首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
To determine the effects of shade on biomass, carbon allocation patterns and photosynthetic response, seedlings of loblolly pine (Pinus taeda L.), white pine (Pinus strobus L.), red maple (Acer rubrum L.), and yellow-poplar (Liriodendron tulipifera L.) were grown without shade or in shade treatments providing a 79 or 89% reduction of full sunlight for two growing seasons. The shade treatments resulted in less total biomass for all species, with loblolly pine showing the greatest shade-induced growth reduction. Yellow-poplar was the only species to show increased stem height growth in the 89% shade treatment. The shade treatments increased specific leaf area of all species. Quantum efficiency, dark respiration and light compensation point were generally not affected by the shade treatments. Quantum efficiency, dark respiration, maximum photosynthesis and light compensation point did not change consistently between the first and second growing seasons. We conclude that differences in shade tolerance among these species are not the result of changes in the photosynthetic mechanism in response to shade.  相似文献   

2.
We investigated susceptibility to photoinhibition in leaves acclimated to different light regimes in intermediately shade-tolerant Japanese oak (Quercus mongolica Fisch. ex Turcz. var. crispula (Blume) Ohashi) and shade-tolerant Japanese maple (Acer mono Maxim. var. glabrum (Lév. et Van't.) Hara), to elucidate adaptability to gap formation in leaves differing in shade acclimation. We hypothesized that there is a tradeoff between shade adaptation and capacity to mitigate photoinhibition associated with leaf morphology. We simultaneously measured chlorophyll fluorescence and gas exchange in seedlings that had been grown in full sunlight (open), 10% of full sun (moderate shade) and 5% of full sun (deep shade). Shade-tolerant A. mono adapted to deep shade through changes in leaf morphology, lowering its leaf mass per area (LMA), but Q. mongolica showed little change in LMA between moderate and deep shade. Photochemical quenching (qP) did not differ between species in full sunlight and moderate shade; however, in deep shade, qP of Q. mongolica was higher than that of A. mono, suggesting that Q. mongolica grown in deep shade is less susceptible to photoinhibition at gap formation. This is consistent with the finding that chronic photoinhibition 3 days after the transfer to full sunlight, indicated by the decrease in maximum photochemical efficiency, Fv/Fm, at predawn, was less in deep-shade-grown Q. mongolica than in deep shade-grown A. mono. In deep shade, the electron transport rate (ETR) of Q. mongolica was higher than that of A. mono, whereas thermal energy dissipation through photosystem II antennae, indicated by non-photochemical quenching, was lower in Q. mongolica than in A. mono. In deep shade, the greater ETR capacity in Q. mongolica in association with higher LMA and higher leaf N content could contribute to maintaining high qP and mitigating photoinhibition. These results indicate that, by maintaining a high electron transport capacity even in deep shade, the gap-dependent and intermediate-shade-tolerant Q. mongolica trades improved shade adaptation for higher growth potential when a gap event occurs.  相似文献   

3.
Shade tolerance, plastic phenotypic response to light and sensitivity to photoinhibition were studied in holly (Ilex aquifolium L.) seedlings transported from the field to a greenhouse and in adult trees in the field. All plants were growing in, or originated from, continental Mediterranean sites in central Spain. Seedlings tolerated moderate but not deep shade. Mortality was high and growth reduced in 1% sunlight. Survival was maximal in 12% sunlight and minimal in full sunlight, although the relative growth rate of the seedlings surviving in high light was similar to that of plants in moderate shade. Maximum photochemical efficiency at predawn was significantly lower in sun plants than in shade plants in the field, revealing chronic photoinhibition that was most pronounced in winter. Plasticity in response to available light varied according to the variable studied, being low for photosynthetic capacity and stomatal conductance, and high for specific leaf area, root:shoot ratio and leaf area ratio, particularly in seedlings. Differences in water relations and hydraulic features between sun and shade plants in the field were marginal. High water potential at the turgor loss point of field-grown plants suggested that holly is sensitive to drought during both the seedling and the adult stage. Low relative growth rates in both high and low light with low physiological plasticity in response to light indicate the existence of a stress-tolerance mechanism. We conclude that holly is a facultative understory plant in areas of oceanic and relatively mild climate, but an obligate understory plant in dry continental areas such as the study site. The impact of abandonment of traditional management practices and climate change on these Mediterranean populations is discussed.  相似文献   

4.
The effects of shade and soil temperature on growth of Eucalyptus marginata Donn ex Sm (jarrah) seedlings were studied in greenhouse experiments. Plant dry weight and that of all plant parts declined in response to shade, as did root/shoot ratio. Plant leaf area was less in unshaded plants than in plants grown in shade, and specific leaf area increased with shade. Unshaded seedlings had a higher light-saturated rate of photosynthesis, a higher light compensation point and a higher light saturation point than seedlings grown in 70% shade. The relationship between plant dry weight and leaf dry weight was independent of shading, whereas the relationship between plant dry weight and plant leaf area was dependent on shading. Therefore, leaf dry weight may be a better predictor of biomass production than leaf area in forest stands where shade is likely to affect growth significantly. Soil temperature had a significant effect on the growth of all plant parts except cotyledons. Total plant growth and shoot growth were maximal at a soil temperature of 30 degrees C, but root growth had a slightly lower temperature optimum such that the root/shoot ratio was highest at 20 degrees C. Roots grown at 15 degrees C were about 30% shorter per unit of dry weight than roots grown at 20 to 35 degrees C. We conclude that increases in irradiance and soil temperature as a result of overstory removal in the forest will cause significant increases in growth of E. marginata seedlings, but these increases represent a relatively small component of the growth response to overstory removal.  相似文献   

5.
Chlorophyll fluorescence, chlorophyll content, growth, and mortality of white spruce (Picea glauca [Moench] Voss) seedlings were monitored for 2 years after planting under three scenarios of artificial shade: no-shade (control), shade in summer only, and shade all year. The shade frames allowed 50–60% light transmission, with limited effects on air temperature, relative humidity, soil temperature, and soil moisture around seedlings. Based on fluorescence yield and chlorophyll content measurements, summer-only shade reduced photoinhibition and photooxidation, especially in summer and fall; extending to all year shading did not further reduce either photoinhibition or photooxidation. Shade tended to reduce seedling diameter and mortality, but after 2 years the cumulative effect on mortality was not statistically significant. Study results support the establishment of white spruce seedlings under partial forest canopy, especially on sites with harsh environmental conditions.  相似文献   

6.
Khan  Shafiqur Rehiman  Rose  Robin  Haase  Diane L.  Sabin  Thomas E. 《New Forests》2000,19(2):171-186
Four species of Pacific Northwestconifer seedlings (ponderosa pine [Pinusponderosa Dougl. ex Laws.], Douglas-fir [Pseudotsuga menziesii (Mirb.) Franco], westernredcedar [Thuja plicata Donn ex D. Donn], andwestern hemlock [Tsuga heterophylla (Raf.)Sarg.]) were planted in individual pots and grownunder shade-cloth shelters that provided four levelsof shade (0% [full sunlight], 35%, 55%, and 75%)for approximately 30 weeks. Height growth wasrecorded every 2 weeks. Initial and final seedlingmorphology and chlorophyll concentrations weremeasured. Chlorophyll fluorescence was measuredmonthly. All species responded similarly to shade. Although height growth was greatest under 75% shadeand least in 0% shade, total biomass production wassignificantly lower and shoot:root ratio significantlyhigher in 75% shade than in 0% shade. As thetreatment shade level increased from 0% to 75%,Fv/Fm was significantly lower whilechlorophyll concentrations were significantly higher. These results indicate that photochemical efficiencyof all four species was lower under higher shade. Morphological and physiological responses differedgreatly among species and corresponded with theirdegree of shade tolerance.  相似文献   

7.
Daily variations in net gas exchange, chlorophyll a fluorescence and water relations of mature, sun-acclimated grapefruit (Citrus paradisi Macfady.) and orange (Citrus sinensis L. Osbeck) leaves were determined in tree canopies either shaded with 50% shade screens or left unshaded (sunlit). Mean daily maximum photosynthetic photon flux density (PPFD) under shade varied from 500 to 700 micromol m-2 s-1 and was sufficient to achieve maximum net CO2 assimilation rates (A CO2). Responses of grapefruit and orange leaves to shading were remarkably similar. At midday, on bright clear days, the temperatures of sunlit leaves were 2-6 degrees C above air temperature and 1-4 degrees C above the temperatures of shaded leaves. Although midday depressions of stomatal conductance (gs) and A CO2 were observed in both sunlit and shaded leaves, shaded leaves had lower leaf-to-air vapor pressure differences (D) along with higher gs, A CO2 and leaf water-use efficiency than sunlit leaves. Estimated stomatal limitation to A CO2 was generally less than 25% and did not differ between shaded and sunlit leaves. Leaf intercellular CO2 partial pressure was not altered by shade treatment and did not change substantially with increasing D. Radiation and high temperature stress-induced non-stomatal limitation to A CO2 in sunlit leaves was greater than 40%. Reversible photoinhibition of photosystem II efficiency was more pronounced in sunlit than in shaded leaves. Thus, non-stomatal factors play a major role in regulating A CO2 of citrus leaves during radiation and high temperature stress.  相似文献   

8.
Leaves developing in different irradiances undergo structural and functional acclimation, although the extent of trait plasticity is species specific. We tested the hypothesis that irradiance-induced plasticity of photosynthetic and anatomical traits is lower in highly shade-tolerant species than in moderately shade-tolerant species. Seedlings of two evergreen conifers, shade-tolerant Abies alba Mill. and moderately shade-tolerant Picea abies Karst., and two deciduous angiosperm species, highly shade-tolerant Fagus sylvatica L. and moderately shade-tolerant Acer pseudoplatanus L., were grown in deep shade (LL, 5% of full irradiance) or in full solar irradiance (HL) during 2003 and 2004. Steady state responses of quantum yield of PSII (Phi(PSII)), apparent electron transport rate (ETR), nonphotochemical quenching (NPQ) and photochemical quenching (qP) were generally modified by the light environment, with slower declines in Phi(PSII) and qP and greater maximal ETR and NPQ values in HL plants in at least one season; however, no link between quantitative measures of plasticity of these traits and shade tolerance was found. Plasticity of nine anatomical traits (including palisade cell length, which was reduced in LL) showed no relationship with shade tolerance, but was less in conifers than in deciduous trees, suggesting that leaf life span may be a significant correlate of plasticity. When LL-acclimated plants were exposed to HL conditions, the degree and duration of photoinhibition (measured as a decline in maximum quantum yield) was greatest in F. sylvatica, much lower in P. abies and A. alba, and lowest in A. pseudoplatanus. Thus, as with the other traits studied, vulnerability to photoinhibition showed no relationship with shade tolerance.  相似文献   

9.
We studied the interactive effects of water stress and solar irradiance on physiological and biochemical traits in Ligustrum vulgare L., with special emphasis on antioxidant enzymes and flavonoids. Water relations, photosynthetic performance, plant growth, activities of antioxidant enzymes and of phenylalanine-ammonia-lyase, and concentrations of nonstructural carbohydrates and phenylpropanoids were measured in plants growing in 12% (shade) or 100% (sun) sunlight and supplied with 100 or 40% of daily evapotranspiration-demand over a 4-week period. The mild water stress treatment caused leaf water potential and relative water content to decline on average by -0.22 MPa and 4.5%, respectively. In response to the water stress treatment, photosynthetic rates decreased more in sun plants than in shade plants, likely because of declines in photosystem II photochemistry, apparent maximum rate of carboxylation and apparent maximum electron transport rate coupled with significant reductions in stomatal conductance. Antioxidant enzymatic activities, which were much greater in sun leaves than in shade leaves under well-watered conditions, increased (particularly the enzymatic activities associated with hydrogen peroxide removal) in response to water stress only in shade leaves. Antioxidant phenylpropanoids, particularly quercetin and luteolin derivatives, markedly increased in response to full sunlight irrespective of water treatment; however, antioxidant phenylpropanoid concentrations increased in response to water stress only in shade leaves. We suggest that: (1) assimilated carbon in sun plants was used largely to support an effective antioxidant system capable of countering water-stress-induced oxidative damage--an example of cross tolerance; and (2) in shade plants, carbon was also diverted from growth to counter oxidative damage driven by the mild water-stress treatment. Both findings are consistent with the nearly exclusive distribution of L. vulgare in well-watered, partially shaded Mediterranean areas.  相似文献   

10.
To investigate whether sun and shade leaves respond differently to CO2 enrichment, we examined photosynthetic light response of sun and shade leaves in canopy sweetgum (Liquidambar styraciflua L.) trees growing at ambient and elevated (ambient + 200 microliters per liter) atmospheric CO2 in the Brookhaven National Laboratory/Duke University Free Air CO2 Enrichment (FACE) experiment. The sweetgum trees were naturally established in a 15-year-old forest dominated by loblolly pine (Pinus taeda L.). Measurements were made in early June and late August 1997 during the first full year of CO2 fumigation in the Duke Forest FACE experiment. Sun leaves had a 68% greater leaf mass per unit area, 63% more leaf N per unit leaf area, 27% more chlorophyll per unit leaf area and 77% greater light-saturated photosynthetic rates than shade leaves. Elevated CO2 strongly stimulated light-saturated photosynthetic rates of sun and shade leaves in June and August; however, the relative photosynthetic enhancement by elevated CO2 for sun leaves was more than double the relative enhancement of shade leaves. Elevated CO2 stimulated apparent quantum yield by 30%, but there was no interaction between CO2 and leaf position. Daytime leaf-level carbon gain extrapolated from photosynthetic light response curves indicated that sun leaves were enhanced 98% by elevated CO2, whereas shade leaves were enhanced 41%. Elevated CO2 did not significantly affect leaf N per unit area in sun or shade leaves during either measurement period. Thus, the greater CO2 enhancement of light-saturated photosynthesis in sun leaves than in shade leaves was probably a result of a greater amount of nitrogen per unit leaf area in sun leaves. A full understanding of the effects of increasing atmospheric CO2 concentrations on forest ecosystems must take account of the complex nature of the light environment through the canopy and how light interacts with CO2 to affect photosynthesis.  相似文献   

11.
Sefcik LT  Zak DR  Ellsworth DS 《Tree physiology》2006,26(12):1589-1599
Seedling responses to elevated atmospheric CO(2) concentration ([CO(2)]) and solar irradiance were measured over two growing seasons in shade-tolerant Acer saccharum Marsh. and Fagus grandifolia J.F. Ehrh. and shade-intolerant Prunus serotina, a J.F. Ehrh. and Betula papyrifera Marsh. Seedlings were exposed to a factorial combination of [CO2] (ambient and elevated (658 micromol mol-1)) and understory shade (deep and moderate) in open-top chambers placed in a forest understory. The elevated [CO(2)] treatment increased mean light-saturated net photosynthetic rate by 63% in the shade-tolerant species and 67% in the shade-intolerant species. However, when measured at the elevated [CO(2)], long-term enhancement of photosynthesis was 10% lower than the instantaneous enhancement seen in ambient-[CO(2)]-grown plants (P < 0.021). Overall, growth light environment affected long-term photosynthetic enhancement by elevated [CO(2)]: as the growth irradiance increased, proportional enhancement due to elevated [CO(2)] decreased from 97% for plants grown in deep shade to 47% for plants grown in moderate shade. Results suggest that in N-limited northern temperate forests, trees grown in deep shade may display greater photosynthetic gains from a CO(2)-enriched atmosphere than trees growing in more moderate shade, because of greater downregulation in the latter environment. If photosynthetic gains by deep-shade-grown plants in response to elevated [CO(2)] translate into improved growth and survival of shade-intolerant species, it could alter the future composition and dynamics of successional forest communities.  相似文献   

12.
Prunus domestica L. has green leaves, whereas Prunus cerasifera Ehrh. var. atropurpurea has red leaves due to the presence of mesophyll anthocyanins. We compared morphological and photosynthetic characteristics of leaves of these species, which were sampled from shoots grafted in pairs on P. domestica rootstocks, each pair comprising one shoot of each species. Two hypotheses were tested: (1) anthocyanins protect red leaves against photoinhibition; and (2) red leaves display shade characteristics because of light attenuation by anthocyanins. Parameters were measured seasonally, during a period of increasing water stress, which caused a similar drop in shoot water potential in each species. As judged by predawn measurements of maximum PSII yield, chronic photoinhibition did not develop in either species and, despite the anthocyanic screen, the red leaves of P. cerasifera displayed lower light-adapted PSII yields and higher non-photochemical quenching than the green leaves of P. domestica. Thus, it appears that, in this system, anthocyanins afford little photoprotection. As predicted by the shade acclimation hypothesis, red leaves were thinner and had a lower stomatal frequency, area- based CO2 assimilation rate, apparent carboxylation efficiency and chlorophyll a:b ratio than green leaves. However, red leaves were similar to green leaves in conductivity to water vapor diffusion, dry-mass-based chlorophyll concentrations and carotenoid:chlorophyll ratios. The data for red leaves indicate adaptations to a green-depleted, red-enriched shade, rather than a neutral or canopy-like shade. Thus, green light attenuation by anthocyanins may impose a limitation on leaf thickness. Moreover, the selective depletion of light at wavelengths that are preferentially absorbed by PSII and chlorophyll b may lead to adjustments in chlorophyll pigment ratios to compensate for the uneven spectral distribution of internal light. The apparent photosynthetic cost associated with lost photons and reduced leaf thickness, and the absence of a photoprotective advantage, suggest that there are other, yet to be identified, benefits for permanently anthocyanic leaves of P. cerasifera.  相似文献   

13.
Photosynthetic light response curves (A/PPFD), leaf N concentration and content, and relative leaf absorbance (alpha(r)) were measured in 1-year-old seedlings of shade-intolerant Betula papyrifera Marsh., moderately shade-tolerant Quercus rubra L. and shade-tolerant Acer rubrum L. Seedlings were grown in full sun or 26% of full sun (shade) and in ambient (350 ppm) or elevated (714 ppm) CO(2) for 80 days. In the shade treatments, 80% of the daily PPFD on cloud-free days was provided by two 30-min sun patches at midday. In Q. rubra and A. rubrum, leaf N concentration and alpha(r) were significantly higher in seedlings in the shade treatments than in the sun treatments, and leaf N concentration was lower in seedlings in the ambient CO(2) treatments than in the elevated CO(2) treatments. Changes in alpha(r) and leaf N content suggest that reapportionment of leaf N into light harvesting machinery in response to shade and elevated CO(2) tended to increase with increasing shade tolerance of the plant. Shifts induced by elevated CO(2) in the A/PPFD relationship in sun plants were largest in B. papyrifera and least in A. rubrum: the reverse was true for shade plants. Elevated CO(2) resulted in increased light-saturated A in every species x light treatment combination, except in shaded B. papyrifera. The light compensation point (Gamma) decreased in response to shade in all species, and in response to elevated CO(2) in A. rubrum and Q. rubra. Acer rubrum had the greatest increases in apparent quantum yield (phi) in response to shade and elevated CO(2). To illustrate the effects of shifts in A, Gamma and phi on daily C gain, daily integrated C balance was calculated for individual sun and shade leaves. Ignoring possible stomatal effects, estimated daily (24 h) leaf C balance was 218 to 442% higher in the elevated CO(2) treatments than in the ambient CO(2) treatments in both sun and shade seedlings of Q. rubra and A. rubrum. These results suggest that the ability of species to acclimate photosynthetically to elevated CO(2) may, in part, be related to their ability to adapt to low irradiance. Such a relationship has implications for altered C balance and nitrogen use efficiency of understory seedlings.  相似文献   

14.
The impact of shade on the growth of European yew (Taxus baccata L.) saplings was investigated over a three-year period using artificial shading to simulate four different light regimes (3, 7, 27 and 100 % relative photosynthetic photon flux density, RPPFD). There was no mortality attributable to shading even under the 3 % RPPFD treatment. Increasing shade was positively associated with specific leaf area, leaf length, leaf width and total chlorophyll content, but negatively associated with plant height, stem diameter, total dry weight and root to leaf and shoot ratio. Discoloration of the foliage occurred in plants grown in 100 % RPPFD conditions (resulting in reduced growth rates) and those transferred to 100 % RPPFD conditions after being shade-acclimated for 2 years. Evidence suggests that T. baccata has the ability to regenerate beneath a lighter canopy but beneath denser canopies gap dynamics will play an important role in facilitating successful regeneration and this needs to be reflected in management of natural populations of this declining species.  相似文献   

15.
The objective of this study was to evaluate the effect of nursery shading on the Yellow-ipe seedling (Tabebuia chrysotricha) growth, photosynthesis, and photosynthetic acclimation after being transferred into direct sunlight. The Yellow-ipe seedlings were grown under 0, 50, 70 and 95% shade. At the 134th day of sowing, leaf gas exchange and chlorophyll were measured under current growth shading, after exposure to 15 min and two day full sunlight. With the increase of shading, the Yellow-ipe seedlings allocated more biomass to the stem and leaves and less to the roots, and there was an increase in the leaf area ratio and specific leaf area. In relation to 0% of shading there was a increase of 211% in stem, 116% in leaf, and a reduction of 200% in roots biomass when seedling were grown under 95% of shading. The total biomass accumulation had a high correlation with collar diameter (r = 0.96). More than 70% of the shading reduced the photosynthesis, and after transferring the seedlings into full sunlight, more than 50% of the shading induced a reduction in chlorophyll, stomatal conductance, photosynthesis and instantaneous carboxylation efficiency, suggesting the presence of a photoinhibition process. The Yellow-ipe seedling growth under nursery conditions should not be done under more than 50% shading, which may result in the lower seedling quality and poorer acclimation to transplantation, particularly to severe degraded areas with direct sunlight. The species can be used for recovering from totally devastated forest areas to initial recovery when full canopy are forming.  相似文献   

16.
We investigated light acclimation in seedlings of the temperate oak Quercus petraea (Matt.) Liebl. and the co-occurring sub-Mediterranean oak Quercus pyrenaica Willd. Seedlings were raised in a greenhouse for 1 year in either 70 (HL) or 5.3% (LL) of ambient irradiance of full sunlight, and, in the following year, subsets of the LL-grown seedlings were transferred to HL either before leaf flushing (LL-HLBF plants) or after full leaf expansion (LL-HLAF plants). Gas exchange, chlorophyll a fluorescence, nitrogen fractions in photosynthetic components and leaf anatomy were examined in leaves of all seedlings 5 months after plants were moved from LL to HL. Differences between species in the acclimation of LL-grown plants to HL were minor. For LL-grown plants in HL, area-based photosynthetic capacity, maximum rate of carboxylation, maximum rate of electron transport and the effective photochemical quantum yield of photosystem II were comparable to those for plants grown solely in HL. A rapid change in nitrogen distribution among photosynthetic components was observed in LL-HLAF plants, which had the highest photosynthetic nitrogen-use efficiency. Increases in mesophyll thickness and dry mass per unit area governed leaf acclimation in LL-HLBF plants, which tended to have less nitrogen in photosynthetic components and a lower assimilation potential per unit of leaf mass or nitrogen than LL-HLAF plants. The data indicate that the phenological state of seedlings modified the acclimatory response of leaf attributes to increased irradiance. Morphological adaptation of leaves of LL-HLBF plants enhanced photosynthetic capacity per unit leaf area, but not per unit leaf dry mass, whereas substantial redistribution of nitrogen among photosynthetic components in leaves of LL-HLAF plants enhanced both mass- and area-based photosynthetic capacity.  相似文献   

17.
Nothofagus nitida (Phil.) Krasser, an emergent tree of the Chilean evergreen forest, regenerates under the canopy. Nonetheless, it is common to find older saplings in clear areas. We hypothesized that this transition from shade to sun during the early developmental stages is made possible by an ontogenetic increase in the light acclimation capacity of photosynthesis. To test our hypothesis, we studied photosynthetic performance and photoprotection in N. nitida saplings at different developmental stages corresponding with three different height classes (short: 16.2 cm; medium-height: 48.0 cm; and tall: 73.7 cm) grown under contrasting light conditions (photosynthetic photon flux (PPF) of 20, 300 or 600 micromol m(-2) s(-1)) until newly expanded leaves had developed. Light-saturated CO(2) assimilation rate and light compensation and saturation points increased with increasing PPF. Medium-height and tall saplings acclimated to high light had higher electron transport rates and higher proportions of open Photosystem II reaction centers than shorter plants acclimated to high light. Short saplings showed higher thermal dissipation and contents of xanthophylls than taller saplings. Only medium-height and tall saplings acclimated to high light recovered after photoinhibition. State transitions were higher in short plants growing in low light, and decreased with plant height and growth irradiance. Thus, during development, N. nitida changes the balance of light energy utilization and photoprotective mechanisms, supporting a phenotypic transition from shade to sun during its early ontogeny.  相似文献   

18.
We analyzed the growth and photosynthetic responses of Canarium pimela K. D. Koenig (Chinese black olive) and Nephelium topengii (Merr.) H. S. Lo. (Hainan shaozi) to a light gradient to recommend better procedures for optimizing seedling establishment and growth of both species in restoration and agroforestry practices. One-month-old seedlings were exposed to four irradiance levels (46, 13, 2 and 0.2 % full sunlight) inside shade cloth covered shadehouses for 1 year. With decreased sunlight both species displayed trends of decreased relative growth rate (RGR) and leaf area (LA), and increased specific leaf area and leaf area ratio (LAR). The mean values of light-saturated net photosynthetic rate (Pmax) in 46 and 0.2 % full sunlight were 10.11 and 3.44 μmol CO2 m?2 s?1 for C. pimela and 6.26 and 3.47 μmol CO2 m?2 s?1 for N. topengii, respectively. C. pimela had higher RGR in 46 and 13 % full sunlight than in 2 and 0.2 % full sunlight. Differences in growth rates can be explained by the different values of LA, LAR and leaf mass ratio, as well as by the different values of photosynthetic saturation irradiance and net photosynthetic rate (Pmax) between the two species. Both morphological and physiological responses to shading indicate N. topengii could be rated as “very shade-tolerant,” while C. pimela could be rated as “intermediately shade-tolerant”.  相似文献   

19.
Northern red oak (Quercus rubra L.) and yellow-poplar (Liriodendron tulipifera L.) were grown for two years in full sunlight (unshaded) or 20% of full sunlight (shaded) under either well-watered or drought conditions. There was a close association between evaporative flux (in situ) and leaf-specific conductivity (LSC) in stem segments of both species. Shaded, drought-stressed seedlings of both species had significantly reduced leaf area, evaporative flux, volume flow rate in xylem, flow velocity, potentially functional xylem area, and LSC than unshaded, well-watered seedlings. Reductions in LSC associated with drought or shade were similar for both species; and within a treatment, both species had similar LSC. Species differed in the manner of LSC adjustment to drought and shade. Reductions in leaf area associated with drought or shade were accompanied primarily by reductions in potentially functional xylem area for L. tulipifera, and by reductions in flow velocity for Q. rubra. These results suggest (1) the existence of a homeostatic balance between evaporative flux and LSC, (2) that species with widely different growth patterns and xylem anatomies may develop similar LSC within the same environment, and (3) a possible hydraulic basis for differences in habitat between ring- and diffuse-porous species.  相似文献   

20.
以2 a生金蒲桃(Xanthostemon chrysanthus)幼苗为材料,研究了全光照,50%遮阴,70%遮阴,90%遮阴4种遮阴处理对金蒲桃生长特性、生物量分配、光合生理变化的影响,结果表明:与自然光全处理对比,遮光极显著(P<0.01)地抑制了金蒲桃幼苗生物量的积累,遮光处理组叶片数量减少,叶生物量比下降,茎生物量比增加;光补偿点、光饱和点、暗呼吸速率和最大光合速率降低,光能利用效率低于全光照叶,强光下遮阴叶的净光合速率保持稳定.上述结果说明:遮阴处理后,金蒲桃在生长特性、生物量分配和光合参数上表现出对遮阴弱光的适应,表明金蒲桃是一种能广泛应用于各种光照条件的优良景观树种.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号