首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phytoremediation uses plants and their associated microorganisms in conjunction with agronomic techniques to remove or degrade environmental contaminants. The objective of the field study was to evaluate the effect of vegetation establishment plus fertilizer addition on the biodegradation of alkylated polycyclic aromatic hydrocarbons in a crude oil-contaminated soil. Four replications of the following treatments were used: non-vegetated non-fertilized control; fescue (Lolium arundinaceum Schreb.) ? ryegrass (Lolium multiflorum L.) mixture + fertilizer; or bermudagrass (Cynodon dactylon (L.) Pers.) ? fescue mixture + fertilizer. Vegetation was successfully established at the site that had an initial total petroleum hydrocarbon (TPH) concentration of 9,175 mg/kg. While alkylated two-ring naphthalenes were degraded in all treatments equally, there was greater degradation of the larger three-ring alkylated phenanthrenes-anthracenes and dibenzothiophenes in the vegetated fertilized plots compared to the non-vegetated non-fertilized plots. In this field study, an increase in rhizosphere soil volume associated with increased root length along with nutrient additions resulted in increased total bacterial, fungal, and polycyclic aromatic hydrocarbon (PAH) degrader numbers that most likely resulted in increased biodegradation of the more recalcitrant alkylated polycyclic aromatic hydrocarbon compounds in the crude oil-contaminated soil.  相似文献   

2.
Abstract

Phosphorus availability is a major nutritional problem in several northern Idaho soils. Traditionally, fertilizers containing P have been applied to improve availability in soils; however, organic materials added to soils have the ability to provide large quantities of labile P via mineralization processes and to reduce sorption of P. Using this concept, plant residues applied to soils would increase P availability for future plant needs. This research evaluated the effect of plant residue, incorporated into a Northern Idaho soil, on P availability under controlled laboratory conditions. Alfalfa (Medicago sativa), pea (Pisum sativum) and wheat (Triticum aestivum) plant residues were incorporated into soil collected from the Ap horizon of a Latahco silt loam (fine‐silty, mixed, frigid Argiaquic Xeric Argialboll) at rates of 0, 1, 5 and 10% (w/w). The soils were incubated at soil water potentials of ‐0.05, ‐0.15 and ‐0.40 MPa, and temperatures of 10, 20 and 30°C over a 20 week period. Soils were sampled at 2, 4, 8, 12, 16 and 20 weeks for determination of NaOAc extractable P. Data were analyzed by SAS‐GLM and Omega squared (ω2) values were used to identify the impact of each main effect and interaction. A significant 4‐factor interaction of plant residue x amendment rate x water potential x incubation time, four 3‐factor interactions, six 2‐factor interactions and four main effects were observed at each of the three incubation temperatures. Since all interactions and main effects significantly affected P availability, ω2 values were used to assess their relative importance. Amendment rate was the most important factor and plant residue material was the second most important factor observed affecting extractable P levels. In general, NaOAc extractable P increased with increasing amendment rates and incubation time‐period. Increasing incubation temperature and soil water potential also positively affected the extracted P level. The greatest amount of P was mineralized from alfalfa residue material while the smallest amount was released from wheat residue. Pea residue contributed an intermediate quantity of extractable P. This study demonstrated that residues applied to northern Idaho soils have the ability to enhance P availability in addition to providing a usable N source.  相似文献   

3.
通过在黄棕壤上开展的 14年田间定位试验研究稻 -麦水旱轮作下长期施用有机肥对土壤及不同粒级中有机磷的影响。结果表明 :与不施肥的对照和单施化肥相比 ,有机肥与化肥长期配合施用能显著增加土壤有机磷总量 ;就有机磷的形态而言 ,长期施肥主要增加中等活性有机磷的含量。土壤不同粒级中总有机磷的含量顺序为 :0~ 2 μm >2~ 10 μm >5 0~ 10 0 μm >10~ 5 0 μm。从分配系数上看 ,土壤有机磷各形态中以对植物有效性较高的中等活性有机磷占绝对优势 ,对植物有效性最高的活性有机磷仅占 3 %左右。长期施用有机肥后使分配在活性、中等活性组分中有机磷的比例增加 ,而稳定性有机磷中的比例下降。  相似文献   

4.
A combination of radiocarbon (14C) dating and biomarker analyses of the aliphatic hydrocarbons in soil lipids is proposed as a novel and improved method for studying the environmental history of peaty soils. The radiocarbon concentration of unfractionated bulk organic matter, hydrolysed soil residues and two lipid fractions (the aliphatic hydrocarbons and carboxylic acids) recovered from a stagnohumic gley soil, were compared using AMS (accelerator mass spectrometry) and radiometric 14C dating techniques. The radiocarbon ages recorded by the aliphatic hydrocarbon fractions were consistently older than those measured from the unfractionated soil, and were in most cases older than the residues remaining after acid hydrolysis. This pattern was observed at three different depths in the soil profile. The apparent age difference between the hydrocarbon fraction and its unfractionated substrate increased with depth. An abundance of long–chain n–alkanes, similar to those found in higher plant waxes, characterized the aliphatic hydrocarbon fraction from the deepest soil (at 21.5–24.5–cm depth). The radiocarbon age of this basal organic component (13470± 170 years bp ) indicated that it derived from the initial re–establishment of vegetation on the local deglaciated landscape with the onset of the Windermere Interstadial (c. 14000–13000 14C years bp ). Bulk organic detritus within the basal horizon dated at some 3000 years younger, and presumably as a result of the downward penetration and retention of some mobile organic residues produced later in the development of the soil profile. The survival and apparent stratigraphical stability of these recoverable aliphatic hydrocarbons provides the opportunity, via the development of AMS dating, to measure an unambiguous radiocarbon age for the origin of organic residues retained in soils and sediments.  相似文献   

5.
The biodegradation of polycyclic aromatic hydrocarbons (PAHs) via free-living and attached micro-organisms in soil/water systems was observed in order to examine the variability in the community dynamics and physiological profiles of the micro-organisms. As determined by fluorescence in situ hybridization (FISH), the Domain Bacteria, consisting of three phyla α-, β- and γ-Proteobacteria, reached 41.27–56.05% of all organisms in the soil/water system for PAH biodegradation. Among the free-living species, Proteobacteria, including Brevundimonas (Pseudomonas) diminuta, Caulobacter spp., Mycoplana bullata, Acidovorax spp. and Pseudomonas aeruginosa were found to be dominant—making up 93.51–99.80% of the population—and therefore seem to be associated with PAH biodegradation. Total plate count numbers and the count of Pseudomonas sp. present in the free-living population increased to between 103 and 106 CFU ml−1 when clay with very low organic matter content was used as the matrix for PAH degradation. However, total plate count microbial numbers increased to only 101–102 CFU ml−1 using natural soil from Taichung containing 1.883% organic matter. The soil organic content (SOM) seemed to affect the mass transfer of PAH in soil, leading to the difference in PAH biodegradation. Two different approaches, which included community-level physiological profiling (CLPP) and ectoenzymatic activities, were used to explain the functional diversity between free-living and attached bacteria. The free-living and attached bacterial communities from the clay system showed proportionately greater differences using CLPP. Relatively high levels of esterases, aminopeptidases and some specific glycolysis-gluconeogenesis enzymes gave an identifiable correlation with PAH biodegradation. The differences in bacterial composition, numbers and physiological characteristics show that free-living and attached micro-organisms may play different biochemical roles in PAH degradation in soil.  相似文献   

6.
Abstract

Standardization of the P soil test procedures is desirable; however, both NaOAc and NaHCO3 are currently used to extract P from soils in the Pacific Northwest region of the USA. The purpose of this study was to determine the relationship between NaOAc and NaHCO3 extractable P in soils and to evaluate the effect of plant material on this relationship in a northern Idaho soil. The Ap horizon of a Latahco silt loam was used and alfalfa (Medicago sativa), pea (Pisum sativum) and wheat (Triticum aestivum) plant materials were added as amendments at rates of 0%, 1%, 5% and 10% (w/w). The soils were incubated for 20 weeks under controlled conditions. In addition, other parameters studied included soil water potential (‐0.05, ‐0.15 and ‐0.40 MPa), incubation temperature (10, 20 and 30°C and incubation period. P in samples was extracted by NaOAc and NaHCO3 extractants. A statistically significant linear relationship between NaOAc and NaHCO3 extractable P was observed (r2 = 0.96). In addition, the types of plant residues added to soil differently affected P extraction by the two extractants. The difference between NaOAc and NaHCO3 extractable P was greatest in the wheat material treatment while alfalfa material resulted in the smallest effect. Sodium acetate extractable P values increased faster than NaHCO3 extractable P with increasing amendment rate.

A simple regression relationship will allow conversion between NaOAc and NaHCO3 extractable P in the Latahco soil. Additions of less than 5 mt/ha plant material will have a minimal impact on this relationship.  相似文献   

7.
The plant‐availability of phosphorus (P) in fertilizers and soil can strongly influence the yield of agricultural crops. However, there are no methods to efficiently and satisfactorily analyze the plant‐availability of P in sewage sludge‐based P fertilizers except by undertaking time‐consuming and complex pot or field experiments. We employed the diffusive gradients in thin films (DGT) technique to quantify the plant P availability of various types of P fertilizers with a novel focus on sewage sludge‐based P fertilizers. Mixtures of fertilizer and soil were incubated for 3 weeks at 60% water holding capacity. DGT devices were deployed at the beginning of the incubation and again after 1, 2, and 3 weeks. Two weeks of incubation were sufficient for the formation of plant‐available P in the fertilizer/soil mixtures. In a pot experiment, the DGT technique predicted maize (Zea mays L.) biomass yield and P uptake significantly more accurately than standard chemical extraction tests for P fertilizers (e.g ., water, citric acid, and neutral ammonium citrate). Therefore, the DGT technique can be recommended as a reliable and robust method to screen the performance of different types of sewage sludge‐based P fertilizers for maize cultivation minimizing the need for time‐consuming and costly pot or field experiments.  相似文献   

8.
本文采用饲料类芽孢杆菌(Paenibacillus pabuli,P)、深红紫链霉菌(Streptomyces violaceorubidus,S)和黄绿木霉(Trichoderma aureoviride,T),组合构建了3种单菌剂(P、S和T)、3种两菌种复合菌剂(PT、PS和ST)及1种3菌种复合菌剂(PST),并将之添加到红壤中,监测各菌剂添加后土壤总磷脂脂肪酸(PLFAs)量、特征微生物PLFAs百分含量、土壤呼吸速率及总代谢熵的变化,旨在探明外源腐解微生物的物种组合对土壤微生物群落结构和代谢活性的影响,进而为优化有机物分解菌剂种群配置提供参考。结果显示,添加单菌剂的P、S和T处理及添加两菌种复合菌剂的PT和PS处理,土壤微生物生物量显著增加,增幅17.2%~121.6%(P0.05)。添加外源腐解微生物后,各处理的土壤微生物群落的细菌百分含量基本稳定在79.6%~83.1%,真菌百分含量显著增加8.8%~50.6%;而放线菌百分含量除P和ST处理外,其他处理显著降低9.4%~69.8%。PLFAs数据的主成分分析表明,各外源菌剂处理与CK处理间的群落结构变异由小到大依次为:接种单菌剂的P、S和T处理,接种两菌种复合菌剂的PT、PS和ST处理,接种3菌种复合菌剂的PST处理。添加单菌剂的P、T处理以及添加两菌种复合菌剂的ST处理,在短期内影响了土壤微生物的对数生长,使土壤呼吸速率的峰值分别提高48.7%、53.7%和78.7%;且外源腐解微生物组合的物种数量越多,土壤微生物进入潜伏期所需的时间越长。从外源腐解微生物对土壤肥力的长期影响来看,两菌种复合菌剂ST的添加使土壤微生物代谢活性提高28.9%,因此该处理的土壤碳矿化量增加11.1%;添加单菌剂的S处理使土壤微生物代谢活性显著降低32.4%,因此该处理的土壤碳矿化量仅降低7.3%;而添加两菌种复合菌剂的PS处理和3菌种复合菌剂的PST处理,在保持代谢活性不变的情况下,其土壤碳矿化量也降低5.8%~8.7%,其原因有待进一步研究。综上所述,外源腐解微生物的添加会改变土壤微生物的群落结构及其生长轨迹,且随外源腐解微生物组合的物种数量增多这一干扰程度越大,而土壤微生物代谢活性与外源腐解微生物组合的物种数量无显著相关性。  相似文献   

9.
Six phosphorus (P) fertilizers recycled from sewage sludge [Struvite SSL, Struvite AirPrex®, P‐RoC®, Mephrec®, Pyrolysis coal and Ash (Mg‐SSA)] were tested for their plant availability in potted soil of pH 7.2 under greenhouse conditions. The crop sequence simulated a rotation of red clover (Trifolium pratense L.), maize (Zea maize L.), and ryegrass (Lolium perenne L.). Other P fertilizer treatments included: Phosphate Rock (PR), Calcium dihydrogen phosphate [Ca(H2PO4)2], and an unfertilized control. Additionally, soil was regularly inoculated with two strains of plant growth‐promoting rhizobacteria (PGPR; Pseudomonas sp. Proradix, and Bacillus amyloliquefaciens) to test their ability to increase P availability to plants. Sequential P fractionation was conducted to link the amount of readily available P in fertilizers to plant P acquisition. Shoot P content and dry matter of maize decreased in the following order: Struvite SSL ≥ Ca(H2PO4)2 > P‐RoC® ≥ Struvite AirPrex® ≥ Mephrec® > Pyrolysis coal ≥ Mg‐SSA ≥ PR ≥ unfertilized. Rhizobacteria did not affect shoot biomass or P content. The results show that red clover might have mobilized substantial amounts of P. Sequential P fractionation was not suitable to predict the efficacy of the fertilizers. Generally, the sewage sludge‐based fertilizers tested proved to be suitable alternative P sources relevant to organic farming systems. However, the efficacy of recycled fertilizers is strongly dependent on their specific production conditions.  相似文献   

10.
Due to their direct contact with the soil, roots are exposed to colonizing micro-organisms that persist after the plant has died. These micro-organisms may affect intrinsic root-chemical quality and the kinetics of root residue decomposition in soil, or interact with soil micro-organisms during the decomposition process. The aims in this work were i) to determine the interactions between the presence of root-colonizing micro-organisms and root-chemical quality and ii) to quantify the effect of these micro-organisms on root decomposition. Roots were selected from six maize genotypes cultivated in the field and harvested at physiological maturity. The roots of two genotypes (F2 and F2bm1) had a higher N content, lower neutral sugars content and higher Klason lignin content than the other genotypes (F292, F292bm3, Mexxal, Colombus). Location of the root residue micro-organisms by scanning electron microscopy and transmission electron microscopy revealed that F2 and F2bm1 roots were more colonized than roots of the other genotypes. Electron Dispersive X-Ray microanalyses of in situ N confirmed a higher N content in the colonizing micro-organisms than in the root cell walls. Residues of F2 and F2bm1 roots decomposed more slowly and to a lesser extent than those of the other genotypes during incubation in a silty loam soil under controlled conditions (15 °C, −80 kPa). After 49 days, 40.6% of the total C from F292 was mineralized but only 20.7% of from F2bm1. These results suggest that residue-colonizing micro-organisms decompose the cell-wall sugars to varying extents before soil decomposition thereby modifying the chemical quality of the residues and their mineralization pattern in soil. Due to their high N content, colonizing micro-organisms also impact on the total N content of root residues, reducing their C to N ratio. Gamma sterilized root residues were incubated under the same conditions as non-sterilized residues to see if micro-organisms colonizing root residues could modify the action of soil micro-organisms during decomposition. Similar C mineralization rates were observed for both non-sterilized and sterilized residues, indicating that the residue micro-organisms did not quantitatively affect the activity of soil micro-organisms.  相似文献   

11.
为探究土壤环境中红霉素污染的生物风险,本试验采用14C示踪技术,选取广东菜心为代表,研究红霉素结合残留的释放、转化及生物有效性,并探讨添加外源有机肥(如鸡粪、活性淤泥)对该过程的影响。结果表明,土壤中红霉素结合残留随着时间推移逐渐释放,在培养45 d时下降至引入量的59.83%,其中15.00%转化为可提态残留;植物根系的吸收和扰动能促进红霉素结合残留的释放和转化(P <0.05);土壤中的红霉素结合残留能够被广东菜心根部吸收并转运至可食部分,转运系数为0.34,表明红霉素结合残留在菜心体内不易向上运输;放射性自显影图片显示,被植物吸收的14C-红霉素及其放射性衍生物主要集中在叶片和根部;外源添加有机肥(鸡粪和活性淤泥)处理,一方面可抑制结合残留的释放,增加富啡酸中红霉素结合残留的含量(P<0.05),导致土壤中红霉素污染更持久,另一方面可促进植物对土壤中红霉素残留的吸收;腐殖质分级结果显示,红霉素结合残留主要集中在富啡酸中(87.92%~97.21%),并随着时间推移不断释放。本研究结果为科学评价红霉素的生态安全提供了理论支持。  相似文献   

12.
Residues from biogas production contain essential plant nutrients such as nitrogen (N), phosphorus (P), and potassium (K) but also organic matter, and should be recycled in crop production. For efficient re‐use as fertilizers, the availability of nutrients for crops and the effect of the residues on soil fertility need to be evaluated. Focusing on the element P, we compared effects of codigested slurry with dairy slurry, highly soluble mineral NPK fertilizer, and a control without any P supply (NK). Codigested slurry used in this experiment was based on anaerobic digestion of dairy slurry, maize silage, and wheat grain. The fertilizing effects were tested in an 8‐week pot experiment on a sandy and a loamy soil using two crop species (Zea mays L., Amaranthus cruentus L.). The plant P uptake was up to 64% greater in the slurry treatments than in the treatment without P. The effect of codigested slurry on P uptake was comparable to that of dairy slurry and mineral P. Plant N uptake from codigested slurry was lower than that from mineral N (NK, NPK), but tended to be higher than from dairy slurry. The water‐soluble and double lactate–soluble P content of the soil was lower in the slurry treatments than in the mineral‐P treatments and accompanied by higher contents of microbial‐bound P. Differences between both organic fertilizers were detected for dehydrogenase activity which was up to 32% lower in soils fertilized with codigested slurry than it was in soils fertilized with dairy slurry. Our results indicate that codigestion of slurries in biogas plants does not substantially alter their fertilizer value as P and N sources for crops.  相似文献   

13.
A range of low-molecular-weight organic acids were identified in rhizosphere soil, leaf litter, and poultry manure compost. Laboratory and greenhouse experiments were carried out to examine the effects of seven low-molecular-weight organic acids on phosphate adsorption by soils, and the solubilization and plant uptake of P from soil pre-incubated with monocalcium phosphate and North Carolina phosphate rock. Acetic, formic, lactic (monocarboxylic), malic, tartaric, oxalic (dicarboxylic), and citric (tricarboxylic) acids were used in the study. The addition of organic acids decreased the adsorption of P by soils in the order tricarboxylic acid>dicarboxylic acid>monocarboxylic acid. The decreases in P adsorption with organic acid addition increased with an increase in the stability constant of the organic acid for Al (logK Al). Organic acids extracted greater amounts of P from soils meubated with both monocalcium phosphate and phosphate rock than water did. Although more phosphate was extracted by the organic acids from monocalcium phosphate — than from phosphate rock — treated soils in absolute terms, when the results were expressed as a percentage of dissolved phosphate there was little difference between the two fertilizers. The amount of P extracted by the organic acids from both fertilizers increased with an increase in logK Al values. The addition of oxalic and citric acids increased the dry matter yield of ryegrass and the uptake of P in soils treated with both fertilizers. The agronomic effectiveness of both fertilizers increased in the presence of organic acids and the increase was greater with the phosphate rock than with the monocalcium phosphate. The results indicated that organic acids increase the availability of P in soils mainly through both decreased adsorption of P and increased solubilization of P compounds.  相似文献   

14.
Chronic N deposition to forests may induce N saturation and stand decline, leading to reduced ecosystem N retention capacity, triggered by a shift from N limitation of trees to limitation by another nutrient. We conducted a 15N soil labelling experiment in non-fertilized and P-fertilized plots at two elevations in an N-saturated Mediterranean-fir (Abies pinsapo) forest in southern Spain which shows P limitation symptoms. Root-exclusion was applied to identify the relative contributions of roots (plus mycorrhizal fungi) uptake, and heterotrophic immobilization by free-living microbes, to N retention. Overall 15N recovery from the litter, 0–15-cm soil and root-uptake components was c.a. 35% higher in P-fertilized than in non-fertilized plots at both elevations. In non-fertilized plots, soil was the biggest sink for added 15N. Phosphorus fertilization increased the competitive ability of tree roots for soil N resulting in equal importance of the autotrophic (roots plus associated mycorhizal fungi) and heterotrophic (free-living microbes) components with respect to total 15N recovery in P-fertilized plots. Phosphorus addition increased litter and soil N immobilization only if roots had been excluded. By combining in situ fertilization, root-exclusion and isotope labelling we have demonstrated that reduced N retention capacity and dominance of soil microbial over plant immobilization in a N-saturated forest results from a shift from N to P limitation of trees, while alleviation of P limitation makes tree roots and associated mycorrhizal fungi competitive for N against free soil microorganisms.  相似文献   

15.
Legumes have been shown to increase P uptake of the following cereal, but the underlying mechanisms are unclear. The aim of this study was to compare the effect of legume pre-crops and their residues on the growth, P uptake and size of soil P pools in the rhizosphere of the following wheat. Three grain legumes (faba bean, chickpea and white lupin) were grown until maturity in loamy sand soil with low P availability to which 80?mg P kg?1 was supplied. This pre-crop soil was then amended with legume residues or left un-amended and planted with wheat. The growth, P uptake and concentrations of P pools in the rhizosphere of the following wheat were measured 6?weeks after sowing. In a separate experiment, residue decomposition was measured over 42?days by determining soil CO2 release as well as available N and P. Decomposition rates were highest for chickpea residues and lowest for wheat residues. P release was greatest from white lupin residues and N release was greatest from faba bean residues, while wheat residues resulted in net N and P immobilisation. The growth of the following wheat was greater in legume pre-crop soil without residue than in soils with residue addition, while the reverse was true for plant P concentration. Among the legumes, faba bean had the strongest effect on growth, P uptake and concentrations of the rhizosphere P pools of the following wheat. Regardless of the pre-crop and residue treatment, wheat depleted the less labile pools residual P as well as NaOH-Pi and Po, with a stronger depletion of the organic pool. We conclude that although P in the added residues may become available during decomposition, the presence of the residues in the soil had a negative effect on the growth of the following wheat. Further, pre-crops or their residues had little effect on the size of P pools in the rhizosphere of wheat.  相似文献   

16.
Conidia of Cochliobolus sativus and five other pigmented fungi lysed when incubated in natural soil. Lysis followed perforation of the spore wall by holes of varying dia. Three possible causes of perforation were investigated, namely autolysis, mechanical puncture by soil animals and enzymatic erosion by soil micro-organisms. Results indicated that soil micro-organisms were the likely causal agents although no micro-organism able to perforate conidia has yet been isolated. Colonization of conidia by the soil microflora was studied by electron microscopy. On the basis of these direct observations, possible perforation mechanisms are suggested. Reports of perforation of fungal, plant and bacterial cell walls are briefly summarized and the perforation phenomenon discussed in relation to the biodegradation of pigmented fungal propagules in soils.  相似文献   

17.
Abstract

Six of seven nonfertilized dryland crop rotations, consisting of combinations of fallow, wheat, alfalfa, and grass, have depleted several major plant nutrients in the soil in 20 years. The average contents of organic matter, total N, and exchangeable K were decreased by 14.5, 10.1, and 26.7%, respectively, in the 0‐ to 15‐cm soil horizon and by 24.1, 13.3, and 25.7% in the 15‐ to 30‐cm horizon. Total P content of the soils changed very little during 20 years of cropping. The amount of NaHC03‐extractable P decreased by 38.3% in the 0‐ to 15‐cm horizon of all soils except those in a manured fallow‐wheat‐wheat rotation, where a 30.6% increase occurred. Although soils were generally depleted, plant nutrients have not yet reached critically low levels, and therefore crop yields have been maintained at a fairly uniform level by using improved cereal varieties, timely tillage, good seedbed preparation, suitable seeding methods, and adequate in‐crop weed control. However, further depletion of plant nutrients from the soils will probably restrict crop production in the future. The results indicate that applications of adequate amounts of N, P, and K fertilizers, as determined by soil tests and correlative field tests, must be made to these and similar soils to ensure continued productivity.  相似文献   

18.
Our contemporary society is struggling with soil degradation due to overuse and climate change. Pre‐Columbian people left behind sustainably fertile soils rich in organic matter and nutrients well known as terra preta (de Indio) by adding charred residues (biochar) together with organic and inorganic wastes such as excrements and household garbage being a model for sustainable agriculture today. This is the reason why new studies on biochar effects on ecosystem services rapidly emerge. Beneficial effects of biochar amendment on plant growth, soil nutrient content, and C storage were repeatedly observed although a number of negative effects were reported, too. In addition, there is no consensus on benefits of biochar when combined with fertilizers. Therefore, the objective of this study was to test whether biochar effects on soil quality and plant growth could be improved by addition of mineral and organic fertilizers. For this purpose, two growth periods of oat (Avena sativa L.) were studied under tropical conditions (26°C and 2600 mm annual rainfall) on an infertile sandy soil in the greenhouse in fivefold replication. Treatments comprised control (only water), mineral fertilizer (111.5 kg N ha–1, 111.5 kg P ha–1, and 82.9 kg K ha–1), compost (5% by weight), biochar (5% by weight), and combinations of biochar (5% by weight) plus mineral fertilizer (111.5 kg N ha–1, 111.5 kg P ha–1, and 82.9 kg K ha–1), and biochar (2.5% by weight) plus compost (2.5% by weight). Pure compost application showed highest yield during the two growth periods, followed by the biochar + compost mixture. biochar addition to mineral fertilizer significantly increased plant growth compared to mineral fertilizer alone. During the second growth period, plant yields were significantly smaller compared to the first growth period. biochar and compost additions significantly increased total organic C content during the two growth periods. Cation‐exchange capacity (CEC) could not be increased upon biochar addition while base saturation (BS) was significantly increased due to ash addition with biochar. On the other hand, compost addition significantly increased CEC. Biochar addition significantly increased soil pH but pH value was generally lower during the second growth period probably due to leaching of base cations. Biochar addition did not reduce ammonium, nitrate, and phosphate leaching during the experiment but it reduced nitrification. The overall plant growth and soil fertility decreased in the order compost > biochar + compost > mineral fertilizer + biochar > mineral fertilizer > control. Further experiments should optimize biochar–organic fertilizer systems.  相似文献   

19.
 The effects of organic residues and inorganic fertilizers on P availability and maize yield were compared in a Nitisol of western Kenya. Leaf biomass of Calliandra calothyrsus, Senna spectabilis, Croton megalocarpus, Lantana camara, Sesbania sesban, and Tithonia diversifolia were incorporated into the soil at 5 Mg ha–1 for six consecutive seasons in 3 years and responses compared with those following the application of 120 kg N ha–1, 0 kg P ha–1 (0P); 120 kg N ha–1, 10 kg P ha–1; and 120 kg N ha–1 25 kg P ha–1 as urea and triple superphosphate (TSP); K was supplied in all treatments. Addition of Tithonia, Lantana and Croton increased soil resin-extractable P over that of fertilizer-amended soil throughout the first crop, but the amounts in the former treatments became similar to those for soils amended with inorganic fertilizers for subsequent crops. Addition of Sesbania, Calliandra and Senna had a similar effect on resin P as inorganic fertilizers. Total maize yields after six seasons were tripled by the application of Tithonia compared to 0P, and were higher than those of the Calliandra, Senna, Sesbania and Lantana treatments, and similar only to that of the Croton treatment. P recovered in the above-ground biomass and resin P, immediately after the implementation of the treatments, was higher in the Senna, Sesbania, Croton, Lantana and Tithonia (35–77%) treatments than in the inorganic fertilizer treatments (21–27%). The P content of organic residues, and the soluble C:total P ratio, were the main residue parameters predicting soil P availability and maize yield. All organic residues used in this study can replace inorganic fertilizers for the enhancement of P availability and maize production, while an additional benefit could be obtained from the use of Croton, Lantana and Tithonia. Received: 19 January 2000  相似文献   

20.
Abstract

Biofertilizers are an alternative to mineral fertilizers for increasing soil productivity and plant growth in sustainable agriculture. The objective of this study was to evaluate possible effects of three mineral fertilizers and four plant growth promoting rhizobacteria (PGPR) strains as biofertilizer on soil properties and seedling growth of barley (Hordeum vulgare) at three different soil bulk densities, and in three harvest periods. The application treatments included the control (without bacteria inoculation and mineral fertilizers), mineral fertilizers (N, NP and P) and plant growth promoting rhizobacteria species (Bacillus licheniformis RC04, Paenibacillus polymyxa RC05, Pseudomonas putida RC06, and Bacillus OSU-142) in sterilized soil. The PGPR, fungi, seedling growth, soil pH, organic matter content, available P and mineral nitrogen were determined in soil compacted artificially to three bulk density levels (1.1, 1.25 and 1.40 Mg m?3) at 15, 30, and 45 days of plant harvest. The results showed that all the inoculated bacteria contributed to the amount of mineral nitrogen. Seed inoculation significantly increased the count of bacteria and fungi. Data suggest that seed inoculation of barley with PGPR strains tested increased root weight by 9–12.2%, and shoot weight by 29.7–43.3% compared with control. The N, NP and P application, however, increased root weight up to 18.2, 25.0 and 7.4% and shoot weight by 31.6, 43.4 and 26.4%, respectively. Our data show that PGPR stimulate barley growth and could be used as an alternative to chemical fertilizer. Soil compaction hampers the beneficial plant growth promoting properties of PGPR and should be avoided.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号