首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Marek's disease (MD) is a lymphoproliferative disease of domestic chickens caused by a highly infectious, oncogenic alpha-herpesvirus known as Marek's disease virus (MDV). MD is presently controlled by vaccination. Current MD vaccines include attenuated serotype 1 strains (e.g., CVI988/Rispens), avirulent serotype 2 (SB-1), and serotype 3 (HVT) MDV strains. In addition, recombinant MDV strains have been developed as potential new and more efficient vaccines to sustain the success of MD control in poultry. One of the candidate recombinant MDV strains, named rMd5deltaMeq, was derived from Md5, a very virulent strain of MDV lacking the MDV oncogene Meq. Our earlier reports suggest that rMd5deltaMeq provided protection equally well or better than commonly used MD vaccines in experimental and commercial lines of chickens challenged with very virulent plus (vv+) strains of MDV. In this study, maternal antibody-positive (trial 1) and negative (trial 2) chickens from a series of relatively MD resistant lines were either vaccinated with the rMd5deltaMeq or CVI988/Rispens followed by infection of a vv+ strain of MDV, 648A, passage 10. This report presents experimental evidence that the rMd5deltaMeq protected significantly better than the CVI988/Rispens (P < 0.01) in the relatively resistant experimental lines of chickens challenged with the vv+ strain of MDV. Together with early reports, the rMd5deltaMeq appeared to provide better protection, comparing with the most efficacious commercially available vaccine, CVI988/Rispens, for control of MD in lines of chickens regardless of their genetic background.  相似文献   

2.
Earlier studies have shown that the B haplotype has a significant influence on the protective efficacy of vaccines against Marek's disease (MD) and that the level of protection varies dependent on the serotype of MD virus (MDV) used in the vaccine. To determine if the protective glycoprotein gene gB is a basis for this association, we compared recombinant fowlpox virus (rFPV) containing a single gB gene from three serotypes of MDV. The rFPV were used to vaccinate 15.B congenic lines. Nonvaccinated chickens from all three haplotypes had 84%-97% MD after challenge. The rFPV containing gB1 provides better protection than rFPV containing gB2 or gB3 in all three B genotypes. Moreover, the gB proteins were critical, since the B*21/*21 chickens had better protection than chickens with B*13/*13 or B*5/*5 using rFPV with gB1, gB2, or gB3. A newly described combined rFPV/gB1gEgIUL32 + HVT vaccine was analyzed in chickens of lines 15 x 7 (B*2/*15) and N (B*21/*21) challenged with two vv+ strains of MDV. There were line differences in protection by the vaccines and line N had better protection with the rFPV/gB1gEgIUL32 + HVT vaccines (92%-100%) following either MDV challenge, but protection was significantly lower in 15 X 7 chickens (35%) when compared with the vaccine CVI988/Rispens (94%) and 301B1 + HVT (65%). Another experiment used four lines of chickens receiving the new rFPV + HVT vaccine or CVI988/Rispens and challenge with 648A MDV. The CVI 988/Rispens generally provided better protection in lines P and 15 X 7 and in one replicate with line TK. The combined rFPV/gB1gEgIUL32 + HVT vaccines protected line N chickens (90%) better than did CVI988/Rispens (73%). These data indicate that rFPV + HVT vaccines may provide protection against MD that is equivalent to or superior to CVI988/ Rispens in some chicken strains. It is not clear whether the rFPV/gB1gEgIUL32 + HVT vaccine will offer high levels of protection to commercial strains, but this vaccine, when used in line N chickens, may be a useful model to study interactions between vaccines and chicken genotypes and may thereby improve future MD vaccines.  相似文献   

3.
Comparative 50% protective dose (PD50) assays were performed using a plaque-purified preparation of Marek's disease virus (MDV) strain CVI-988 at the 65th chicken embryo fibroblast (CEF) passage level (MDV CVI-988 CEF65 clone C) and three commercial MD vaccines: herpesvirus of turkeys (HVT) FC126, MDV CVI-988 CEF35, and a bivalent vaccine composed of HVT FC126 and MDV SB-1. In addition, comparative PD50 assays were performed in groups of chickens with maternal antibody to each of the three vaccines. Three representatives of the newly emerged biovariant very virulent (vv) MDV strains-RB/1B, Tun, and Md5-were employed as challenge virus. The experiments made feasible the differentiation between virulent MDV and vvMDV strains, within serotype 1. Vaccination with CVI-988 clone C vaccine resulted in PD50 estimates of about 5 plaque-forming units (PFUs) against challenge infection with each of the three vvMDV strains. The PD50 estimate of CVI-988 clone C vaccine was 12-fold below the PD50 of HVT FC126. The protective synergism of bivalent vaccine, composed of HVT and SB-1, was confirmed by groups given the lowest vaccine doses. The bivalent vaccine, however, resulted in incomplete protection in groups given the highest vaccine doses. Homologous maternal antibodies to serotype 1 caused a fivefold increase in the PD50 estimate of CVI-988 clone C. Heterologous maternal antibodies against HVT did not interfere with efficacy of CVI-988 clone C vaccination. However, the combination of maternal antibodies against both HVT and SB-1 (serotypes 2 and 3) showed a strong adverse effect on CVI-988 clone C vaccine.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
鸡马立克氏病活疫苗免疫效力比较试验   总被引:1,自引:0,他引:1  
用HVT冻干苗、HVT细胞结合苗、CVI988细胞结合苗、SB1+FC126双价活疫苗、301B/1+FC126双价活疫苗和Z4+FC126双价活疫苗等6种鸡马立克氏病(MD)疫苗免疫SPF白来航鸡或普通伊莎鸡,用鸡马立克氏病病毒(MDV)强毒GA株、京-1血毒以及鸡马立克氏病超强毒vvMDV-Md5毒株分别攻击进行免疫效力比较试验。试验表明,MD单价苗的免疫效力强弱顺序依次是CVI988、HVT细胞结合苗和HVT冻干苗,这3种MD单价苗均能给免疫鸡群提供有效的免疫保护力。SB1+FC126、Z4+FC126和301B/1+FC126等3种MD双价苗免疫效力显著高于MD单价苗,均能给免疫鸡群提供较强的免疫保护力,并能有效地抵抗vvMDV-Md5毒株的致瘤作用。Z4+FC126和301B/1+FC126MD双价苗免疫效力无显著差异  相似文献   

5.
Zhang Y  Sharma JM 《Avian diseases》2001,45(3):639-645
CVI988, a serotype 1 Marek's disease virus (MDV), was used as an in ovo vaccine in specific-pathogen-free chickens to determine if this virus induces early posthatch protection against Marek's disease as has been shown previously for turkey herpesvirus. MDV CVI988 was injected at embryonation day (ED) 17 (group 1) or at hatch (group 2). A third group (group 3) was left unvaccinated. At 1, 2, 3, 4, 5, and 7 days of age, chickens from each group were sampled and examined as follows: a) single-cell suspensions of spleen were inoculated onto chicken embryo fibroblast monolayers to isolate the virus; b) sections of bursal tissues were stained by indirect immunofluorescence assays with anti-pp38 monoclonal antibody to identify viral antigen expression; and c) chickens were exposed intra-abdominally to MDV RB1B, a virulent serotype 1 MDV. Results revealed that in chickens given MDV CVI988 at ED 17, virus and virus-encoded protein were not detected until chickens were 3 and 2 days old after hatching, respectively. Results also indicated that during the first 4 days after hatch, the chickens given MDV CVI988 at ED 17 were better protected against virulent MDV than those given MDV CVI988 at hatch (P < or = 0.001). These results suggested that MDV CVI988 proteins were adequately expressed in the embryo to initiate prehatch immunologic response. Additional efforts with more sensitive techniques than used in this study are needed to identify the nature of viral expression in embryos.  相似文献   

6.
In Marek's disease virus infection, feather follicle epithelium (FFE) constitutes the site of formation of infectious virus particles and virus shedding. The objective of this study was to characterize cellular and cytokine responses as indicators of cell-mediated immune response in FFE and associated feather pulp following immunization against Marek's disease. Analysis of feather tips collected between 4 and 28 days post-immunization (d.p.i.) from chickens vaccinated post-hatch with either CVI988/Rispens or herpesvirus of turkeys revealed that replication of these vaccine viruses started at 7d.p.i., peaked by 21d.p.i., and subsequently, showed a declining trend. This pattern of viral replication, which led to viral genome accumulation in feather tips, was associated with infiltration of T cell subsets particularly CD8+ T cells into the feather pulp area and the expression of cytokine genes such as interferon-gamma, which is an indication of elicitation of cell-mediated immune responses at the site of virus shedding.  相似文献   

7.
由于CVI988/Rispense疫苗优良的免疫特性,已经被认为是目前防控马立克氏病(Marek'sdisease,MD)效果最好的疫苗。然而,近年来随着马立克病毒(Marek'sdisease virus,MDV)毒力的不断增强。CVI988/Rispense需要与MDV-Ⅱ或者HVT联合使用才能防止免疫失败的发生。本实验通过空斑计数和间接免疫荧光相结合的方法测定了马立克病毒CVI988/Rispense+FC126二价活疫苗的效价。结果显示批次A中CVI988为4400PFU/dose,HVT为2600/dose;批次B中CVI988为4800PFU/dose,HVT为2400PFU/dose;批次C中CVI988为4600PFU/dose,HVT为2800PFU/dose。所得结果均显著高于国家标准CVI988不少于2000PFU/dose,HVT不少于1000PFU/dose,并且批次之间非常稳定,适合用作鸡群马立克氏病的防控。  相似文献   

8.
We investigated embryo tissues targeted by replication competent adenovirus (Ad)-free recombinant Ad expressing a codon-optimized avian influenza (AI) H5 gene from A/turkey/WI/68 (AdH5) when injected into 18-day embryonated eggs. We also evaluated the effects of concurrent in ovo vaccination with the experimental AdH5 vaccine and commercially available Marek's disease virus (MDV) vaccine combinations Rispens/turkey herpesvirus (HVT) or HVT/SB-1. Computed tomography indicates that in ovo injection on day 18 of incubation places the solution in the amnion cavity, allantoic cavity, or both. Ad DNA was consistently detected in the chorioallantoic membranes as well as in the embryonic bursa of Fabricius, esophagus, and thymus 3 days postinoculation. H5 expression in these tissues also was detected by immunofluorescence assay. These results indicate possible swallowing of vaccine virus contained in the amnion. In contrast, vaccine localization in the allantoic fluid would have allowed bursal exposure through the cloaca. When the AdH5 vaccine was used in combination with MDV, chickens responding to the AdH5 vaccine had similar AI antibody levels compared with AdH5-only-vaccinated birds. However, combined vaccinated groups showed reduced vaccine coverage to AI, suggesting some level of interference. The combination of AdH5 with MDV Rispens/HVT affected the vaccine coverage to AI more severely. This result suggests that the replication rate of the more aggressive Rispens strain of serotype 1 may have interfered with the Ad-vectored vaccine. Increasing the Ad concentration produced similar AI antibody titers and AI vaccine coverage when applied alone or in combination with the HVT/SB-1 vaccine. Ad DNA was detected in hatched chickens 2 days after hatch but was undetectable on day 9 after hatch. MDV DNA was detected in feather follicles of all vaccinated birds at 12 days of age. Thus, Ad-vector vaccination does not interfere with the efficacy of MDV vaccination by using any of the commonly used vaccine strains.  相似文献   

9.
Two new Marek's disease vaccine viruses, Md11/75C/R2 (serotype 1) and 301B/1 (serotype 2), were evaluated in chickens with maternal antibodies (ab+) or without maternal antibodies (ab-). Strain Md11/75C/R2 was mildly pathogenic in ab--chickens, but this pathogenicity was markedly reduced in ab+ chickens. Md11/75C/R2 spread less by contact and replicated better, both in vivo and in vitro, than CVI988/C, another serotype 1 vaccine virus. Strain 301B/1 was similar to SB-1, another serotype 2 vaccine virus: both were nonpathogenic for ab--chickens, spread readily by contact, and replicated well in vivo. In vitro, 301B/1 grew more rapidly and produced larger plaques than SB-1. Notable characteristics of strain CVI988/C included absence of pathogenicity, poor replicative ability, and the absence of one epitope detected by a common serotype-1-specific monoclonal antibody. All four viruses could be distinguished from each other by restriction enzyme analysis of viral DNA. We conclude that Md11/75C/R2, although exceptionally protective, may require further attenuation. On the other hand, 301B/1, which in other studies induced higher levels of protection than SB-1, is nonpathogenic and may be considered for use as a commercial vaccine.  相似文献   

10.
Dilution of Marek's disease (MD) vaccines is a common practice in the field to reduce the cost associated with vaccination. In this study we have evaluated the effect of diluting MD vaccines on the protection against MD, vaccine and challenge MD virus (MDV) kinetics, and body weight when challenged with strains Md5 (very virulent MDV) and 648A (very virulent plus MDV) by contact at day of age. The following four vaccination protocols were evaluated in meat-type chickens: turkey herpesvirus (HVT) at manufacturer-recommended full dose; HVT diluted 1:10; HVT + SB-1 at the manufacturer-recommended full dose; and HVT + SB-1 diluted 1:10 for HVT and 1:5 for SB-1. Vaccine was administered at hatch subcutaneously. One-day-old chickens were placed in floor pens and housed together with ten 15-day-old chickens that had been previously inoculated with 500 PFU of either Md5 or 648A MDV strains. Chickens were individually identified with wing bands, and for each chicken samples of feather pulp and blood were collected at 1, 3, and 8 wk posthatch. Body weights were recorded at 8 wk for every chicken. Viral DNA load of wild-type MDV, SB-1, and HVT were evaluated by real time-PCR. Our results showed that dilution of MD vaccines can lead to reduced MD protection, reduced relative body weights, reduced vaccine DNA during the first 3 wk, and increased MDV DNA load. The detrimental effect of vaccine dilution was more evident in females than in males and was more evident when the challenge virus was 648A. However, lower relative body weights and higher MDV DNA load could be detected in chickens challenged with strain Md5, even in the absence of obvious differences in protection.  相似文献   

11.
应用荷兰农业部提供的鸡马立克氏病(MD)CVI988/Rispens Ⅰ型致弱种毒, 在农业部批准的符合GMP 要求的生产车间研制出鸡马立克氏病CVI988/Rispens 疫苗。将按国际标准检验合格的三批疫苗及进口商品CVI988/Rispens 疫苗接种1 日龄SPF 雏鸡, 于7 日龄经腹腔攻击鸡马立克氏病强毒(北京- 1 株) 血毒, 全部鸡只隔离饲养观察至60 日龄并作全群剖检。经测定: 非免疫攻毒组100% 发病,健康对照组全部阴性, 三批国产CVI988/Rispens 疫苗保护指数分别为90-0, 90-0, 93-3 , 进口商品苗保护率为93-3 。结果表明国产和进口CVI988/Rispens疫苗均能提供对MD 较高的免疫保护力, 国产疫苗的保护效果达到了国际同类产品的先进水平。  相似文献   

12.
The efficacies of trivalent (Md11/75C + SB-1 + HVT), bivalent (SB-1 + HVT), and turkey herpesvirus (HVT) vaccines against Marek's disease (MD) were compared in commercial broiler flocks in four trials involving 11 farm locations and 486,300 chickens. In all four trials, chickens receiving polyvalent vaccines had lower leukosis (MD) condemnation rates than chickens vaccinated with HVT alone; when data were summarized for each vaccine type in each trial, condemnation rates for the bivalent- or trivalent-vaccinated groups were 56-96% (mean 78%) lower than those for HVT-vaccinated chickens. Polyvalent vaccination was clearly mor efficacious than HVT in 8 of 11 individual farms, although it did not always reduce leukosis condemnations to acceptable levels. Body weights of chickens vaccinated with polyvalent vaccines did not differ consistently from those vaccinated with HVT. Chickens inoculated with the trivalent vaccine had slightly lower overall leukosis condemnation rates (0.24%) than those inoculated with the bivalent vaccine (0.45%) in trials 1-3, where direct comparisons were made. Bivalent vaccines containing either 1,500 or 200 plaque-forming units of SB-1 virus were equally effective; thus, HVT may need to be supplemented with only small amounts of SB-1 to obtain the benefits of protective synergism. SB-1 virus did not appear to carry over from polyvalent-vaccinated flocks to subsequent HVT-vaccinated flocks in the same houses, even when old litter was used.  相似文献   

13.
An enzyme-linked immunosorbent assay (ELISA) was applied to evaluate the antibody response of commercial White Leghorn chickens to vaccination against Marek's disease (MD) at hatch (day 0) with serotype-1 (Rispens), -2 (SB-1), or -3 (turkey herpesvirus, HVT) vaccine virus and to challenge on day 21 with MD virus. Antigens for the test were whole chicken embryo fibroblast cells infected with Rispens, SB-1, or HVT. The chickens were progeny of stock that had been vaccinated with HVT, and on day 21 the nonvaccinated group had higher levels of maternal antibodies to HVT than to other antigens (P < 0.05). Only SB-1 vaccine had induced antibodies by day 21, and this was detected only against homologous antigens. On day 49, all three vaccines had induced higher levels of antibodies to homologous than to heterologous antigens. Marek's Disease virus (MDV) induced antibodies to all three antigens, but challenging vaccinated chicks did not significantly increase levels of antibodies on day 81 to any of the three antigens. It was concluded that an ELISA using whole cells as antigens would have potential value for monitoring the antibody response induced by MD vaccines and virulent MDV.  相似文献   

14.
R L Witter 《Avian diseases》1987,31(4):752-765
Attempts were made, through selection of optimum viral strains, to develop improved vaccines against Marek's disease (MD). Seven attenuated serotype 1 strains and 22 avirulent serotype 2 strains, both alone and in combination with the FC126 strain of serotype 3, were screened for protective efficacy against challenge with virulent and very virulent MD viral strains. The three viruses selected as most promising were evaluated alone and in various combinations and compared with commercially available vaccines, including FC126, bivalent (FC126 + SB-1), and CV1988/C, in 12 separate assays. Two of these new viruses--301B/1 (serotype 2) and Md11/75C/R2 (serotype 1)--were exceptionally protective compared with prototype vaccine strains. Four new monovalent and polyvalent vaccines based on these two isolates protected chickens better than FC126 alone or CV1988/C alone. Three of these new vaccines provided better protection than the bivalent (FC126 + SB-1) vaccine. Protective synergism was noted commonly between viruses of serotypes 2 and 3 but only sporadically between serotypes 1 and 2 or between serotypes 1 and 3. Strain CVI988/C was protective but was no better than FC126 alone, and it was less effective than bivalent (FC126 + SB-1) vaccine, even when used as a bivalent vaccine with FC126 or SB-1.  相似文献   

15.
OBJECTIVE: To demonstrate the safety and efficacy of the Marek's Disease Virus-1 vaccine (strain BH 16) from field studies in comparison with the CVI 988 Rispens vaccine currently available in Australia. STUDY DESIGN: A small field trial was carried out on nine breeder flocks and a larger trial on 21 breeder flocks. All chickens were obtained from a commercial hatchery and each was vaccinated at hatch with cell-associated Herpes Virus of Turkeys vaccine. A group of chickens vaccinated with BH 16 vaccine was placed in one shed per property and the remainder were vaccinated with the Rispens vaccine and placed in the remaining sheds. At 25, 30, 35, and 40 weeks after hatch, the field veterinarian or farm manager examined all birds dying on two consecutive days in the designated placement sheds. RESULTS: In the small trial there was a significantly lower incidence of MD in birds vaccinated with the MDV-1 vaccine compared with the Rispens vaccine (P < 0.001). In a larger trial there was no difference in the incidence of MD between the treatment groups, due possibly to a lower rate of natural challenge. Egg production results and average weekly mortality results for both groups were similar. CONCLUSION: The present study describes an attenuated type 1 MD vaccine which is at least equivalent to a vaccine derived from the CVI 988 Rispens strain in terms of safety and efficacy when used in combination with HVT vaccine.  相似文献   

16.
J M Sharma 《Avian diseases》1987,31(3):570-576
Several oncogenic and non-oncogenic isolates of Marek's disease virus (MDV) were inoculated into embryonated eggs on embryonation day (ED) 16 to 18, and embryos or chicks hatching from inoculated eggs were examined for infectious virus and viral internal antigen (VIA) in lymphoid organs. There was no evidence of extensive replication of MDV in any of the embryonic tissues examined. Levels of VIA peaked 4-5 days after chicks hatched. This indicated that MDV remained inactive during embryonation and did not initiate pathogenic events until chicks hatched. Because HVT replicated rapidly in the embryo but MDV did not, in ovo inoculation of HVT simultaneously with oncogenic MDV or several days after MDV resulted in significant protection (P less than 0.025) of hatched chicks against Marek's disease (MD). Little protection was obtained if HVT was given simultaneously with MDV or after MDV to chicks already hatched. The relative susceptibility of the embryo to extensive replication of the vaccine virus but not the challenge virus apparently accounted for protection against MD in chicks hatching from dually infected eggs.  相似文献   

17.
本试验用北京市农林科学院畜牧兽医研究所制备的CVI988/Rispens疫苗和进口的CVI988/Rispens疫苗免疫1日龄来航鸡,7日龄以MDV北京-1株血毒进行攻击,60日龄全群剖检。经免疫效力试验两次测定,3批北京所制备的CVI98Rispens疫苗产品保护指数分别为试验的90.0、90.0、93.3和试验(2)的100.0、100.0、94.5与进口商品CVI/988Rispens苗的保  相似文献   

18.
The pathogenicity of Marek's disease (MD) strain CVI-988 vaccine, eight plaque-purified preparations originating from this strain, and the vaccine HVT FC126 (based on herpesvirus of turkeys) was determined by intramuscular administration of high virus doses to day-old specific-pathogen-free Rhode Island Red (RIR) chickens, which are extremely MD-susceptible. Paralysis and neuritis were observed in 88% of RIR chickens inoculated with MDV CVI-988 at the cell-passage level of the commercial vaccine. HVT FC126 caused paralysis in two of 39 RIR chickens tested, of which one had an endoneural lymphoma, and another three had endoneural inflammation. Five plaque-purified MDV CVI-988 virus preparations at various cell-culture-passage levels caused no lesions. Of another three clones, two caused inflammatory B-type lesions in the nerves of 1/10 chickens, and the third clone caused inflammatory nonneoplastic MD lesions in the liver of 1/11 chickens.  相似文献   

19.
Marek's disease virus (MDV) vaccines of serotypes 1 and 2 administered in 18-day-old embryonated eggs induced better protection against post-hatch challenge at 3 days with virulent MDV than vaccines given at hatch. Embryonal vaccination with a polyvalent vaccine containing equal quantities of serotypes 1 and 2 of MDV and serotype 3 virus (turkey herpesvirus, HVT) was also significantly more effective than post-hatch vaccination. These and earlier results indicate that protective efficacy of single or combined Marek's disease vaccine serotypes against post-hatch challenge at 3 days can be substantially improved if the vaccines are injected into 18-day embryos rather than at hatch. Injection of vaccines of serotypes 1 or 2 into embryonated eggs or hatched chicks did not cause detectable gross or microscopic lesions in chickens. Vaccine viruses of serotypes 1 and 2 could be isolated from spleen cells of chickens 1 week post-vaccination, and the titer of recoverable viruses was higher in chickens that received the vaccines at the 18th day of embryonation than in chickens vaccinated at hatch. Although embryo vaccination with HVT usually provided better protection than post-hatch vaccination against early post-hatch challenge with variant pathotypes of MDV, the protection was poor regardless of vaccination protocol. If challenge with variant pathotypes of MDV was delayed until embryonally or post-hatch HVT-vaccinated chickens were 21 days of age, protection of chickens by HVT was not enhanced. Thus, resistance induced by embryonal vaccination with HVT was qualitatively similar to that induced by post-hatch vaccination with this virus.  相似文献   

20.
Field trials with a bivalent vaccine (HVT and SB-1) against Marek's disease   总被引:3,自引:0,他引:3  
White leghorn chickens on five farms were given a bivalent Marek's disease (MD) vaccine consisting of turkey herpesvirus (HVT) and SB-1 (a nononcogenic MD virus); other chickens received only HVT. The farms had histories of "vaccination failures," presumably owing to an exceptionally virulent challenge MD virus. The bivalent vaccine uniformly protected chickens better than HVT alone between 12 and 16-20 weeks of age, when serious MD losses occurred. During that period, total mortality in groups given both viruses ranged from 0.39 to 1.26% (mean 0.86%), whereas that in HVT-vaccinated groups not exposed to SB-1 varied from 1.92 to 7.44% (mean 3.43%). Chickens in pens or rows with close contact to those given bivalent vaccine also had low MD mortality rates (0.46-1.06%, mean 0.77%), probably from the spread of SB-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号