首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The expression of calbindin D-28k (CB), calretinin (CR), substance P (SP) and calcitonin gene-related peptide (CGRP) in the stomach myenteric plexus of the Korean native goat stomach was investigated by immunohistochemistry. The results demonstrated the presence of nerve fibers and cell bodies immunoreactive (IR) to CB, CR, SP and CGRP. In tissues of rumen, reticulum, omasum and abomasum, some distinct neuronal populations could be distinguished according to their morphologic and neuronal chemical properties: Dogiel type I cells which have irregular lamellar dendrites and a single axon, Dogiel type II cells which have large ovoid cell bodies and several long axon-like processes, and small filamentous interneurons. CB-, CR-, SP- and CGRP-IR neurons and fibers were observed in the myenteric plexus of stomach, and varicose nerve fiber immunostained to SP and CGRP also were found in the muscle layer. In myenteric plexus of the stomach, CB- and SP-positive neurons were characterized by Dogiel type II and CR-IR neurons were classified Dogiel type I with lamellar dendrites, and immunoreactivity of CGRP was very weak in the somata. SP- and CGRP-IR nerve fibers formed dense networks within the myenteric ganglia. SP-IR cell bodies and their fibers were found in the myenteric plexus, and the immunoreactivity and number of cell bodies were more than CB-, CR-, and CGRP-IR neurons. These results suggest that SP, CGRP, CB and CR in the myenteric neurons of Korean native goat stomach may have play an important role in the dynamic movement.
(Support contributed by: Korean Research Foundation 2003-015-E00195).  相似文献   

2.
The objectives of this study was to provide a quantitative analysis of calcium-binding proteins, calbindin (CB), parvalbumin (PA), substance P (SP), calcitonin gene-related peptide (CGRP) and galanin (GAL), in trigeminal ganglia of goats, to establish whether they exhibit coexistence relationships between each other, and to examine possible colocalization with SP, CGRP and GAL, which have been well characterized according to their distributions in an abundance of large and/or small neurones. CB (12.78%), PA (31.91%), SP (24.63%), CGRP (44.44%) and GAL (3.29%) immunoreactive (IR) cells were observed. About 38.37, 8.7 and 0.73% of CGRP-IR neurones in the trigeminal ganglion were also immunoreacted with SP, GAL and CB, respectively. Almost all SP-IR cells are labelled with CGRP (approximately 92.52%), whereas only 16.02 and 0.44% of SP-IR neurones colocalized with GAL and CB. Approximately 4.65 and 1.10% of the CB-IR cells were found to contain CGRP and SP immunoreactivity, respectively. Conversely, no CB-IR cell exhibited GAL immunoreactivity. In addition, all the GAL-IR cells showed CGRP and SP immunoreactivity. The number of CB-, PA-, SP-, CGRP- and GAL-IR neurones in goat trigeminal ganglion are abundant than that of other animals. These results elucidate that the goat differs from other mammalian species in the distribution and localization of neurochemical substances in trigeminal ganglia, and suggest that this difference may be relevant to the morphological characteristics of cerebral vasculatures such as epidural rete mirabile of goat.  相似文献   

3.
The occurrence and density of distribution of nerves and endocrine cells that are immunoreactive for neuropeptides in the bovine pancreas were studied by immunohistochemistry. The six neuropeptides localized were galanin (GAL), substance P (SP), methionine-enkephalin (MENK), neuropeptide Y (NPY), calcitonin gene-related peptide (CGRP) and vasoactive intestinal polypeptide (VIP). The exocrine pancreas was shown to have an appreciable number of GAL- and SP-immunoreactive nerve fibres but few fibres showing immunoreactivity for VIP and CGRP. Numerous MENK-, GAL-, SP-, and NPY-immunoreactive nerve fibres were seen in the endocrine portion of the pancreas. Nerve cell bodies in the intrapancreatic ganglia showed immunoreactivity for all of the neuropeptides except CGRP. Endocrine cells showing immunoreactivity for GAL and SP were observed in the large islets and islets of Langerhans, respectively. The present results indicate a characteristic distribution of neuropeptides in the bovine pancreas, which may regulate both exocrine and endocrine secretions of pancreas.  相似文献   

4.
We report upon the distribution of galanin-immunoreactive (GAL-IR) cells in the lumbar dorsal root ganglia (DRG) of the rat, and upon the distribution of GAL-IR cells, which also contain calcitonin gene-related peptide (CGRP)-, substance P (SP)- and somatostatin (SOM)-immunoreactivity. Neuropeptide-immunoreactive lumbar DRG cells were 55.8% for CGRP, 12.7% for SP, and 6.5% for GAL in lumbar DRG cells. There was no significant difference between the right and left DRGs (L1-L6) for any neuropeptide-immunoreactive cell (P < 0.01). In terms of size distribution, CGRP-immunoreactive cells were identified below 1500 microm2, and SP-, and GAL-IR cells below 600 microm2. Neuropeptide immunoreactive cells showed various immunoreactivities in the cytoplasm according to each neuropeptide. CGRP and SP immunoreactive cells were colocalized with GAL immunoreactive cells in the serial sections about 83.3 and 60% respectively, but SOM colocalizing with GAL-IR cells were not in evidence. The current results confirm and extend previous results, and show that neuropeptides can coexist in single sensory neurones of the rat DRG. In addition, our results demonstrate that the normal distribution of some neurotransmitters modulating sensory action in Wistar Kyoto rat, make this model more prone to develop neuropathic pain than Sprague-Dawley rat.  相似文献   

5.
Combined retrograde tracing (using fluorescent tracer Fast blue) and double-labelling immunofluorescence were used to study the distribution and immunohistochemical characteristics of neurons projecting to the trapezius muscle in mature male rats (n = 9). As revealed by retrograde tracing, Fast blue-positive (FB+) neurons were located within the ambiguous nucleus and accessory nucleus of the grey matter of the spinal cord. Immunohistochemistry revealed that nearly all the neurons were cholinergic in nature [choline acetyltransferase (ChAT)-positive]. Retrogradely labelled neurons displayed also immunoreactivities to calcitonin gene-related peptide (CGRP; approximately 60% of FB+ neurons), nitric oxide synthase (NOS; 50%), substance P (SP; 35%), Leu5-Enkephalin (LEnk; 10%) and vasoactive intestinal polypeptide (VIP; 5%). The analysis of double-stained tissue sections revealed that all CGRP-, VIP- and LEnk-immunoreactive FB+ perikarya were simultaneously ChAT-positive. The vast majority of the neurons expressing SP- or NOS-immunoreactivity were also cholinergic in nature; however, solitary somata were ChAT-negative. FB+ perikarya were surrounded by numerous varicose nerve fibres (often forming basket-like structures) immunoreactive to LEnk or SP. They were also associated with some CGRP-, NOS- and neuropeptide Y-positive nerve terminals.  相似文献   

6.
Pericellular arborization is reported to be the self-regulating structure in sensory ganglia. Although the calcitonin gene-related peptide (CGRP) or substance P (SP) immunoreactive pericellular arborization appeared in the sensory ganglia, there was no available information that CGRP and SP colocalize in this structure. As the attempts to resolve the question described above, the present study was undertaken to identify the coexistence of CGRP and SP in pericellular arborizations of the goat nodose and trigeminal ganglia by double immunohistochemistry. As the results show, CGRP immunoreactivity was present in every pericellular arborization containing SP immunoreactivity in trigeminal ganglia, however, pericellular network containing CGRP or SP immunoreactivity was not present in nodose ganglia. Unexpectedly, a few small satellite elements were observed to contain intense CGRP and SP immunoreactivity at the periphery of CGRP and SP immunoreactive neurones in nodose ganglia. Therefore, these results suggest that CGRP and SP coexist in pericellular arborizations, and that satellite cell as well as pericellular arborization may be involved in intraganglionic regulation of goat sensory ganglia.  相似文献   

7.
To understand the neurochemical properties of the gastric myenteric plexus of ruminants, the expression patterns of calbindin D-28k (CB), calretinin (CR), substance P (SP) and calcitonin gene-related peptide (CGRP) were explored in the Korean native goat. In gastric myenteric plexus, CB and SP immunoreactivity were observed in round- or oval-shaped neurons. CR and CGRP immunoreactivity were detected only in the nerve fibers. This immunohistochemical localization of CB, CR, CGRP and SP in the myenteric plexus of the goat stomach exhibited species-specific patterns. These findings suggest that these substances may be directly or indirectly related to the gastric functions of the goat stomach.  相似文献   

8.
OBJECTIVE: To determine distribution of catecholaminergic and peptidergic nerve fibers in canine tracheas by use of immunohistochemistry. SAMPLE POPULATION: 10 tracheas collected from healthy adult dogs after euthanasia. PROCEDURE: Structure of the nerve network and distribution of tyrosine hydroxylase (TH)- and 6 types of neuropeptide-containing nerves in canine tracheas were immunohistochemically studied, using neurochemical markers. RESULTS: Intraepithelial free nerve endings with immunoreactivity for calcitonin gene-related peptide (CGRP) and substance P (SP) were observed.Tyrosine hydroxylase-, SP-, vasoactive intestinal peptide (VIP)-, and galanin (GAL)-immunoreactive nerve fibers were observed within and around the submucosal seromucous gland. In the smooth muscle layer, numerous TH- and GAL-immunoreactive nerve fibers, a moderate number of VIP- and neuropeptide Y (NPY)-immunoreactive nerve fibers, and a few SP- and methionine enkephalin (ENK)-immunoreactive nerve fibers were observed. Numerous nerve cell bodies with VIP and GAL immunoreactivity and a few with SP ENK, and NPY immunoreactivity were observed. Many TH-immunoreactive fibers were arranged in a meshwork around blood vessels. Nerves with CGRP-, SP-, VIP-, GAL-, ENK-, and NPY-immunoreactivity were also observed around blood vessels. CONCLUSIONS: Complex innervation, including catecholamine- and neuropeptide-containing nerves, which may be related to regulation of muscle contraction and glandular secretion, are found in canine tracheas.  相似文献   

9.
To discuss the significance of laryngeal sensation on various disorders of the horse, we studied the morphological and topographical characteristics of sensory structures in the laryngeal mucosa using immunohistochemistry and immunoelectron microscopy. Various sensory structures, i.e. glomerular endings, taste buds and intraepithelial free nerve endings, were found in the laryngeal mucosa by immunohistochemistry for protein gene product 9.5 (PGP 9.5) and neurofilament 200kD (NF200). Glomerular nerve endings were distributed mainly in the epiglottic mucosa; some endings were also found in the arytenoid region arising from thick nerve fibres running through the subepithelial connective tissue. Some terminals directly contacted the epithelial cells. Taste buds were distributed in the epithelium of the epiglottis and aryepiglottic fold. In the whole mount preparation, the taste buds were supplied by the terminal branching of the thick nerve fibres. In some cases, the taste buds were arranged around the opening of the duct of the epiglottic glands. The intraepithelial free nerve endings were found to be immunoreactive for substance P (SP) and calcitonin gene-related peptide (CGRP). These nerve endings were surrounded by the polygonal stratified epithelial cells in the supraglottic region, and by the ciliated cells in the subglottic region. The density of the intraepithelial free nerve endings was highest in the corniculate process of the arytenoid region and lowest in the vocal cord mucosa. The densities of CGRP- and SP-immunoreactive nerve endings in the arytenoid region were (mean +/- s.d.) 30.6+/-12.0 and 10.0+/-4.9 per unit epithelial length (1 mm), respectively and in the vocal fold mucosa, 1.1+/-0.9 and 0.8+/-0.7, respectively. Approximately one half of the CGRP immunoreactive nerve endings were immunoreactive for SP, and most SP-immunoreactive nerve endings were also immunoreactive for CGRP. Well-developed subepithelial plexus with numerous intraepithelial fibres were observed in flat or round mucosal projections that existed on the corniculate process of the arytenoid region. In conclusion, the laryngeal mucosa of the horse seems to have morphology- and/or location-dependent sensory mechanisms against various endo-and exogenious stimuli.  相似文献   

10.
Immunohistochemical studies were performed on male and female bladder and urethra collected from 4 adults dogs and 10 foetal specimens with crown-rump length from 53 to 155 mm (medium-sized breeds, presumptive 38 days of gestation to term). A panel of antisera was tested, including PGP 9.5 to describe the general intramural innervation, ChAT and TH to depict the cholinergic and nor-adrenergic components and NOS1, CGRP, SP, NPY, VIP, SOM, GAL, 5-HT to investigate the possible nitrergic, peptidergic and aminergic ones. A rich cholinergic innervation was present in adult bladder and urethra, along with a lesser number of adrenergic nerves and a small number of nitrergic ones. Either bladder or urethra received numerous CGRP-, SP-, NPY-, VIP-containing nerve fibres which were distributed throughout the muscle layers. All over the lower urinary tract strong to weak ChAT-, CGRP-, SP- and NPY-immunoreactivity was detected in intramural ganglia, in peripheral nerve bundles and around blood vessels. 5-HT-immunoreactive endocrine cells were present in the urethral epithelium. Early foetal organs were supplied only by cholinergic nerve fibres. Few NOS-, CGRP- and SP-ergic components appeared at the end of pregnancy. It can be guessed that sensory mediators such as CGRP and SP increase in postnatal ages while other neuropeptides, such as NPY and VIP, appear only after birth, as the urinary reflex consolidates.  相似文献   

11.
Our previous study revealed the expression of substance P (SP) and calcitonin gene‐related peptide (CGRP) in sensory distal ganglion of the vagus (nodose ganglion) neurons in the pig. As these neuropeptides may be involved in nociception, the goal of these investigations was to determine possible expression of vasoactive intestinal polypeptide (VIP), SP and CGRP in the pituitary adenylate cyclase‐activating polypeptide‐immunoreactive (PACAP‐IR) porcine nodose perikarya. Co‐expression of these substances was examined using a double‐labelling immunofluorescence technique. To reveal the ganglionic cell bodies, the pan‐neuronal marker protein gene product 9.5 (PGP 9.5) was used. Quantitative analysis of the neurons revealed that 67.25% of the PGP 9.5+ somata in the right‐side ganglion and 66.5% in the left side, respectively, co‐expressed PACAP‐IR. Moreover, 60.6% of the PACAP‐IR cells in the right‐side ganglion and 62.1% in the left, respectively, co‐expressed VIP. SP‐IR was observed in 52.2 and 39.9% of the right and left ganglia, respectively. CGRP was found in 27.7 and 34.1% of the right and left distal ganglion of the vagus, respectively. High level of co‐expression of PACAP with VIP, SP and CGRP in the distal ganglia of the vagus sensory perikarya directly implicates studied peptides in their functional interaction during nociceptive vagal transduction.  相似文献   

12.
The ileocaecal junctions of 5 horses and 2 donkeys were examined by using antisera to the following peptides: somatostatin, glucagon, gastrin, neurotensin, vasoactive intestinal peptide (VIP), peptide histidine isoleucine (PHI), calcitonin gene-related peptide (CGRP), substance P (SP) and neuropeptide Y (NPY). Antisera to somatostatin, neurotensin and NPY demonstrated endocrine cells in the ileal- and caecal parts of the ileocaecal junction, while immunoreactivity for glucagon was demonstrated in endocrine cells of the ileal part only. Nerve cell bodies showing immunoreactivity to SP, VIP, CGRP and PHI were demonstrated in the myenteric and submucosal plexuses and were associated with small blood vessels in the submucosa of all the regions tested. Ramified nerve fibres in the submucosa immunoreactive to SP, VIP, CGRP and PHI extended to the mucosa and to small blood vessels in the submucosa. Nerve fibres showing immunoreactivity to SP, VIP and PHI extended to the circular smooth muscle layer of the ileocaecal junction.  相似文献   

13.
Retrograde tracing technique combined with the double-fluorescent immunohistochemistry were used to investigate the distribution and chemical coding of primary afferent neurones supplying the canine prostate. After the injection of Fast Blue (FB) into the prostatic tissue retrogradely-labelled (FB(+)) primary afferent neurones were localized in bilateral L(1)-Ca(1) dorsal root ganglia (DRG). Statistical analysis using anova test showed that there are two major sources of afferent prostate innervation. The vast majority of prostate-supplying primary afferent neurones were located in bilateral L(2)-L(4) DRG (56.9 +/- 0.6%). The second source of the afferent innervation of canine prostate were bilateral S(1)-Ca(1) DRG (40.6 +/- 1.0%). No statistically significant differences were found between average number of FB(+) neurones localized in the left and right DRG (49.5 +/- 1.7 and 50.5 +/- 1.7%, respectively). Immunohistochemistry revealed that FB(+) primary afferent neurones contain several neuropeptides in various combinations. In the prostate-supplying neurones of lumbar and sacro-caudal DRG the immunoreactivity to substance P (SP) and calcitonin gene-related peptide (CGRP) was found most frequently (50 +/- 3.7 and 37.3 +/- 1.9%, respectively). Both in the lumbar and sacro-caudal DRG, considerable population of FB(+) neurones immunoreactive neither to SP nor CGRP were also found (23 +/- 2.6 and 32.8 +/- 2.3%, respectively). In the lumbar DRG 10.7 +/- 1.1% of SP-immunoreactive FB(+) neurones also contained galanin (GAL). In 9.2 +/- 2.2% of the prostate-supplying primary afferent neurones located in the sacro-caudal DRG the co-localization of SP and GAL was also reported. Results of the retrograde tracing experiment demonstrated for the first time sources of afferent innervation of the canine prostate. Double immunohistochemistry revealed that many of the prostate-supplying primary afferent neurones express some of sensory neuropeptides which presumably may be involved in nociception and some pathological processes like inflammation or nerve injury.  相似文献   

14.
OBJECTIVE: To determine the distribution of nerve fibers containing calcitonin gene-related peptide (CGRP), substance P (SP), vasoactive intestinal peptide (VIP), and intermediate neurofilaments in nasal mucosa of horses. ANIMALS: 6 horses without evidence of nasal disease. PROCEDURE: Full-thickness nasal tissue specimens were obtained from the rostral portion of the nasal septum at necropsy, and fluorescence immunohistochemistry was performed to assess mucosal distribution of nerve fibers. RESULTS: Nerve fibers with CGRP-like immunoreactivity (CGRP-Li) formed a dense subepithelial network, and a large number of fibers were found coursing between epithelial cells. Fibers with CGRP-Li were also associated with blood vessels and mucous glands. Fibers with SP-like immunoreactivity (SP-Li) had a similar distribution and density. In contrast, there were few fibers with VIP-like immunoreactivity. Fibers containing intermediate neurofilaments were prominent and appeared as large nerve fiber bundles mainly adjacent to the nasal septum but also close to mucous glands and within the lamina propria. Intermediate neurofilaments were also identified in single nerve fibers at all sites, but the density of fibers with intermediate neurofilaments did not match that of fibers with CGRP- or SP-Li. CONCLUSIONS: The density and distribution of nerve fibers containing SP- or CGRP-Li in nasal mucosa of horses was similar to that reported for other species. However, expression of VIP in nerve fibers was low. Antibodies against intermediate neurofilaments identified many nerve fibers in nasal mucosa of horses but did not appear to identify small diameter fibers expressing SP or VIP.  相似文献   

15.
Pseudorabies virus (PRV) was inoculated intraocularly into BALB/c mice, and the distribution pattern of cells positive for several neurotransmitters and viral antigens in the eyeball, trigeminal nerve ganglia, and superior cervical ganglia was examined immunohistochemically to clarify the neural route of the virus spread. In the eyeball, substance P (SP)- and calcitonin gene-related peptide (CGRP)-positive cells were detected in the ipsilateral iris and ciliary body, neuropeptide tyrosine (NPY)-positive cells were detected in the choloid membrane, and tyrosine hydroxylase (TH)-positive cells were detected in the ipsilateral inner nuclear layer of the retina; all these cells contained viral antigens. In the superior cervical ganglia, viral antigen-positive cells containing TH or NPY were found at bilateral sites. In the trigeminal nerve ganglia, viral antigen-positive cells containing SP or CGRP were found at bilateral sites. These findings indicated that the SP- and CGRP-positive ganglion cells of the trigeminal nerve ganglia innervating the iris or ciliary body, and the NPY-positive ganglion cells of the superior cervical ganglia innervating the iris, ciliary body, and choroid membrane served as the route for the virus spread. These findings also suggested that dopaminergic neurons, such as the TH-positive retinal cells and TH-positive ganglion cells of the superior cervical ganglia, served as the route for virus spread.  相似文献   

16.
Calbindin D-28k (CB), a calcium-binding protein, containing neurons in the hippocampus plays an important role in hippocampal excitability in epilepsy. In the present study, we investigated changes of CB immunoreactivity after adrenalectomy (ADX) in the hippocampus and dentate gyrus of the seizure sensitive gerbil, which is susceptible to seizure to identify roles of CB in epileptogenesis. The changes of the CB immunoreactivity after ADX were significant in the hippocampal CA1 region. By 24 h after ADX, CB-immunoreactive CA1 pyramidal cells and CB immunoreactivity increased. At this time, well-stained dendrites projected to the stratum radiatum. Thereafter, the CB immunoreactivity decreased time dependently by 96 h after ADX. In the dentate gyrus, the changes of CB-immunoreactive neurons were mainly observed in the granule cell layer. The number and immunoreactivity of CB-immunoreactive neurons was high at 24 h after ADX, thereafter, those decreased by 96 h after ADX. These results suggest that glucocorticoid has an important role in modulating the seizure activity and CB serves an inhibitory function, which regulates the seizure activity and output signals from the hippocampus.  相似文献   

17.
The pattern of cerebrovascular substance P (SP)- and calcitonin gene-related peptide (CGRP)-immunoreactive (IR) innervation was investigated in the quail. SP- and CGRP-IR nerves were relatively a few in the rostral part of the anterior circulation, and very scanty or lacking in its caudal part and the whole of the posterior circulation. A significant finding was that the anterior circulation in the majority of individuals is furnished with a varying proportion of SP-IR nerves with or without CGRP immunoreactivity. There was a good correlation in the expression of CGRP immunoreactivity between SP-IR cells in the ophthalmic division of the trigeminal ganglion and SP-IR nerves supplying the major cerebral arteries. In the quail, SP- and CGRP-IR fiber bundles are usually present in the internal ethmoidal artery (IEA). From these and other findings, it is most probable that cerebral perivascular SP- and CGRP-IR nerves are mainly derived from the same categories of neurons in the primary sensory ganglion via the IEA. The close association of varicose SP-IR axons to the nerve cells in the pial arteries suggests that these intrinsic neurons may play some vasocontrolling roles through the modulatory effect of their pericellular SP-IR axons.  相似文献   

18.
The presence of choline acetyltransferase (ChAT), vesicular acetylcholine transporter (VAChT), neuropeptide Y (NPY), vasoactive intestinal polypeptide (VIP), somatostatin (SOM), galanin (GAL), substance P (SP) and calcitonin gene-related peptide (CGRP) was studied in neurons and nerve fibers of the porcine otic ganglion. ChAT-positive neurons were very numerous while VAChT-positive nerve cells were moderate in number. The number of neurons containing NPY and VIP was lower and those containing SOM, GAL, SP or CGRP were observed as scarce, or single nerve cells. The above mentioned substances (except SOM) were present in nerve fibers of the ganglion. ChAT- and VAChT-positive nerve fibers were numerous, while the number of nerve terminals containing NPY, VIP and SP was lower. GAL- and CGRP-positive nerve fibers were scarce.  相似文献   

19.
The present study was designed to investigate the expression of biologically active substances by intramural neurons supplying the stomach in normal (control) pigs and in pigs suffering from dysentery. Eight juvenile female pigs were used. Both dysenteric (n = 4; inoculated with Brachyspira hyodysenteriae) and control (n = 4) animals were deeply anaesthetized, transcardially perfused with buffered paraformalehyde, and tissue samples comprising all layers of the wall of the ventricular fundus were collected. The cryostat sections were processed for double-labelling immunofluorescence to study the distribution of the intramural nerve structures (visualized with antibodies against protein gene-product 9.5) and their chemical coding using antibodies against vesicular acetylcholine (ACh) transporter (VAChT), nitric oxide synthase (NOS), galanin (GAL), vasoactive intestinal polypeptide (VIP), somatostatin (SOM), Leu(5)-enkephalin (LENK), substance P (SP) and calcitonin gene-related peptide (CGRP). In both inner and outer submucosal plexuses of the control pigs, the majority of neurons were SP (55% and 58%, respectively)- or VAChT (54%)-positive. Many neurons stained also for CGRP (43 and 45%) or GAL (20% and 18%) and solitary perikarya were NOS-, SOM- or VIP-positive. The myenteric plexus neurons stained for NOS (20%), VAChT (15%), GAL (10%), VIP (7%), SP (6%) or CGRP (solitary neurons), but they were SOM-negative. No intramural neurons immunoreactive to LENK were found. The most remarkable difference in the chemical coding of enteric neurons between the control and dysenteric pigs was a very increased number of GAL- and VAChT-positive nerve cells (up to 61% and 85%, respectively) in submucosal plexuses of the infected animals. The present results suggest that GAL and ACh have a specific role in local neural circuits of the inflamed porcine stomach in the course of swine dysentery.  相似文献   

20.
The study aimed at establishing the distribution of primary sensory neurons by means of retrograde tracers Diamidino Yellow (DY) and Fast Blue (FB) injected into both the sheep duodenum and ileum, respectively. Many DY-labelled cells were found in both the distal vagal ganglia (DVG) and the spinal ganglia (SG) from T9–L3; on the contrary, the majority of the FB-labelled cells were found in the SG. In the SG, a double immunofluorescence stain was used to reveal Nitric Oxide Synthase-Immunoreactivity (NOS-IR) in association with: substance P (SP), calcitonin gene-related peptide (CGRP), neurofilament 200 kDa (NF) and isolectin B4 (IB4). The labelled neurons, both DY and FB generally ranged in size from medium to large. The majority of the SG duodenal projections were NOS negative; the majority of the SG ileal afferent neurons expressed NOS-IR. Both DY and FB NOS-IR neurons often co-localized IB4, CGRP and SP, but rarely NF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号