首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Five models for the consumption of coarse woody debris or woody fuels with a diameter larger than 0.6 cm were assessed for application in Australian southern eucalypt forest fires including: CONSUME models for (1) activity fuels, (2) natural western woody and (3) natural southern woody fuels, (4) the BURNUP model and (5) the recommendation by the Australian National Carbon Accounting System which assumes 50% woody fuel consumption. These models were assessed using field data collected as part of the woody fuel consumption project (WFCP) in south-west Western Australia and northern-central Victoria. Three additional datasets were also sourced to increase variability in forest type, fuel complex and fire characteristics. These datasets comprised data from south-west Western Australia collected as part of Project Aquarius, the Warra Long Term Ecological Research site in Tasmania and Tumbarumba in south-eastern New South Wales. Combined the dataset represents a range of fire behaviour characteristic of prescribed burning conditions with a maximum fireline intensity of almost 4000 kW m−1.  相似文献   

2.
Fire managers and researchers need information on fuel deposition rates to estimate future changes in fuel bed characteristics, determine when forests transition to another fire behavior fuel model, estimate future changes in fuel bed characteristics, and parameterize and validate ecosystem process models. This information is lacking for many ecosystems including the Sierra Nevada in California, USA. We investigated fuel deposition rates and stand characteristics of seven montane and four subalpine conifers in the Sierra Nevada. We collected foliage, miscellaneous bark and crown fragments, cones, and woody fuel classes from four replicate plots each in four stem diameter size classes for each species, for a total of 176 sampling sites. We used these data to develop predictive equations for each fuel class and diameter size class of each species based on stem and crown characteristics. There were consistent species and diameter class differences in the annual amount of foliage and fragments deposited. Foliage deposition rates ranged from just over 50 g m−2 year−1 in small diameter mountain hemlock stands to ∼300 g m−2 year−1 for the three largest diameter classes of giant sequoia. The deposition rate for most woody fuel classes increased from the smallest diameter class stands to the largest diameter class stands. Woody fuel deposition rates varied among species as well. The rates for the smallest woody fuels ranged from 0.8 g m−2 year−1 for small diameter stands of Jeffrey pine to 126.9 g m−2 year−1 for very large diameter stands of mountain hemlock. Crown height and live crown ratio were the best predictors of fuel deposition rates for most fuel classes and species. Both characteristics reflect the amount of crown biomass including foliage and woody fuels. Relationships established in this study allow predictions of fuel loads to be made on a stand basis for each of these species under current and possible future conditions. These predictions can be used to estimate fuel treatment longevity, assist in determining fuel model transitions, and predict future changes in fuel bed characteristics.  相似文献   

3.
4.
Although wildfires are occurring frequently in the pine–oak forests in the Sierra Madre Oriental (northeastern Mexico), data on post-fire succession and forest structure are still rare. Our objectives were to (1) assess the changes in woody plant species composition after fire and to (2) to relate successional patterns to environmental variability. Based on their fire history 23 plots were selected in the Parque Ecológico Chipinque (PECH). Changes in forest structure across the chronosequence of burned stands were deduced from density, height and diameter measurements of trees and shrubs (>5 cm in diameter) in all plots of 1000 m2. Differences in woody plant species composition among the plots were evaluated using Shannon evenness measure and the Whittaker's measure and by Hierarchical cluster analysis and Detrended Correspondence Analysis. Hierarchical cluster analysis showed a high similarity among all recently burned plots, independed of the aspect. Multivariate analysis showed that local environmental factors, including time since fire, continue to structure species composition. Oak species (mainly Quercus rysophylla) resprouted successfully after fire and dominated young post-fire stands. Pine species (Pinus pseudotrobus and Pinus teocote) only appeared 18 years after fire and were the dominating species in mature stands (62 years after fire). In contrast, woody plant species composition in older stands tended also to be influenced by factors such as aspect and by the potential solar radiation (PSR) during the growing season. The results demonstrate that in the PECH, natural regeneration is sufficient and woody plant species composition will be similar to pre-fire conditions after 60 years of succession. We conclude that the park managers should consider incorporating natural disturbance regimes into their management practices.  相似文献   

5.
Successful management of forest fire risk in the Northeastern China boreal forest ecosystem often involves trade-offs between fire dynamics, fire hazard reduction, and fiscal input. We used the LANDIS model to study the effects of alternative fuel reduction strategies on fire dynamics and analyzed cost effectiveness for each fuel reduction strategy based on cost–benefit theory. Five levels of fuel treatment area (2, 4, 6, 8, and 10% for each decade) and two fuel treatment types (prescribed burning [PB] and mechanical treatments in combination with prescribed fire [PR]) under current fire suppression simulated by LANDIS were compared in a 5 × 2 factorial design over a 300-year period. The results showed that PR scenarios are more effective at reducing the occurrence and burn area of catastrophic fires than PB scenarios. In addition, area burned by high intensity fire can be tremendously reduced by increasing low intensity fires with a higher level of treatment area under the various PR scenarios. The cost effectiveness of alternative fuel reduction strategies is strongly dependent on treatment area. In general, PB scenarios will be more cost effective in larger treatment areas and PR scenarios in smaller. We recommend mechanical treatments in combination with prescribed fire, with 4% of landscape treated in each decade (PR04) to be the optimal fuel reduction strategy in the study area based on risk control and cost efficiency analysis. However, the most challenging work in China is to make local forest policy makers and land managers accept the ecological function of fire on forest ecosystems.  相似文献   

6.
Wildfires are a recurrent disturbance in the Mediterranean Basin. However, managers from this region are confronted with a lack of information on the effects of fire on most woody species, which is required for defining sustainable forest management strategies. Following a large wildfire in central Portugal (2003), we surveyed the area during the first year and assessed the vegetative condition of 1040 burned trees from 11 different species. Among those trees, 755 individuals were selected and monitored annually for 4 years. At the end of the study, almost all the broadleaved trees survived, while most coniferous died. In spite of the low mortality observed in broadleaves, most were top-killed and regenerated only from basal resprouts, which implies a slow recovering process. Quercus suber, however, showed vigorous post-fire crown resprouting and was the most resilient species. We fitted logistic regression models to predict the probability of individual tree mortality and top-kill from fire injury indicators and tree characteristics. Besides the differences between the two main functional groups (coniferous, broadleaved), bole char height and crown volume scorched or consumed were important predictors of tree responses. Additionally, the main factor determining crown mortality on broadleaved species was bark thickness. The selected models performed well when tested with independent data obtained on four other wildfires. These models have several potential applications and can be useful to managers making pre-fire or post-fire decisions in mixed forest stands in the western Mediterranean Basin.  相似文献   

7.
8.
林火碳排放研究进展   总被引:2,自引:0,他引:2  
火是森林生态系统主要的干扰因子, 森林火灾的频繁发生不仅使森林生态系统遭到破坏, 同时也造成了含碳温室气体的大量释放。综述了火烧面积、森林可燃物以及燃烧效率等主要因子对森林火灾排放碳量估计的影响, 分析了这一领域未来研究发展趋势。大量研究表明:1)卫星遥感是估测大尺度上森林过火面积的主要手段, 随着高分辨率卫星的应用, 森林火灾面积的估计精度不断得到提高。目前的研究主要集中于大尺度上林火面积的估计和估算方法的改进。2)遥感数据是目前估计大尺度可燃物燃烧量的有效手段, 利用遥感数据的同时结合有效可燃物计算模型, 运用多元线性与非线性分析结合等方法提高对可燃物燃烧量的估计。3)燃烧效率是决定可燃物消耗量的主要因子, 也是估计森林火灾释放含碳气体量的关键。未来的研究是利用高分辨率的遥感数据, 结合复杂的可燃物计算模型, 更精确地估计林火碳排放。  相似文献   

9.
Concern over uncontrollable wildfire in pinyon–juniper woodlands has led public land managers in the southwestern United States to seek approaches for mitigating wildfire hazard, yet little information is available concerning effectiveness and ecological responses of alternative treatments. We established a randomized block experiment at a pinyon–juniper site in northern Arizona and tested effects of no treatment (Control), thinning only (Thin), prescribed fire only (Burn), and thinning followed by prescribed fire (Thin + Burn) on overstory structure, hazardous fuels reduction, and woody understory responses. One year after implementation, mean trees per hectare (TPH) of Utah juniper (Juniperus osteosperma) and pinyon pine (Pinus edulis), and basal area (BA) of pinyon, were significantly (P < 0.05) less in Thin and Thin + Burn treatments than Control. Additionally, pinyon TPH was less in Burn than Control. Quadratic mean diameter was significantly greater in Thin and Thin + Burn than in Control and Burn treatments. Thinning shifted diameter distributions from uneven- to even-sized. Crown fuel load (CFL) of both pinyon and juniper was significantly lower in Thin and Thin + Burn compared with Control and Burn treatments. Thin, Burn, and Thin + Burn treatments resulted in significantly greater 1-h surface fuel loads compared with the Control. The Thin treatment resulted in significantly greater mean load of the 1000-h fuel class compared with Burn and Control treatments, but did not differ from Thin + Burn. Forest floor Oi (litter) layer was not significantly affected by the treatments but Oe + Oa (duff) depth was significantly less in the Burn treatment compared with Thin and Control. Live shrubs and tree regeneration showed no differences among treatments. We concluded that thinning and thinning followed by prescribed fire were effective approaches for fuels reduction; however, resulting stand structures may be novel and outside the historical range of variability. Prescribed fire alone had minimal effects on structure and fuels reduction. Woody shrubs and tree regeneration in the understory suggested that these treatments may not have long-term deleterious ecological effects.  相似文献   

10.
11.
Fire in riparian areas has the potential to influence the functions riparian vegetation provides to streams and aquatic biota. However, there is little information on the effects of fire on riparian areas. The objectives of the present study were to: (i) determine how fire severity interacts with riparian topographic setting, micro-environmental conditions, and pre-fire community composition to control post-fire regeneration; (ii) determine how riparian regeneration patterns and controls change during early succession; and (iii) determine how critical riparian functions are influenced by and recover after fire. Study locations included the Biscuit Fire in southwestern Oregon and the B&B Complex Fire in the Cascade Mountain Range of west-central Oregon, USA. We measured post-fire woody species regeneration, and measured factors such as fire severity, pre-fire species composition, and stream size as potential factors associated with post-fire regeneration patterns. At a relatively coarse spatial scale, patterns in post-fire colonization were influenced by elevation. At finer spatial scales, both conifer- and hardwood-dominated riparian plant communities were self-replacing, suggesting that each community type tends to occur in specific ecological settings. Abundant post-fire regeneration in riparian areas and the self-replacement of hardwood- and conifer-dominated communities indicate high resilience of these disturbance-adapted plant communities.  相似文献   

12.
The Mediterranean basin is a fire-prone area and is expected to continue being so according to projected climate and socioeconomic changes. Sustainable exploitation of forest biomass could have a positive effect on wildfire hazard mitigation. A modelling approach was used to compare how four different Scenarios for biomass collection for energy use affect fire behaviour and potential burnt area at landscape level under extreme meteorological conditions in a typical Mediterranean Massif. A case study of Pinus halepensis stands in Valencia (Eastern Spain) was conducted. The FARSITE simulator was used to evaluate the burnt area and fire behaviour parameters. Simulations predicted a significant increase in the burnt area and the values of most fire behaviour parameters in a Scenario of rural abandonment, relative to the current situation. Biomass management through thinning reduced canopy bulk density; however, no differences in the values of the main fire behaviour parameters were detected. Thinning and understory clearing, including biomass collection in large shrub fuel model areas, significantly reduces fire hazard. Forest biomass sustainable harvesting for energy is expected to reduce fire hazard if management includes intense modification of fuel models, comprising management of shrub biomass at the landscape level. Strong modification of forest fuel models requires intensive silvicultural treatments. Therefore, forest biomass collection for energy in the Mediterranean basin reduces fire hazard only if both tree and shrub strata are managed at landscape level.  相似文献   

13.
云南松林内可燃物与计划烧除火行为的相关分析   总被引:1,自引:1,他引:0  
为了研究森林可燃物对林火的发生及发生后林火行为的影响程度,采用小样地调查方法对四川省西康磨盘林区的云南松(Pinus yunnanensisFranch)林内的可燃物及火行为进行调查,对标准地中的火蔓延速度、火强度、火焰高度进行相关性分析;对不同火强度下烧失率进行统计。试验结果表明:定期进行计划火烧,能减少可燃物积累,降低森林可燃性,具有良好的防火功能;在进行有计划的烧除林内枯枝落叶时,必须有效地控制火强度。  相似文献   

14.
Millions of people rely on savannas for ecosystem services, such as the provision of grazing and fuel wood, so it is important to determine the extent to which utilization affects woody vegetation resources. Using airborne LiDAR from the Carnegie Airborne Observatory (CAO), we quantified and compared tree canopy cover and height distributions between areas of contrasting management in the Lowveld savanna region of South Africa - a region connecting communal landscapes with heavy utilization (especially fuel wood harvesting) to fully protected public (Kruger National Park - KNP) and private reserves (SabiSand Game Reserve - SSGR) that conserve biodiversity. Differences in total woody vegetation cover and cover within functional height classes (1-2 m, 2-3 m, 3-5 m, 5-7 m and >7 m) were investigated between 7 sites located within (i) conservation areas (in KNP, SSGR), (ii) communal rangelands or (iii) cultivated fields in communal areas. The impact of human utilization on wood resources in the communal areas varied widely between sites. Heavy utilization on gabbro substrate greatly reduced total woody cover of the rangelands, while two other communal rangelands that were presumably less intensively utilised had double the total woody cover of conservation areas. Rangelands and fields in most of the communal sites had more vegetation cover in the 5-7 m and >7 m classes than most of the conservation sites, presumably due to the absence of elephants in communal rangelands and the active preservation of large fruiting trees. On granite substrates, which account for the majority of the study area, there was a 50% reduction in woody cover below 5 m in communal rangelands. Although large trees were clearly being conserved in communal rangelands and fields, there was a relatively low cover of vegetation below 5 m, which raise doubts about recruitment and long-term sustainability of the tree resources. These results in conjunction with other studies based on the CAO LiDAR data for experimental burn plots and large mammal exclosures in KNP, suggest that communal land use on granite substrates have a higher impact on the woody cover below 5 m than both elephants and fire.  相似文献   

15.
Modeling fire susceptibility in west central Alberta, Canada   总被引:1,自引:0,他引:1  
Strategic modification of forest vegetation has become increasingly popular as one of the few preemptive activities that land managers can undertake to reduce the likelihood that an area will be burned by a wildfire. Directed use of prescribed fire or harvest planning can lead to changes in the type and arrangement of forest vegetation across the landscape that, in turn, may reduce fire susceptibility across large areas. While among the few variables that fire managers can influence, fuel conditions are only one of many factors that determine fire susceptibility. Variations in weather and topography, in combination with fuels, determine which areas are more likely to burn under a given fire regime. An understanding of these combined factors is necessary to identify high fire susceptibility areas for prioritizing and evaluating strategic fuel management activities, as well as informing other fire management activities, such as community protection planning and strategic level allocation of fire suppression resources across a management area. We used repeated fire growth simulations, automated in the Burn-P3 landscape-fire simulation model, to assess spatial variations in fire susceptibility across a 2.4 million ha study area in the province of Alberta, Canada. The results were used to develop a Fire Susceptibility Index (FSI). Multivariate statistical analyses were used to identify the key factors that determine variation in FSI across the study area and to describe the spatial scale at which these variables influence fire susceptibility at a given location. A fuel management scenario was used to assess the impact of prescribed fire treatments on FSI. Results indicated that modeled fire susceptibility was strongly influenced by fuel composition, fuel arrangement, and topography. The likelihood of high or extreme FSI values at a given location was strongly associated with the percent of conifer forest within a 2-km radius, and with elevation and ignition patterns within a 5-km radius. Results indicated that prescribed fire treatments can be effective at reducing forest fire susceptibility in community protection zones and that simulation modeling is an effective means of evaluating spatial variation in landscape fire susceptibility.  相似文献   

16.
Fire is an important process in California closed-cone pine forests; however spatial variability in post-fire stand dynamics of these forests is poorly understood. The 1995 Vision Fire in Point Reyes National Seashore burned over 5000 ha, initiating vigorous Pinus muricata (bishop pine) regeneration in areas that were forested prior to the fire but also serving as a catalyst for forest expansion into other locales. We examined the post-fire stand structure of P. muricata forest 14 years after fire in newly established stands where the forest has expanded across the burn landscape to determine the important factors driving variability in density, basal area, tree size, and mortality. Additionally, we estimated the self-thinning line at this point in stand development and compared the size-density relationship in this forest to the theorized (−1.605) log-log slope of Reineke’s Rule, which relates maximum stand density to average tree size. Following the fire, post-fire P. muricata density in the expanded forest ranged from 500 to 8900 live stems ha−1 (median density = 1800 ha−1). Post-fire tree density and basal area declined with increasing distance to individual pre-fire trees, but showed little variation with other environmental covariates. Self-thinning (density-dependent mortality) was observed in nearly all stands with post-fire density >1800 stems ha−1, and post-fire P. muricata stands conformed to the size-density relationship predicted by Reineke’s Rule. This study demonstrates broad spatial variability in forest development following stand-replacing fires in California closed-cone pine forests, and highlights the importance of isolated pre-fire trees as drivers of stand establishment and development in serotinous conifers.  相似文献   

17.
森林火灾是全球范围内最严重的自然灾害和突发性公共事件之一。林火研究的主要驱动力包括植被特点(尤其是大面积人工林,如桉树林等)、火灾风险评估和火前预防、火后恢复以及林火监测的现实需求等。文中从澳大利亚桉树林的火灾发生机制、林火对生态环境的影响、林火时空格局、火管理和火监测—预警—风险评估技术与方法等方面,综述了21世纪以来澳大利亚桉树林火灾研究进展并展望了桉树林火灾未来研究的方向,以期为我国桉树人工林的可燃物管理、林火监测与预警技术等提供借鉴。  相似文献   

18.
Downed coarse woody debris (DCWD) plays an important role in ecosystem processes and should be considered in land management decisions. Unfortunately accurate quantification of its abundance is difficult, due to its patchy distribution. This is especially problematic in woodland ecosystems where DCWD is relatively scarce, unevenly distributed and smaller in size than in other forest types. This study compared the efficacy of the line intersect and strip plot methods to sample properties of DCWD at woodland sites with differing fire histories. Although measures of abundance using the two methods did not differ statistically, the line intersect method had 20% less variability in the data, was quicker to perform and made it easier to locate individual pieces of DCWD than the strip plot method. The results of this study indicate that transects of 100 m or less are insufficient for estimating DCWD volume in woodlands. An acceptable level of precision was reached at approximately 450 m at very recently burnt sites and 700 m at long unburnt sites when only transect length was considered. However when taking both transect length and number of replicates into account, an acceptable level of precision was reached at 500 m when sampling a minimum of 20 sites. It is therefore recommended that pilot studies should be conducted to determine appropriate sampling intensities in previously unsampled areas as DCWD volume estimates are sensitive to the rate at which variance changes with increasing transect length. This is particularly important when there is variation in the disturbance history of the sites. However, if it is not possible to conduct pilot studies, the requirement would be to sample line intersect transects of at least 500 m, at a minimum of 20 sites in woodland systems.  相似文献   

19.
Each year, wildland fires burn millions of hectares of forest worldwide. Fire managers need to provide effective methods for mapping fire fuels accurately. Fuel distribution is very important for predicting fire behavior. The overall aim of this project is to model fire behavior using FARSITE (Fire Area Simulator) and investigate differences in modeling outputs using fuel model maps, which differ in accuracy, in east Texas. This simulator model requires as input spatial data themes such as elevation, slope, aspect, surface fuel model, and canopy cover along with separate weather and wind data. Seven fuel models, including grass, brush, and timber models, are identified in the study area. To perform modeling sensitivity analysis, two different fuel model maps were used, one obtained by classifying a QuickBird image and the other obtained by classifying a LIDAR (LIght Detection and Ranging) and QuickBird fused data set. Our previous investigations showed that LIDAR improves the accuracy of fuel mapping by at least 13%. According to our new results, LIDAR-derived variables also provides more detailed information about characteristics of fire. This study will show the importance of using accurate maps of fuel models derived using new LIDAR remote sensing techniques.  相似文献   

20.
The introduction of non-native pathogens can have profound effects on forest ecosystems resulting in loss of species, changes in species composition, and altered fuel structure. The introduction of Phytophthora ramorum, the pathogen recognized as causing Sudden Oak Death (SOD), leads to rapid decline and mortality of tanoak (Lithocarpus densiflorus) in forests of coastal California, USA. We tracked foliar moisture content (FMC) of uninfected tanoaks, SOD-infected tanoaks, SOD-killed (dead) tanoaks, and surface litter for 12 months. We found that FMC values differed significantly among the three categories of infection. FMC of uninfected tanoaks averaged 82.3% for the year whereas FMC of infected tanoaks had a lower average of 77.8% (ANOVA, P = 0.04). Dead trees had a significantly lower FMC, averaging 12.3% (ANOVA, P < 0.01) for the year. During fire season (June–September), dead tanoak FMC reached a low of 5.8%, with no significant difference between dead canopy fuels and surface litter (ANOVA, P = 0.44). Application of low FMC values to a crown ignition model results in extremely high canopy base height values to escape crown ignition. Remote estimation of dead FMC using 10-h timelag fuel moisture shows a strong correlation between remote automated weather station (RAWS) 10-h timelag fuel moisture data and the FMC of dead leaves (R2 = 0.78, P < 0.01). Results from this study will help refine the decision support tools for fire managers in SOD-affected areas as well as conditions in other forests where diseases and insect epidemics have altered forest canopy fuels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号