bacterivorous and fungivorous nematodes were enhanced when soils with a legacy of elevated ozone were placed under elevated ozone conditions. We conclude that exposure to elevated [O 3] results in a legacy effect in soil. This legacy effect most likely influenced plant growth and soil characteristics via responses of bacteria and fungi, and nematodes that feed upon these microbes. These soil legacies induced by changes in soil biotic community after long-term exposure of elevated ozone can alter the responses of ecosystems to current climatic changes. 相似文献
6.
Biotic soil parameters have so far seldom played a role in practical soil assessment and management of grasslands. However, the ongoing reduction of external inputs in agriculture would imply an increasing reliance on ecosystem self-regulating processes. Since soil biota play an important role in these processes and in the provision of ecosystem services, biological soil parameters should be an integral part of soil assessment. The general objective of the current study is to investigate to what extent biotic soil parameters provide additional value in soil quality assessment of grassland on sandy soils. We measured abiotic and biotic soil parameters together with process parameters underlying ecosystem services in 20 permanent production grasslands. Cross-validated stepwise regression was used to identify abiotic and biotic soil parameters that explained the soil ecosystem services soil structure maintenance, water regulation, supply of nutrients, and grassland production, respectively.Process parameters underlying the ecosystem service soil structure maintenance such as bulk density and the percentage of sub-angular blocky elements were mainly influenced by SOM and its qualities. The correlations between penetration resistance at 0-10 cm and the percentage of soil crumbs with earthworms suggested a relationship to earthworm activity. Parameters underlying the service of water regulation showed no clear relationship to biotic soil parameters. Water infiltration rate in the field was explained by the penetration resistance at 10-20 cm. Process parameters underlying the service of nutrients’ supply such as the potentially mineralizable C and N were mainly determined by soil total N. The potential C and N mineralization were more related to biotic soil parameters, whereby each parameter was the other’s antithesis. The grassland production without N fertilization viz. the nitrogen supply capacity of the soil measured as N yield, was mainly explained by soil organic matter (SOM) and soil moisture, and to a lesser extent by soil total N. One gram of SOM per kg of dry soil corresponded to 3.21 kg N yield ha −1, on top of a constant of 15.4 kg N ha −1. The currently applied calculations in the Dutch grassland fertilization recommendation, underestimated in 85% of the production grasslands, the measured nitrogen supply capacity of the soil by on average 42 kg N ha −1 (31%). This legitimizes additional research to improve the currently applied recommendations for sandy soils. The response of N yield to N fertilization ranged from 35 to 102%. This wide range emphasizes the importance of a better recommendation base to target N fertilizer. The response of N yield to N fertilization was predicted by the total number of enchytraeids, the underlying mechanism of which needs further investigation on different soil types. This knowledge can be important for the optimal use of fertilizer and its consequences for environmental quality. 相似文献
7.
Chamber measurements of total ecosystem respiration (TER) in a native Canadian grassland ecosystem were made during two study years with different precipitation. The growing season (April–September) precipitation during 2001 was less than one-half of the 30-year mean (1971–2000), while 2002 received almost double the normal growing season precipitation. As a consequence soil moisture remained higher in 2002 than 2001 during most of the growing season and peak aboveground biomass production (253.9 g m −2) in 2002 was 60% higher than in 2001. Maximum respiration rates were approximately 9 μmol m −2 s −1 in 2002 while only approximately 5 μmol m −2 s −1 in 2001. Large diurnal variation in TER, which occurred during times of peak biomass and adequate soil moisture, was primarily controlled by changes in temperature. The temperature sensitivity coefficient ( Q10) for ecosystem respiration was on average 1.83 ± 0.08, and it declined in association with reductions in soil moisture. Approximately 94% of the seasonal and interannual variation in R10 (standardized rate of respiration at 10 °C) data was explained by the interaction of changes in soil moisture and aboveground biomass, which suggested that plant aboveground biomass was good proxy for accounting for variations in both autotrophic and heterotrophic capacity for respiration. Soil moisture was the dominant environmental factor that controlled seasonal and interannual variation in TER in this grassland, when variation in temperature was held constant. We compared respiration rates measured with chambers and that determined from nighttime eddy covariance (EC) measurements. Respiration rates measured by both techniques showed very similar seasonal patterns of variation in both years. When TER was integrated over the entire growing season period, the chamber method produced slightly higher values than the EC method by approximately 4.5% and 13.6% during 2001 and 2002, respectively, much less than the estimated uncertainty for both measurement techniques. The two methods for calculating respiration had only minor effects on the seasonal-integrated estimates of net ecosystem CO 2 exchange and ecosystem gross photosynthesis. 相似文献
8.
Plants are often nutrient limited and soil organisms are important in mediating nutrient availability to plants. Thus, there may be a selective advantage to plants that alter the soil community in ways that enhance the decomposition of their litter and, hence, their ability to access nutrients. We incubated litter from three tree species ( Fagus sylvatica, Acer pseudoplatanus and Picea sitchensis) in the presence of biota extracted from soil beneath a stand of each species to test the hypothesis that litter decomposes fastest in the presence of biota derived from soil where that species is locally abundant. We found that respiration rate, a measure of decomposer activity and carbon mineralisation, was affected by litter type and source of soil biota, whereas, mass loss was only affected by litter type. However, litter from each tree species did not decompose faster in the presence of indigenous soil biota. These findings, therefore, provide no support for the notion that woodland plants encourage the development of soil communities that rapidly decompose their litter. 相似文献
9.
Human activity has induced a multitude of global changes that are likely to affect the functioning of ecosystems. Although these changes act in concert, studies on interactive effects are scarce. Here, we conducted a laboratory microcosm experiment to explore the impacts of temperature (9, 12 and 15 °C), changes in soil humidity (moist, dry) and plant diversity (1, 4, 16 species) on soil microbial activity and litter decomposition.We found that changes in litter decomposition did not mirror impacts on microbial measures indicating that the duration of the experiment (22 weeks) may not have been sufficient to determine the full magnitude of global change effects. However and notably, changes in temperature, humidity and plant litter diversity/composition affected in a non-additive way the microbial parameters investigated. For instance, microbial metabolic efficiency increased with plant diversity in the high moisture treatment but remained unaffected in low moisture treatment suggesting that climate changes may mask beneficial effects of biodiversity on ecosystem functioning. Moreover, litter decomposition was unaffected by plant litter diversity/composition but increased with increasing temperature in the high moisture treatment, and decreased with increasing temperature in the low moisture treatment.We conclude that it is inevitable to perform complex experiments considering multiple global change agents in order to realistically predict future changes in ecosystem functioning. Non-additive interactions highlight the context-dependency of impacts of single global change agents. 相似文献
10.
Contamination of soils in agroecosystems with microplastics (MPs) is of increasing concern. The contamination of the environment/farmland soils with MPs (1 µm to 5 mm sized particles) and nanoplastics (NPs; <1 µm sized particles) is causing numerous effects on ecological soil functions and human health. MPs enter the soil via several sources, either from intentional plastic use (e.g., plastic mulch, plastic greenhouses, plastic-coated products) or indirectly from the input of sewage sludge, compost, or irrigation water that is contaminated with plastic. Once in the soil, plastic debris can have various impacts such as changes in soil functions and physicochemical properties and it affects soil organisms due to its toxic behavior. This review paper describes the different effects of plastic waste to understand the consequences for agricultural productivity. Furthermore, we identify knowledge gaps and highlight the required approaches, indicating future research directions on sources, transport, and fate of MPs in soils to improve our understanding of various unspecified abiotic and biotic impacts of MP pollution in agroecosystems. 相似文献
11.
Yield decline (YD) of sugarcane is a widespread problem throughout the Australian sugar industry. It is defined as “the loss of productive capacity of sugarcane-growing soil under long-term monoculture”. Factors contributing to YD are the monoculture itself, excessive tillage of the soil at planting and severe soil compaction resulting from the use of heavy machinery during the harvesting operation. Collectively, these crop management practices have led to the development of sugarcane-growing soils that are low in organic C and cation exchange capacity, have a high bulk density and have a low microbial biomass. This in turn is associated with a build up of populations of detrimental soil organisms, which affect the growth and health of the sugarcane root system. Significant yield increases have been demonstrated following pasteurization or fumigation of the soil or treatment of the soil with fungicides or nematicides. Several detrimental soil organisms associated with YD have been identified, including a fungal root pathogen ( Pachymetra chaunorhiza) and the lesion nematode ( Pratylenchus zeae). Experimental evidence, however, suggests there are many other unidentified detrimental soil organisms associated with YD. In order to circumvent YD, major changes to the cane cropping system need to be considered. Different rotation breaks (sown pasture, alternate crops, bare fallow) were evaluated for their impact on soil health and the composition of the community of organisms in soil previously under cane monoculture. Despite the breaks having different effects on populations of beneficial soil biota, all breaks reduced populations of known detrimental soil biota and significantly increased the yield of the following cane crop. A single legume-based break crop appeared to be sufficient to capture the majority of these benefits. Other possible management options including the use of organic amendments and minimum tillage techniques are discussed. 相似文献
12.
The effects of soil structure and microbial community composition on microbial resistance and resilience to stress were found
to be interrelated in a series of experiments. The initial ability of Pseudomonas fluorescens to decompose added plant residues immediately after a copper or heat stress (resistance) depended significantly on which
of 26 sterile soils it was inoculated into. Subsequent studies showed that both the resistance and subsequent recovery in
the ability of P. fluorescens to decompose added plant residues over 28 days after stress (resilience) varied significantly between a sandy and a clay-loam
soil. Sterile, sandy and clay-loam soil was then inoculated with a complex microbial community extracted from either of the
soils. The resulting microbial community structure depended on soil type rather than the source of inoculum, whilst the resistance
and resilience of decomposition was similarly governed by the soil and not the inoculum source. Resilience of the clay-loam
soil to heat stress did not depend on the water content of the soil at the time of stress, although the physical condition
of the soil when decomposition was measured did affect the outcome. We propose that soil functional resilience is governed
by the physico-chemical structure of the soil through its effect on microbial community composition and microbial physiology. 相似文献
13.
The productivity and diversity of plant communities are affected by soil organisms such as arbuscular mycorrhizal fungi (AMF), root herbivores and decomposers. However, it is unknown how interactions between such functionally dissimilar soil organisms affect plant communities and whether the combined effects are additive or interactive. In a greenhouse experiment we investigated the individual and combined effects of AMF (five Glomus species), root herbivores (wireworms and nematodes) and decomposers (collembolans and enchytraeids) on the productivity and nutrient content of a model grassland plant community as well as on soil microbial biomass and community structure. The effects of the soil organisms on productivity (total plant biomass), total root biomass, grass and forb biomass, and nutrient uptake of the plant community were additive. AMF decreased, decomposers increased and root herbivores had no effect on productivity, but in combination the additive effects canceled each other out. AMF reduced total root biomass by 18%, but decomposers increased it by 25%, leading to no net effect on total root biomass in the combined treatments. Total shoot biomass was reduced by 14% by root herbivores and affected by an interaction between AMF and decomposers where decomposers had a positive impact on shoot growth only in presence of AMF. AMF increased the shoot biomass of forbs, but reduced the shoot biomass of grasses, while root herbivores only reduced the shoot biomass of grasses. Interactive effects of the soil organisms were detected on the shoot biomasses of Lotus corniculatus, Plantago lanceolata, and Agrostis capillaris. The C/N ratio of the plant community was affected by AMF.In soil, AMF promoted abundances of bacterial, actinomycete, saprophytic and AMF fatty acid markers. Decomposers alone decreased bacterial and actinomycete fatty acids abundances but when decomposers were interacting with herbivores those abundances were increased. Our results suggests that at higher resolutions, i.e. on the levels of individual plant species and the microbial community, interactive effects are common but do not affect the overall productivity and nutrient uptake of a grassland plant community, which is mainly affected by additive effects of functionally dissimilar soil organisms. 相似文献
14.
Enhanced UV radiation did not show any effect on the decomposition of a mixed litter of the dune grassland plant species
Calamagrostis epigeios and Carex arenaria. Also, leaching of nutrients from lysimeters filled with dune grassland soils was not affected by enhanced UV radiation.
Negative UV effects on the fungal biomass in the first part of the experiment were later reversed into positive ones. Clear
effects of both UV-A and UV-B were found on Collembola, both on total number of individuals and on the number of species.
The decreased number of species under UV radiation could have been due to a decrease in UV-sensitive species. The role of
pigmentation is discussed.
Received: 6 July 1999 相似文献
15.
土壤微生物去除是验证土壤微生物反馈调节入侵植物竞争排斥本地植物群落的重要手段。为了确定土壤微生物反馈效应的最佳土壤微生物去除方法,以及土壤微生物对紫茎泽兰与本地植物竞争中的反馈作用,本试验比较了添加蛭石和未添加蛭石下,3种常见土壤微生物灭菌方式(干热灭菌、湿热灭菌、辐照灭菌)处理的紫茎泽兰单优群落根际土壤对紫茎泽兰与本地植物香茶菜生长的影响。结果表明:与未灭菌处理土壤相比,3种灭菌处理土壤均显著抑制了紫茎泽兰和香茶菜的生长;添加蛭石灭菌的土壤相对于未添加蛭石的灭菌土壤显著促进了2种植物的生长;灭菌土壤添加蛭石的情况下辐照灭菌土壤的两种植物的生物量显著地高于干热灭菌和湿热灭菌土壤两种植物的生物量,其中辐照灭菌下紫茎泽兰的生物量分别比干热灭菌和湿热灭菌条件下增加30.8%和66.5%,香茶菜生物量分别显著增加109.5%和63.4%。辐照灭菌土壤添加蛭石的处理方式最接近真实地反映土壤微生物对植物生长的反馈效应。进一步进行辐照灭菌土壤添加蛭石处理与未灭菌土壤添加蛭石处理的紫茎泽兰与香茶菜混种的盆栽试验,结果显示,土壤微生物显著增强了紫茎泽兰对香茶菜的竞争优势,相对竞争优势度增加16.0%,说明土壤微生物在紫茎泽兰竞争排斥本地植物的入侵过程中具有正反馈偏利调节作用 相似文献
16.
Organic farming may contribute substantially to future agricultural production worldwide by improving soil quality and pest control, thereby reducing environmental impacts of conventional farming. We investigated in a comprehensive way soil chemical, as well as below and aboveground biological parameters of two organic and two conventional wheat farming systems that primarily differed in fertilization and weed management strategies. Contrast analyses identified management related differences between “herbicide-free” bioorganic (BIOORG) and biodynamic (BIODYN) systems and conventional systems with (CONFYM) or without manure (CONMIN) and herbicide application within a long-term agricultural experiment (DOK trial, Switzerland). Soil carbon content was significantly higher in systems receiving farmyard manure and concomitantly microbial biomass (fungi and bacteria) was increased. Microbial activity parameters, such as microbial basal respiration and nitrogen mineralization, showed an opposite pattern, suggesting that soil carbon in the conventional system (CONFYM) was more easily accessible to microorganisms than in organic systems. Bacterivorous nematodes and earthworms were most abundant in systems that received farmyard manure, which is in line with the responses of their potential food sources (microbes and organic matter). Mineral fertilizer application detrimentally affected enchytraeids and Diptera larvae, whereas aphids benefited. Spider abundance was favoured by organic management, most likely a response to increased prey availability from the belowground subsystem or increased weed coverage. In contrast to most soil-based, bottom-up controlled interactions, the twofold higher abundance of this generalist predator group in organic systems likely contributed to the significantly lower abundance of aboveground herbivore pests (aphids) in these systems. Long-term organic farming and the application of farmyard manure promoted soil quality, microbial biomass and fostered natural enemies and ecosystem engineers, suggesting enhanced nutrient cycling and pest control. Mineral fertilizers and herbicide application, in contrast, affected the potential for top-down control of aboveground pests negatively and reduced the organic carbon levels. Our study indicates that the use of synthetic fertilizers and herbicide application changes interactions within and between below and aboveground components, ultimately promoting negative environmental impacts of agriculture by reducing internal biological cycles and pest control. On the contrary, organic farming fosters microbial and faunal decomposers and this propagates into the aboveground system via generalist predators thereby increasing conservation biological control. However, grain and straw yields were 23% higher in systems receiving mineral fertilizers and herbicides reflecting the trade-off between productivity and environmental responsibility. 相似文献
17.
Due to the dependence of soil organisms on plant derived carbon, disturbances in plant cover are thought to be detrimental for the persistence of soil biota. In this work, we studied the disturbance effects of plant removal and soil mixing and the mitigation effects of replanting on soil biota in a low-arctic meadow ecosystem. We set up altogether six replicate blocks, each including three randomized treatment plots, at two distinct fells at Kilpisjärvi, northern Finland. Vegetation was removed in two thirds of the plots: one third was then kept barren (the plant-removal treatment), while the other third was replanted with a local herb Solidago virgaurea. The remaining plots of intact vegetation were used as treatment comparisons. The responses of soil microbes and fauna were examined six years later in the early and late growing season. The biomass of bacteria, non-mycorrhizal fungi and mycorrhizal fungi (estimated using PLFA markers) were on average 74%, 89% and 84% lower in the plant-removal and 64%, 74% and 71% lower in the Solidago replant plots than in the intact meadow. The positive effect of replanting was statistically significant for fungi, but not for bacteria. The PCA of relative PLFA concentrations further showed that the structure of the microbial community differed significantly among all three treatments. The abundance of nematodes and collembolans was on average 82 and 95% lower, but the total number of nematode genera and collembolan taxa only 27 and 7% lower in the plant-removal plots than in the intact meadow soil. Few disturbance effects on soil fauna were significantly mitigated by the Solidago replant (the plant parasitic nematodes being a notable exception) and in the case of the collembolans, the Solidago replant plots had even fewer animals than the plant-removal plots. The response of soil biota also varied with locality: the effects on fungivorous nematodes were found at one site only and the replant effects on the number and diversity of collembolan taxa varied with site. Our results suggest that despite drastic reductions in the abundance of soil biota, the majority of animal taxa can persist for years in disturbed arctic soils in the absence of vegetation. In contrast, the alleviating replant effects on the abundance of soil biota appear weak and may only partially reverse the negative effects of vegetation removal and soil disturbance. 相似文献
18.
Soil microbial communities mediate the decomposition of soil organic matter (SOM). The amount of carbon (C) that is respired leaves the soil as CO 2 (soil respiration) and causes one of the greatest fluxes in the global carbon cycle. How soil microbial communities will respond to global warming, however, is not well understood. To elucidate the effect of warming on the microbial community we analyzed soil from the soil warming experiment Achenkirch, Austria. Soil of a mature spruce forest was warmed by 4 °C during snow-free seasons since 2004. Repeated soil sampling from control and warmed plots took place from 2008 until 2010. We monitored microbial biomass C and nitrogen (N). Microbial community composition was assessed by phospholipid fatty acid analysis (PLFA) and by quantitative real time polymerase chain reaction (qPCR) of ribosomal RNA genes. Microbial metabolic activity was estimated by soil respiration to biomass ratios and RNA to DNA ratios. Soil warming did not affect microbial biomass, nor did warming affect the abundances of most microbial groups. Warming significantly enhanced microbial metabolic activity in terms of soil respiration per amount of microbial biomass C. Microbial stress biomarkers were elevated in warmed plots. In summary, the 4 °C increase in soil temperature during the snow-free season had no influence on microbial community composition and biomass but strongly increased microbial metabolic activity and hence reduced carbon use efficiency. 相似文献
19.
In these last decades, the awareness that soil is a very important resource for humans has noticeably increased. Many actions and initiatives to promote soil governance, aiming at sustainable soil management and soil security have been undertaken by several national and international institutions and in many countries. Analysis of the changes of soil perception over the centuries allows highlighting a perfect harmony between the evolution of soil awareness and the level of knowledge and technology achieved by humans during their history and evolution. Notwithstanding these many achievements, soils continue to be scarcely considered in politics and society. We suggest some thoughts and reflections that could lead to an up-to-date and effective definition of soil that directly focuses the public attention on its economic value. In our opinion, soil economic value could be the only aspect that truly attracts the attention of politicians and administrators, which could increase soil awareness and encourage soil sustainability, security and Sustainable Development Goals and finally promote soil governance. 相似文献
20.
Soil functions can be classified as supporting (nutrient cycling) and provisioning (crop production) ecosystem services (ES). These services consist of multiple and dynamic functions and are typically assessed using indicators, e.g. microbial biomass as an indicator of supporting services. Agricultural intensification negatively affects indicators of soil functions and is therefore considered to deplete soil ES. It has been suggested that incorporating leys into crop rotations can enhance soil ES. We examined this by comparing indicators of supporting soil services – organic carbon, nitrogen, water holding capacity and available phosphorous (carbon storage and nutrient retention); net nitrogen mineralisation rate and microbial biomass (nutrient cycling and retention) – in barley fields, leys and permanent pastures along a landscape heterogeneity gradient (100, 500 and 1000 m radii). In addition, barley yields (provisioning service) were analysed against these indicators to identify trade-offs among soil services. Levels of most indicators did not differ between barley and ley fields and were consistently lower than in permanent pastures. Leys supported greater microbial biomass than barley fields. Landscape heterogeneity had no effect on the indicators or microbial community composition. However, landscape heterogeneity correlated negatively with yield and soil pH, suggesting that soils in heterogeneous landscapes are less fertile and therefore have lower yields. No trade-offs were found between increasing barley yield and the soil indicators. The results suggest that soil ES are determined at the field level, with little influence from the surrounding landscape, and that greater crop yields do not necessarily come at the expense of supporting soil services. 相似文献
|