首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In order to provide background for understanding biological roles of proteoglycans (PG) in developing skeletal muscle, we have isolated and characterized PG in bovine neonatal skeletal muscle. Two types of PG were isolated from skeletal muscle by density gradient ultracentrifugation and ion‐exchange chromatography. One was a small PG (PG‐S) with a molecular size of 100–130 kDa, another was a large PG (PG‐L) with a molecular size of 300–500 kDa. The glycosaminoglycan chains of PG‐S and PG‐L were dermatan sulfate and chondroitin sulfate, respectively, judged by cellulose acetate membrane electrophoresis. Immunoblot assays revealed that both PG bound to type I, II, III and IV collagen, laminin and fibronectin. Unlike PG‐S, PG‐L bound to type V collagen and hyaluronic acid. Small proteoglycans had a core protein of 45 kDa, which reacted with the antibody against the decorin core protein. The N‐terminal amino acid sequence of the PG‐S core protein was consistent with that of decorin from bovine bone and tendon. Thus, PG‐S from neonatal skeletal muscle was identified as decorin in bovines. Immunohistochemical analysis with antibodies against PG‐L and PG‐S demonstrated that PG‐L was located both in the perimysium and endomysium, but PG‐S was localized exclusively in the perimysium. These findings suggest that the characterized PG may have distinct roles in the ECM construction of developing skeletal muscle.  相似文献   

2.
The distribution pattern of collagen fibril diameter in the equine superficial digital flexor tendon (SDFT) is known to differ in central and peripheral areas of some regions. This study reports the essence of collagen fibril differences among different regions of the equine SDFT by transmission electron microscopic (TEM) and high-voltage electron microscopic observations and biochemical analysis. The distribution of large collagen fibrils increased but the density of collagen fibrils decreased from the proximal metacarpal region to the distal metacarpal region. Large collagen fibrils with an irregular cross-sectional profile were found more frequently in the middle metacarpal region than in other regions. Three-dimensional reconstruction of images of irregularly shaped collagen fibrils revealed that these fibrils are formed through fusion of small collagen fibrils with large ones. The amount of decorin, which reportedly inhibits the lateral fusion of collagen fibrils, decreased in the direction of the distal metacarpal region. On the other hand, the size of decorin gradually increased in the direction of the distal metacarpal region. These results suggest that regional differences in collagen fibril distribution and density of collagen fibrils in the SDFT are due, at least in part, to fusion of collagen fibrils and the concomitant regional differences in the amount and size of decorin.  相似文献   

3.
The total amount of collagen, the relative distributions of types I and III collagens in perimysium and endomysium, and the collagen fiber architecture were compared among the pectoralis (PT), iliotibialis lateralis (ITL) and puboischiofemoralis (PIF) muscles in Silky cocks. All of the myofibers in the PT muscle were type IIB, the myofibers in the ITL muscle were divided into type IIA, 41.7% and IIB, 58.3%, and the PIF muscle was composed of type I, 24.6%; IIA, 64.6%; and transitional, 10.8%. The total amount of collagen differed significantly among the PT (2.92 mg/g), PIF (4.20 mg/g) and ITL (8.06 mg/g) material, where only the PIF was a whole muscle with epimysium. On the image analysis of the immunohistochemical preparations, the percentage area of perimysial collagen to the total area in each type differed significantly among the PIF, PT and ITL muscles, where it was 26.8, 50.0 and 74.4% for the type I collagen and 27.4, 32.9 and 61.7% for the type III collagen, respectively. In the scanning electron micrography of the perimysium in macerated preparations, thick bundles of collagen fibers were observed in the ITL muscle, thinner but broad platelets in the PT muscle, and a coarse tissue of thinner collagen fibers in the PIF muscle. However, the endomysial fabric of collagen fibrils was similar among the muscles. Small, transverse collagen fibers, which branched off from the thicker perimysia, occupied narrow interendomysial spaces and separated the primary myofiber fasciculi. The results indicate that the ITL muscle, localized in the distorted and overextended part of the leg and subject to strong external forces, had highly developed perimysial collagen fiber bundles, but the ITL endomysial collagen architecture was similar to that of the PT and PIF muscles.  相似文献   

4.
OBJECTIVE: To assess the potential of adipose-derived nucleated cell (ADNC) fractions to improve tendon repair in horses with collagenase-induced tendinitis. ANIMALS: 8 horses. PROCEDURES: Collagenase was used to induce tendinitis in the superficial digital flexor tendon of 1 forelimb in each horse. Four horses were treated by injection of autogenous ADNC fractions, and 4 control horses were injected with PBS solution. Healing was compared by weekly ultrasonographic evaluation. Horses were euthanatized at 6 weeks. Gross and histologic evaluation of tendon structure, fiber alignment, and collagen typing were used to define tendon architecture. Biochemical and molecular analyses of collagen, DNA, and proteoglycan and gene expression of collagen type I and type III, decorin, cartilage oligomeric matrix protein (COMP), and insulin-like growth factor-I were performed. RESULTS: Ultrasonography revealed no difference in rate or quality of repair between groups. Histologic evaluation revealed a significant improvement in tendon fiber architecture; reductions in vascularity, inflammatory cell infiltrate, and collagen type III formation; and improvements in tendon fiber density and alignment in ADNC-treated tendons. Repair sites did not differ in DNA, proteoglycan, or total collagen content. Gene expression of collagen type I and type III in treated and control tendons were similar. Gene expression of COMP was significantly increased in ADNC-injected tendons. CONCLUSIONS AND CLINICAL RELEVANCE: ADNC injection improved tendon organization in treated tendons. Although biochemical and molecular differences were less profound, tendons appeared architecturally improved after ADNC injection, which was corroborated by improved tendon COMP expression. Use of ADNC in horses with tendinitis appears warranted.  相似文献   

5.
1. Collagen fibre architectures of perimysium and endomysium in the slow-twitch cranial and fast-twitch caudal parts of broiler M. latissimus dorsi were compared. 2. Type I and III collagens were distributed in both perimysium and endomysium as indicated by their positive immunohistochemical reactions to polyclonal antibodies. 3. Cells invested by endomysium with no myofibres were larger in the cranial part because of the presence of larger slow-twitch myofibres. The honeycomb structure of endomysium was divided into several parts by thick perimysium. 4. The thick perimysial collagen fibres with parallel fibrils, which were interconnected by the loose reticular fibrils and thin fibres, were more numerous and thicker in the cranial part than the caudal. 5. Thick endomysial sidewall of cells in the cranial part was composed of a rougher reticulum of slightly thicker collagen fibrils compared with the thin sidewall in the caudal part. 6. These results indicated that both perimysial constitutions of collagen fibres and endomysial collagen fibrils had attained much larger growth in the slow-twitch cranial part than the fast-twitch caudal in broiler latissimus dorsi muscle.  相似文献   

6.
The proportion of types I and III intramuscular collagen in longissimus muscles of Simmental bulls (n = 8) and steers (n = 8) 17 mo of age was studied. Longissimus samples taken 7 d after slaughter were evaluated for total collagen, types I and III collagen, heat-soluble collagen, sensory panel traits and Warner-Bratzler shear force. Intramuscular collagen (IMC) was isolated and digested with cyanogen bromide, and peptides were resolved by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Percentage of type III IMC was calculated from the total of types I and III collagen as determined from the peak area of densitometric scans of the cyanogen bromide peptides alpha 1(I)CB8 and alpha 1(III)CB8. Longissimus muscles from steers had lower (P less than .05) Warner-Bratzler shear values, less (P less than .05) sensory panel-detectable connective tissue and more (P less than .05) tender panel ratings for muscle fiber tenderness and overall tenderness. Muscles from steers had more (P less than .05) heat-soluble collagen than those from bulls, but no differences (P greater than .05) were found for total collagen and percentage of type III collagen. Some intramuscular-collagen characteristics may have contributed to the less tender muscle of bulls. However, the proportion of types I and III collagen did not account entirely for the tenderness difference between steer and bull muscles. Because there were differences in collagen solubility in muscles from steers and bulls, other collagen characteristics such as crosslinking or fiber size may have been more important than collagen type.  相似文献   

7.
1. Developmental states of the collagen content, distribution and architecture in the pectoralis (PT), iliotibialis lateralis (ITL) and puboischiofemoralis (PIF) muscles of male Red Cornish x New Hampshire (RN, 80 d, body weight 2.9 kg) and normal (3.1 kg) broilers were evaluated. 2. In PT muscle the total amount of collagen was significantly greater in RN broilers (3.33 mg/g) than in normal ones (1.71 mg/g). This higher collagen content in RN broilers was based mainly on the closer mesh sizes of endomysial honeycomb. The collagen structures in the perimysia also differed between broiler types, when more collagen fibres were observed in RN broilers. 3. ITL muscle contained total collagen of 4.10 to 5.00 mg/g. Types I and III collagens were distributed on the perimysia at higher percentages in RN broilers (31.6%, 37.2%) than normal (15.6%, 30.8%), respectively. The thick bands of tough collagen fibres characteristic of ITL muscle perimysium in cockerels had not yet developed in these broilers. 4. Total collagen was 4.63 to 6.29 mg/g in PIF material with fascia. In PIF muscle the perimysial collagen fibres had not yet attained their full growth but consisted of densely packed fibrils. PIF muscle was characterised by the earlier maturing collagen structure. 5. These results show that a perimysial collagen structure in broilers is still in an undeveloped state. It is supposed that tenderness of broiler meat is attributed mainly to characteristics of the collagen distribution, in which the majority of types I and III collagens is distributed on the closer mesh of endomysial honeycomb.  相似文献   

8.
Growth‐related changes in the histochemical property and collagen architecture of the iliotibialis lateralis muscle were compared among Silky, layer and meat cockerels. Histochemical and immunohistochemical methods were employed to observe the collagen architecture. The total intramuscular collagen was also determined. The muscle consisted of type IIA, IIB and IIC myofibers, of which type IIB occurred at the highest frequency. The diameter of type IIB myofibers in each week was largest in the layer, followed by the meat, and was smallest in the Silky. The total amount of collagen reached 3.38 mg/g in the meat bird, 3.03 mg/g in the layer and 2.71 mg/g in the Silky by 30 weeks of age, respectively. In the perimysium, the collagen bundles increased in size and density of fibrils with growth. At 30 weeks of age the layer had compact collagen platelets while the Silky had loose collagen bundles. In the meat bird, the collagen bundles were moderately compact. The endomysial collagen network had a large mesh size at 1 week and thereafter accumulated many collagen fibrils to form a felt‐like fabric of fibrils at 30 weeks of age. From these results it appears that growth‐related changes in the iliotibialis lateralis muscle are not necessarily causally affected by the different growth rates of chicken breeds.  相似文献   

9.
OBJECTIVE: To clone the 5' end of type III collagen and describe its pattern of mRNA and protein expression in normal and healing tendons in horses. ANIMALS: 14 healthy adult horses. PROCEDURE: The tensile region of collagenase-injured superficial digital flexor tendons was harvested at intervals from 1 to 24 weeks after injury. Total RNA was reverse-transcribed into cDNA for cloning and sequencing of type III collagen. Equine-specific nucleic acid probes were developed and used for northern blot analysis and in situ hybridization. Type III collagen protein and cyanogen bromide-cleaved collagen peptides were assessedby gel electrophresis. RESULTS: Type III collagen mRNA expression and protein content increased immediately after injury and remained increased. Type III collagen was localized to the endotenon in normal tendon and in injured tendon at 1 week. At 8 and 24 weeks, expression became more widely distributed throughout the tendon parenchyma. Injured tendon contained 6 times more type I than type III collagen mRNA. Quantities of type III collagen protein were maximal in the first 4 weeks after injury (approx 33%) and then began to decrease. CONCLUSIONS AND CLINICAL RELEVANCE: Type III collagen expression is increased initially in endotenon and subsequently in parenchyma of healing tendon; however, type III remains the minor collagen throughout the healing process. The role of type III collagen in tendon healing is not fully elucidated.  相似文献   

10.
Decorin, a small leucine‐rich proteoglycan, plays an important role in cellular activities through modification of growth factors. It also acts as a signaling molecule to non‐muscle cells through epidermal growth factor receptor or insulin‐like growth factor I receptor (IGF‐IR). However, it is unclear if decorin acts as a signaling molecule to myogenic cells. In this study, we investigated the effect of decorin on the differentiation of myoblasts and the signaling via IGF‐IR to myogenic cells. C2C12 myoblasts cultured in media containing decorin for 72 h showed more extensive formation of multinucleated myotubes than control cells cultured in the same media without decorin. The protein expressions of myogenin and myosin heavy chian were higher in decorn‐treated cells than in control cells. These results suggest that decorin enhances the differentiation of myoblasts. Western blot analysis and immunocytochemistry showed that IGF‐IR was expressed in myoblasts and myotubes. Furthermore, Akt, which is downstream of IGF‐IR, was more phosphorylated in myoblasts cultured in media containing decorin than those in media without decorin. These results suggest that decorin activates Akt downstream of IGF‐IR and enhances the differentiation of myogenic cells.  相似文献   

11.
This study reports an effective method using enzymatic methods to extract collagen from yak rumen smooth muscle. The enzymatic extraction methods were optimized by response surface methodology. Additionally, the properties of the extracted collagen were analyzed by Fourier transform infrared (FT‐IR) spectroscopy and mass spectrometry (MS). The results showed that the optimal conditions were as follows: the pepsin addition was 0.95%, the enzymatic hydrolysis time was 21 hr, and the solid‐to‐solvent ratio was 1:11. Under these conditions, the collagen extraction rate could reach 3.62/100 g. The results of FT‐IR revealed that the amide A, amide B, amide I, amide II, and amide III bands of the collagen appeared at 3,293.18, 3,068.18, 1654.94, 1,540.58, and 1,236.58 cm?1, respectively. The MS identified seven types of collagen, which were type I, type III, type IV, type V, type VI, type VIII, and type XII. The results demonstrated that the enzymatic method can extract collagen from yak rumen smooth muscle with a considerably high yield and can preserve the intact structure of the collagen.  相似文献   

12.
为探究肌肉生长抑制素(MSTN)对牛骨骼肌生长发育的作用机制,本研究以前期MSTN^+/-蒙古牛与野生蒙古牛腿臀肌肌肉组织定量蛋白质组学与磷酸化蛋白质组学筛选获得的表达差异倍数较大的核心蛋白聚糖(DCN)为靶标,以实验室前期分离培养的牛骨骼肌卫星细胞及建立的体外诱导成肌分化模型为对象,通过对设计合成的3个DCN siRNA干扰效果的筛选,将干扰效果最显著的si-DCN-2(si-DCN)转染牛骨骼肌卫星细胞。采用实时荧光定量PCR和Western blotting方法检测增殖期(GM)牛骨骼肌卫星细胞中增殖标志因子Pax7和MyoD的mRNA水平及蛋白水平的表达变化,以及使用EdU染色的方法检测干扰DCN对细胞增殖的影响。对转染DCN siRNA的牛骨骼肌卫星细胞进行体外成肌诱导分化,通过显微镜观察牛骨骼肌卫星细胞分化第3天(DM3)的肌管形成状态,同时采用实时荧光定量PCR和Western blotting检测分化标志因子MyoG和MyHC的mRNA水平及蛋白水平的表达变化,并对DM3期肌管MyHC进行免疫荧光染色,以研究干扰DCN对细胞分化的影响。结果显示,干扰DCN表达后,增殖期牛骨骼肌卫星细胞中Pax7和MyoD的mRNA水平及蛋白水平都显著或极显著上调(P<0.05;P<0.01),且EdU阳性细胞率显著增加(P<0.05),表明干扰DCN表达显著促进了牛骨骼肌卫星细胞的增殖。干扰DCN表达后,牛骨骼肌卫星细胞分化第3天诱导形成的肌管直径呈现增大趋势,检测成肌分化标志因子MyoG在mRNA和蛋白水平的表达分别极显著和显著高于对照组(P<0.01;P<0.05),MyHC在mRNA水平显著降低(P<0.05),但在蛋白水平上极显著升高(P<0.01),免疫荧光结果显示,下调DCN后肌管融合指数显著高于对照组(P<0.05),说明干扰DCN表达能够促进牛骨骼肌卫星细胞的成肌分化过程。本研究结果表明,干扰DCN可以显著促进牛骨骼肌卫星细胞的增殖和成肌分化过程。研究结果为进一步开展MSTN对牛骨骼肌卫星细胞成肌分化的调控机制研究奠定了基础。  相似文献   

13.
Myostatin is expressed in skeletal muscle tissue where it functions to suppress myoblast proliferation and myofiber hypertrophy. Recently, myostatin was detected in the tendon, mammary gland, and adipose tissue of mice. We sought to determine whether myostatin is expressed in the liver, spleen, lung, and kidney of pigs. Real-time PCR and Western blots demonstrated that myostatin, follistatin, decorin, and activin receptor IIB (ActRIIB) mRNA and proteins were expressed in skeletal muscle, heart muscle, and adipose tissue, and also in liver, spleen, lung, kidney, and cultured fibroblasts. The relative abundance of myostatin was closely related to follistatin and decorin in porcine tissues. Immunohistochemical analysis further demonstrated the presence of myostatin, follistatin, and decorin in the skeletal muscle, adipose tissue, heart muscle, liver, spleen, lung, and kidney of pigs. These results suggest that myostatin could be associated with certain functions of the internal organs, such as energy metabolism or fibrosis. We conclude that myostatin is a factor broadly expressed in the internal organs and muscle tissues of pigs.  相似文献   

14.
Growth‐related changes in the histochemical properties and collagen architecture of the Musculus puboischiofemoralis pars medialis were compared among Silky, layer‐type, and meat‐type cockerels. Histochemical and immunohistochemical methods were employed and collagen architecture was studied using scanning electron microscopy. Total intramuscular collagen was also determined. The myofibers were categorized as type I, type IIA and a transitional form, type I‐tr. The proportion of type I‐tr myofibers diminished and these myofibers were transformed entirely into type I myofibers in meat‐type but incompletely in the others. The largest diameter of type I myofiber was found in layer‐type at 30 weeks of age. At 30 weeks of age, layer‐type birds had attained well‐developed perimysial collagen bundles while meat‐type birds had less developed bundles. The endomysial collagen network had a large mesh size at 1 week and then accumulated many collagen fibrils to form a felt‐like fabric of fibrils by 30 weeks of age. Silky birds developed the thickest endomysial collagen plates of all the breeds. From these results it appears that growth‐related changes in the histological structure of M. puboischiofemoralis pars medialis are not necessarily causally affected by the different growth rates of chicken breeds.  相似文献   

15.
Specific tendons show a high incidence of partial central core rupture which is preceded by degeneration. In the performance horse, the superficial digital flexor tendon (SDFT) is most often affected. We have described previously the molecular changes that are associated with degeneration in the central core region of the equine SDFT. The pathophysiological mechanism leading to change in synthetic activity of central zone cells in degenerated tendons is not known. In this study, we test the hypothesis that ageing results in matrix composition changes within the central zone of the SDFT. Extracellular matrix composition and cellularity were analysed in equine SDFTs collected from Thoroughbred horses and compared with a flexor tendon which rarely shows degenerative change and subsequent injury (deep digital flexor tendon, DDFT). Data were examined for age-related changes to central and peripheral zone tissue of the SDFT and DDFT. Ageing in both tendons (SDFT and DDFT) resulted in a significant increase in collagen-linked fluorescence and a decrease in cellularity in the DDFT but not the SDFT. The central zone tissue from the SDFT had a significantly higher proportion of type III collagen than the peripheral zone of the tendon. The highest level of type III collagen was found in the central zone tissue of the SDFT from the older group of horses and this may represent the early stages of a degenerative change. Collagen content did not differ between the 2 flexor tendons; however, there were differences in collagen type and organisation. The SDFT had a higher type III collagen content, higher levels of the mature trifunctional collagen crosslink hydroxylysylpyridinoline, lower total chondroitin sulphate equivalent glycosaminoglycan content, smaller diameter collagen fibrils and a higher cellularity than the DDFT. In conclusion, differences in macromolecular composition exist between the flexor tendons and ageing contributes to a tendon specific change in composition.  相似文献   

16.
为探究肌肉生长抑制素(MSTN)对牛骨骼肌生长发育的作用机制,本研究以前期MSTN+/-蒙古牛与野生蒙古牛腿臀肌肌肉组织定量蛋白质组学与磷酸化蛋白质组学筛选获得的表达差异倍数较大的核心蛋白聚糖(DCN)为靶标,以实验室前期分离培养的牛骨骼肌卫星细胞及建立的体外诱导成肌分化模型为对象,通过对设计合成的3个DCN siRNA干扰效果的筛选,将干扰效果最显著的si-DCN-2(si-DCN)转染牛骨骼肌卫星细胞。采用实时荧光定量PCR和Western blotting方法检测增殖期(GM)牛骨骼肌卫星细胞中增殖标志因子Pax7和MyoD的mRNA水平及蛋白水平的表达变化,以及使用EdU染色的方法检测干扰DCN对细胞增殖的影响。对转染DCN siRNA的牛骨骼肌卫星细胞进行体外成肌诱导分化,通过显微镜观察牛骨骼肌卫星细胞分化第3天(DM3)的肌管形成状态,同时采用实时荧光定量PCR和Western blotting检测分化标志因子MyoG和MyHC的mRNA水平及蛋白水平的表达变化,并对DM3期肌管MyHC进行免疫荧光染色,以研究干扰DCN对细胞分化的影响。结果显示,干扰DCN表达后,增殖期牛骨骼肌卫星细胞中Pax7和MyoD的mRNA水平及蛋白水平都显著或极显著上调(P<0.05;P<0.01),且EdU阳性细胞率显著增加(P<0.05),表明干扰DCN表达显著促进了牛骨骼肌卫星细胞的增殖。干扰DCN表达后,牛骨骼肌卫星细胞分化第3天诱导形成的肌管直径呈现增大趋势,检测成肌分化标志因子MyoG在mRNA和蛋白水平的表达分别极显著和显著高于对照组(P<0.01;P<0.05),MyHC在mRNA水平显著降低(P<0.05),但在蛋白水平上极显著升高(P<0.01),免疫荧光结果显示,下调DCN后肌管融合指数显著高于对照组(P<0.05),说明干扰DCN表达能够促进牛骨骼肌卫星细胞的成肌分化过程。本研究结果表明,干扰DCN可以显著促进牛骨骼肌卫星细胞的增殖和成肌分化过程。研究结果为进一步开展MSTN对牛骨骼肌卫星细胞成肌分化的调控机制研究奠定了基础。  相似文献   

17.
We undertook a three‐dimensional reconstruction of intramuscular collagen networks of bovine muscle using an immunohistochemical/confocal laser‐scanning microscopic method. By immunohistochemical staining, type I and III collagens were observed mainly in the perimysium, while type IV collagen was observed in the endomysium. On the other hand, type V and VI collagens were observed in both the perimysium and endomysium. By confocal laser‐scanning microscopy, the collagen observed in the perimysium was three‐dimensionally reconstructed as plate‐shaped layers whereas the collagen observed in the endomysium surrounded myofibers. The three‐dimensionally reconstructed observations using immunohistochemical/confocal laser‐scanning microscopic method is useful for investigating collagen networks in muscle.  相似文献   

18.
Myostatin, a member of the TGF-β superfamily, is a negative regulator of skeletal muscle mass. We have recently demonstrated that decorin binds to myostatin in vitro , and that immobilized decorin within the collagen matrix prevents myostatin-mediated inhibition of myoblast proliferation. However, little is known about other ECM molecules that bind to myostatin and modulate its activity. Thus, in the present study, we investigated the interaction of several other ECM molecules with myostatin. We here show that fibromodulin, fibronectin and laminin bind to myostatin in the presence of Zn2+ with a dissociation constant ( KD ) of 10−10∼10−8 mol/L. Fibromodulin shows the highest affinity for myostatin among them. These results suggest that these ECM molecules may modulate myostatin activity like decorin does.  相似文献   

19.
We comprehensively evaluated meat quality in chickens fed a diet consisting of wood charcoal and vinegar (WCV) using food scientific and histological approaches. In culled hens, lipid and fatty acid in Musculus semimembranosus, cooking loss and sensory tests of whole thigh meat, and meat texture of breast meat were observed. In male broilers, cross section of M. semimembranosus was used for observations on muscle area, perimysium, non‐collagen total protein and total collagen content, and anti‐collagen I and III reactions. In frozen male broilers, conventional morphology of M. semimembranosus as well as chicken anti‐collagen III reaction to selected muscles of thigh meat and breast meat were compared between the control and WCV‐fed birds. Increased lipid and fatty acids, decreased cooking loss, high score in total evaluation for sensory test of thigh meat, and decreased meat texture values were observed for culled hens fed WCV. The higher values of muscle area, total collagen and collagen III were observed for broilers fed WCV. No perimysium collapse for M. semitendinosus or increased collagen III reactions of M. tensor fasciae latae, the flexor muscle group and M. pectoralis superficialis were observed for frozen muscles in the WCV group. These total results suggest that WCV produces palatable and tender meat by increasing collagen III.  相似文献   

20.
1. Growth changes of the collagen content and architecture in the pectoralis (PT) and iliotibialis lateralis (ITL) muscles were examined using cockerels from 1 to 14 weeks of age. 2. Total collagen content in PT muscle showed little change, but in ITL muscle reached a maximum at 5 weeks and thereafter decreased slightly until 14 weeks. The collagen content was markedly larger in ITL muscle after 5 weeks. Pyridinoline content of collagen increased abruptly from 5 to 14 weeks in both muscles, but no difference between muscle types was detected. 3. The cell size of the endomysial honeycombs increased with the development of myofibres, and the mesh size of the perimysium around the honeycombs enlarged. 4. In both muscles endomysia were an incomplete network of collagen fibrils with many foramina at one week, became a very thin membrane of felt-like fabric in 2 to 5 weeks and thereafter increased in thickness until 11 to 14 weeks. 5. Perimysial width around the secondary fasciculus differed between the muscle types after 5 weeks. In the wider perimysium of ITL muscle, the collagen fibres increased in number and size to make a stack of collagen bands around the fasciculus. In the narrower perimysium of PT muscle, a few platelets of collagen fibres also developed. 6. The perimysial collagen fibre at 1 to 2 weeks had a smooth surface and appeared to be composed of fine collagen fibrils. The fibre at 11 to 14 weeks showed a rugged surface and was composed of coarser collagen bundles that combined with each other into a net-like configuration with very slim meshes. 7. Our results showed that the collagenous components of chicken intramuscular connective tissue changed markedly during the early period of muscle growth in distribution, architecture and quality but with little difference in quantity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号