首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
溎彦 《海洋渔业》1981,(3):9-10
利用紫菜自由丝状体培育紫菜苗种这项新技术,日本开始研究于六十年代,我国则开始于七十年代,且进展较快,已开始应用于生产。但仍有不少问题有待进一步解决。例如缩光不但能促进贝壳培养的丝状体膨大藻丝的形成,而且也同样能明显地促进自由丝状体膨大藻丝的大量形成。可是在缩光条件下,由自由丝状体形成的膨大藻丝细胞(以下简称膨胞),其内容物普遍发生变空现象。  相似文献   

2.
坛紫菜丝状体种质保存技术的研究   总被引:3,自引:0,他引:3  
陈昌生 《水产学报》2005,29(6):745-750
采用液体培养基、固体培养基以及胶囊化冷冻法保存坛紫菜丝状体种质,探讨了不同保存条件对其生存的影响。结果表明:液体培养基保存丝状体,在低温5℃,培育30d时,藻丝的增重率为-0.67%;温度为10℃,有利于延长更换培养液的时间,即使120d不换培养液,丝状体也能正常生长。固体培养基保存丝状体,在5℃时固体平板上的细菌生长慢、数量少,但藻丝无法适应低温条件,逐渐死亡;丝状体在10℃固体平板上生长缓慢,但保存100d以上仍然正常生长,达到了长期保存的目的:在胶囊化低温保存中,丝状体存活率较高,而且随着保存时间的延长,成活率没有显著的变化,保持在75%以上。  相似文献   

3.
坛紫菜品系间杂交分离色素突变体及其特性的初步研究   总被引:12,自引:0,他引:12  
以野生选育的坛紫菜(Porphyra haitanensis)为母本,诱变选育全棕红的品系为父本进行杂交实验,从杂交子代大量叶片中,筛选出1株褐黄色素突变体、1株翠绿色与野生色相嵌的嵌合体和1株褐绿色与野生色相嵌的嵌合体。通过酶法分离突变体的营养细胞,单性生殖获得丝状体;分别使丝状体成熟并放散壳孢子,然后单株培养和筛选获得褐黄、翠绿和褐绿色子代叶状体。实验进行50 d。结果:(1)褐黄色突变体藻蓝蛋白和别藻蓝蛋白含量低;孢子囊枝的细胞较小,且大量形成时间比亲本晚15 d;幼苗培养初期日平均生长量仅为(1.22±0.28)cm,当叶片长到60 cm左右时生长优势逐步凸显,日平均生长量可达(7.50±1.18)cm;(2)翠绿色丝状体容易成熟,发育方式特殊,营养藻丝不经过藻丝加粗阶段,直接由球形细胞发育成孢子囊枝和壳孢子囊;翠绿色叶状体藻红蛋白含量低,仅有(5.513 0±1.049 6)mg/g(干品);叶状体生长快速,60 cm长的藻体日平均生长量高达(11.95±2.33)cm;(3)褐绿色突变体藻蓝蛋白、别藻蓝蛋白和藻红蛋白这3种色素蛋白和叶绿素的含量均较低;藻丝细胞短且细,叶状体生长速度较慢。  相似文献   

4.
紫菜人工育苗有三种方式,即贝壳丝状体人工育苗、自由丝状体直接采苗、体细胞有苗。目前生产上应用的是贝壳丝状体人工育苗。据笔者实践,并结合有关专业技术人员的经验和教训,简述对紫菜贝壳丝状体人工育苗的几点看法。1影响贝壳丝状体生长的主要因素有温度、光照、营养盐比重、pH值等。在生产管理中必须随时注意这些因素的变化,使之符合藻丝各生长阶段的要求1.1温度的控制9月份温度变化较大,特别是“白露”降温季节池内水温低于22.5℃时苗易早熟,并自然放散,出现“跑苗”现象,影响了采苗生产。1993年我市采苗单位就遇到了这样的…  相似文献   

5.
温度对四种淡水颤藻目丝状藻体生长的影响   总被引:2,自引:0,他引:2  
在实验室条件下研究温度对4种颤藻目丝状藻体:皮质颤藻,尖细颤藻,蛇形颤藻及坑形细鞘丝藻生长的影响.藻体在持续光照下培养于BG11培养基中,通过测定叶绿素a含量来显示藻体的生长状况.实验结果,皮质颤藻与坑形细鞘丝藻生长的最适温度是30℃,尖细颤藻、蛇形颤藻的生长最适温度是35℃.  相似文献   

6.
紫菜栽培生产中的苗种培育,其实质是对紫菜贝壳丝状体生长发育进行调控管理的过程 ,包括了由果孢子发育到丝状藻丝生长、壳孢子形成与放散的管理。近年来,在紫菜贝壳丝 状体培育中普遍遇到了果孢子采苗缺种藻、病害及壳孢子采苗不顺利等问题。本文根据多年 的研究与生产实践,针对上述问题所应采取的技术措施及方法作一介绍。1 果孢子采苗  选择优良品系,获取良种种质进行种苗培育,是紫菜良种化栽培的关键之一。目前条 斑紫菜果孢子采苗有两种途径:由成熟的叶状体(种藻)获取果孢子接种贝壳;由自由丝状体 接种贝壳。1.1 果孢子接种…  相似文献   

7.
二氧化锗对坛紫菜自由丝状体生长发育的影响   总被引:2,自引:2,他引:2  
马家海  刘青 《水产学报》1989,13(1):36-41,69
本文研究了二氧化锗(GeO_2)对我国特有的坛紫菜自由丝状体的生长发育,及对一些附生性硅藻类和绿藻的影响,论证了二氧化锗在本实验浓度范围内,对坛紫菜自由丝状体无叨显毒理影响,而能抑制一些附生性硅藻和绿藻的生长;并探讨了二氧化锗对硅藻、绿藻的毒性机理。由于在培养坛紫菜自由丝状体时很容易附生硅藻 因而研究结果将为坛紫莱自由丝状体及其他藻种的培养和保存提供依据。  相似文献   

8.
紫菜养殖中绿藻的综合防治   总被引:1,自引:0,他引:1  
绿藻滋生是紫菜生产中颇棘手的问题之一。绿藻是笼统的说法,它包括浒苔(Enteromorpha)、绿丝藻(Chlorodesmis)。它们中有些种类与紫菜同步生长。春夏季节,紫菜丝状藻丝在贝壳内生长阶段,绿藻也能钻入贝壳生长。秋末冬初季节,紫菜叶  相似文献   

9.
通过探讨半叶紫菜华北变种(Pyropia katadae var. hemiphylla)丝状体在不同铁浓度下的相对生长速率(RGR)、孢子囊枝形成率及若干生理生化指标(叶绿素荧光参数、活性氧含量、抗氧化剂含量、抗氧化酶活性等)的变化规律,以期获得适宜其生长及孢子囊枝形成的铁浓度范围,并初步揭示其在不同铁浓度下的生理生化变化特征。研究结果显示,在0.040 mg/L铁浓度下,半叶紫菜华北变种营养藻丝有较高的RGR、光系统Ⅱ最大量子产量(Fv/Fm)和调节性能量耗散的量子产量[Y(NPQ)],表明此铁浓度可促进营养藻丝的光能转换效率和光保护能力的提高,并利于其生长。高铁浓度(0.160~0.800 mg/L)组的营养藻丝RGR显著降低,而贝壳丝状体孢子囊枝形成率显著增加,表明高铁浓度抑制了藻丝的营养生长,而促进了藻丝营养生长状态向发育状态的转变。贝壳丝状体的孢子囊枝比例与Fv/Fm呈显著的正相关关系,表明营养藻丝向孢子囊枝转变后,贝壳丝状体的光能转换效率显著提高。铁的添加使藻丝中活性氧(ROS)含量显著增加,而类胡萝卜素和脯氨酸含量以及抗氧化酶[超氧化物歧化酶(SOD)、过氧化物酶(POD)、谷胱甘肽还原酶(GR)]活力与ROS含量均呈显著正相关关系,表明藻丝的抗氧化系统可对铁介导的过量ROS作出积极应答,以平衡ROS的产生和清除。本研究可为半叶紫菜华北变种的苗种培育提供理论依据。  相似文献   

10.
以条斑紫菜(Pyropia yezoensis)丝状体为材料,研究温度(15℃、25℃和35℃)与光强[40、100和300 μmol/(m2·s)]对营养藻丝和孢子囊枝光合生理的影响。结果显示,15℃和25℃实验组中,营养藻丝和孢子囊枝的PSⅡ原初光能转化效率(Fv/Fm)、总光合速率(Pg)和净光合速率(Pn)均随光强升高而降低。在300 μmol/(m2·s)下,营养藻丝的Fv/Fm和Pg趋于零,Pn为负值。在25℃、40 μmol/(m2·s)下,营养藻丝的呼吸耗氧速率(Rd)在实验周期内一直显著高于孢子囊枝;其他组则随胁迫时间延长,二者间Rd差距逐渐缩小。总体上,在相同条件下,所测孢子囊枝Fv/Fm、Pg和Pn均显著高于营养藻丝,而Rd与营养藻丝相当。35℃实验组在6 h时,孢子囊枝的Fv/Fm显著高于营养藻丝,但随光强升高直线下降(P<0.05),其他组Fv/Fm均趋于0。在40、100 μmol/(m2·s)下,6 h时,孢子囊枝Pg和Rd高于营养藻丝或二者相当;在300 μmol/(m2·s)下,后期营养藻丝Pn和Rd高于孢子囊枝,但在整个实验周期,二者的Pn均为负值。总体上,营养藻丝和孢子囊枝的Fv/Fm、Pg和Pn均显著低于(多数趋于0或负值)15℃和25℃,而35℃的Rd高于15℃和25℃;后期,2种藻丝均出现发绿变白,甚至死亡现象。研究表明,在条斑紫菜营养藻丝的光合作用被严重抑制的光强、温度条件下,孢子囊枝仍具备相对高的光合活力,说明在温度和光强升高到不利于营养藻丝生长的情况下,刺激藻丝转向了孢子囊枝发育阶段,后者具备适应更高温度和光照的能力。  相似文献   

11.
Four experiments were performed to determine the effects of light intensity on the growth and survival of sea bass larvae; two experiments dealt with the photoperiod and two with the combined effects of light intensity and the photoperiod. Recently hatched larvae from the same spawning were used within each experiment.The light intensity experiments show that there is better growth but poorer survival at higher light intensities. The photoperiod experiments show a better growth at 18 h photoperiod and a better survival at 12 h exposure to light. The study of the combined effects of light intensity and photoperiod confirmed the hypothesis that strong light intensities are lethal to newly hatched larvae (with no pigmentation). If the light intensity is lowered during the first week, the best rearing conditions were found to be continuous lighting relative to survival rate, and 14–16 h photoperiod relative to growth.  相似文献   

12.
The combined effect of temperature and photoperiod on the growth of juvenile Atlantic halibut Hippoglossus hippoglossus (initial weight 11.6 g) was investigated under different temperature (6 °C and 12 °C) and photoperiod (continuous light and simulated natural photoperiod) combinations by studying the effects on fish weight, specific growth rate (SGR), feed consumption (F%), feed conversion (FCE) and oxygen consumption and ammonia excretion under routine and fasting conditions. SGR was greater at the higher temperature, and growth was faster under continuous light than under natural photoperiod, irrespective of temperature, SGRs being 0.83% and 0.98%, and 1.61% and 1.71% at 6 °C and 12 °C respectively. The weight data revealed a significant interaction between temperature and light, and provided evidence of a stronger growth‐enhancing effect of continuous light at the lower temperature. F% increased with temperature but was independent of photoperiod, whereas FCE was higher among fish exposed to continuous light, irrespective of temperature. Independently of photoperiod, oxygen consumption and ammonia excretion increased with temperature, but the differences in these rates in relation to photoperiod became more pronounced at the lower temperature, where continuous light gave the highest rates. Higher oxygen consumption during darkness suggested that light may suppress activity in halibut. It was proposed that reduced activity and anabolic effects of photoperiod contribute to explain the increased growth and growth efficiency in fish subjected to continuous light.  相似文献   

13.
Abstract. Immature 1-sea-winter (ISW) Atlantic salmon, Salmo salar L. were reared in sea cages under natural light or constant additional light from 15 October 1987 to 24 June 1988 when the fish were fin clipped according to photoperiod and reared in a common cage under natural photoperiod until maturation. The group subjected to constant additional light (LL) had an overall increase in growth rate, which indicates a seasonal growth pattern influenced by photoperiod. An advanced ovulation time in the LL group gives further support to the hypothesis that endogenous rhythms controlling growth rate have been influenced. Incidence of maturation was lowest in the LL group.  相似文献   

14.
To investigate the interactive effects of temperature and photoperiod on the growth performance, feeding parameters and muscle growth dynamics in juvenile Atlantic halibut (Hippoglossus hippoglossus L.), a total of 1212 juvenile halibut, including 383 tagged fish (mean initial weight of tagged individuals: 17.6 ± 0.3 g SE), were reared under a simulated natural light regime for Bergen (60°25′N) or continuous light at 9, 12 and 15 °C from 3 December 2007 until 11 March 2008. The mean weight and growth rate were significantly higher at 12 and 15 °C than at 9 °C. In addition, significantly higher mean weight and growth rate were observed in halibut reared under continuous light at a low temperature, indicating an interactive effect of temperature and photoperiod on growth performance. No effect of temperature or photoperiod was found with respect to feed conversion efficiency, whereas a higher feed consumption at increasing temperature and a higher overall daily feeding rate at continuous light at a low temperature were observed. Indications of continuous light having a stronger effect at low temperatures on muscle growth dynamics were found. A difference in the size class distribution of fibre diameter was found between photoperiod treatments at 9 °C, suggesting that continuous light resulted in elevated hypertrophic growth at low temperature. This may suggest that the increased growth rate found at continuous light at 9 °C may be a result of hypertrophic growth in juvenile halibut.  相似文献   

15.
In order to study the possible interactive effects of salinity and photoperiod on growth, feed conversion, and blood chemistry in juvenile halibut, 2,604 (initial mean weight 26.8 g ± 0.2 SEM) juvenile halibut were exposed to six different combinations of salinities (13, 21, or 27‰) and photoperiods [continuous light, C and simulated natural photoperiod (65°N), SNP] for 129 days. Improved (10–20%) growth and 10–24% higher feed conversion efficiency were observed at low and intermediate salinities compared to the high salinity groups. Improved feed conversion efficiency (20%) and temporary growth enhancing effects (10%) of continuous light were observed, but effects faded out as day length in the simulated natural photoperiod group increased. No interactive effects of photoperiod and salinity on growth feed conversion or measured blood chemistry variables (blood sodium, pH level, haematocrit, bicarbonate content, and total carbon dioxide). It is suggested that juvenile Atlantic halibut should be reared at low and intermediate salinities and at continuous light, as this will improve growth and increase feed conversion efficiency.  相似文献   

16.
为探讨光照对纤细裸藻的生长以及光合色素含量的影响,将纤细裸藻分别置于不同光照度(0、1500、3000、4500、6000 lx)、光照周期(16L:8D、14L:10D、12L:12D、10L:14D、8L:16D)、光质(绿光495~530 nm、蓝光450~480 nm、红光615~650 nm、白光450~46...  相似文献   

17.
Rearing winter flounder (Pseudopleuronectes americanus) in captivity for aquaculture and stock enhancement is a viable option to relieve fishing pressure and aid in ongoing recovery strategies. The objective of this study was to determine the effect of photoperiod on growth and survival of young-of-the-year juvenile winter flounder. Juveniles were reared for 12 weeks at three photoperiods: 24 light/0 dark, 18 light/6 dark, and 12 light/12 dark. Twenty fish were stocked into each of 18 enclosures with six enclosures per treatment. Fish in all treatments were fed to satiation every four hours. All fish were imaged at stocking and at three-week intervals. Growth was measured as changes in standard length (SL) and body area (BA). As early as Week 3, fish in all treatments were significantly different in terms of SL and BA. In general, fish grown under continuous 24 light were the largest and fish in the 12 light/12 dark regime were the smallest. Maximum specific growth rates of 0.41 % per day for SL and 0.83 % per day for BA were achieved in the 24 light/0 dark photoperiod. Average mortality rate over the course of the experiment was 9.17 % and there were no significant differences in the number of dead fish among the treatments. In conclusion, this study demonstrates that a longer day coupled with available food will increase growth rate for winter flounder juveniles, without affecting survival. By extending the photoperiod, growth in young-of-the year winter flounder is accelerated, bringing the growth rate of winter flounder close to that of other commercially produced flatfish.  相似文献   

18.
The effects of an artificially prolonged photoperiod on growth, survival rate, colouration, and sexual maturation in brook trout Salvelinus fontinalis during pre‐ and post‐spawning periods from 21 June to 06 November were investigated. Fish of mean initial weight ?150 g were reared at ambient photoperiod as well as with an artificially prolonged photoperiod produced by either a light‐emitting diode or a metal‐halide light. The fish groups subjected to a prolonged period of artificial light grew significantly larger and had a higher survival rate (p < 0.05), regardless of sex, and showed lower occurrence of fungal disease compared to controls reared in the natural photoperiod. We found a significantly higher number of sexually mature fish in the control groups compared with experimental groups. The increased photoperiod effectively delayed gonad development and increased somatic growth in both male and female brook trout, and also increased resistance to fungal disease. The increased photoperiod produced an observable difference in fish colouration, with control groups exhibiting more intensive spawning colouration.  相似文献   

19.
The effect of extended photoperiods on growth and age at first maturity was investigated in 166 (79 females and 87 males) individually tagged Atlantic halibut. The halibut were reared at 11°C on four different light regimes from 10 February to 6 July 1996: simulated natural photoperiod, (LDN), continuous light (LD24:0), constant 8 h light and 16 h darkness (LD8:16) and LD8:16 switched to continuous light on 4 May 1996 (LD8:16–24:0). From 6 July 1996 to 9 February 1998 the LD24:0 and LD8:16–24:0 were reared together under continuous light and the LDN and LD8:16 together under natural photoperiod. Juveniles subjected to continuous light exhibited faster growth than those experiencing a natural photoperiod or a constant short day. Moreover, the results suggest an overall growth enhancing effect of continuous light in females, but not in males. No females matured during the trial, but the proportion of mature males differed between the photoperiod groups, with significantly fewer males maturing in groups reared at continuous light. Independent of photoperiod regime and maturation status, females were significantly bigger than males from 14 April 1997 onwards. Immature males were bigger than maturing males from 23 March 1996 onwards. As continuous light reduced maturation at age 2+ in males, this could be used to reduce precocious maturation in males.  相似文献   

20.
The effect of extended photoperiods on growth and age at first maturity was investigated in 166 (79 females and 87 males) individually tagged Atlantic halibut Hippoglossus hippoglossus and in 114 (50 females and 64 males) individually tagged turbot Scophthalmus maximus. The halibut were reared at 11 °C on four different light regimes from 10 February to 6 July 1996: simulated natural photoperiod, (LDN), continuous light (LD24:0), constant 8 h light and 16 h darkness (LD8:16) and LD8:16 switched to continuous light 4 May 1996 (LD8:16–24:0). From 6 July 1996 to 9 February 1998 the LD24:0 and LD8:16–24:0 were reared together under continuous light and the LDN and LD8:16 together under natural photoperiod. The turbot were reared at 16 °C on three different light regimes: constant light (LD24:0), 16 h light:8 h darkness (LD16:8), or simulated natural photoperiod (LDN). After 6 months on the different photoperiods, the turbot was reared together on LDN for approximately 12 months until first maturation. Juveniles subjected to continuous light (halibut) or extended photoperiods (halibut and turbot) exhibited faster growth than those experiencing a natural photoperiod or a constant short day. Moreover, when the photoperiod increased naturally with day-length or when fish were abruptly switched from being reared on short-day conditions to continuous light, a subsequent increase in growth rate was observed. This growth enhancing effect of extended photoperiods was more apparent on a short time scale in Atlantic halibut than in turbot, but both species show significant long-term effects of extended photoperiods in the form of enhanced growth. In both species lower maturation of males was seen in groups exposed to extended or continuous light compared to LDN and this could be used to reduce precocious maturation in males leading to overall increase in somatic growth. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号