首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fire is an important process in California closed-cone pine forests; however spatial variability in post-fire stand dynamics of these forests is poorly understood. The 1995 Vision Fire in Point Reyes National Seashore burned over 5000 ha, initiating vigorous Pinus muricata (bishop pine) regeneration in areas that were forested prior to the fire but also serving as a catalyst for forest expansion into other locales. We examined the post-fire stand structure of P. muricata forest 14 years after fire in newly established stands where the forest has expanded across the burn landscape to determine the important factors driving variability in density, basal area, tree size, and mortality. Additionally, we estimated the self-thinning line at this point in stand development and compared the size-density relationship in this forest to the theorized (−1.605) log-log slope of Reineke’s Rule, which relates maximum stand density to average tree size. Following the fire, post-fire P. muricata density in the expanded forest ranged from 500 to 8900 live stems ha−1 (median density = 1800 ha−1). Post-fire tree density and basal area declined with increasing distance to individual pre-fire trees, but showed little variation with other environmental covariates. Self-thinning (density-dependent mortality) was observed in nearly all stands with post-fire density >1800 stems ha−1, and post-fire P. muricata stands conformed to the size-density relationship predicted by Reineke’s Rule. This study demonstrates broad spatial variability in forest development following stand-replacing fires in California closed-cone pine forests, and highlights the importance of isolated pre-fire trees as drivers of stand establishment and development in serotinous conifers.  相似文献   

2.
In the southern Rocky Mountains, current mountain pine beetle (Dendroctonus ponderosae Hopkins) outbreaks and associated harvesting have set millions of hectares of lodgepole pine (Pinus contorta var. latifolia Engelm. ex Wats.) forest onto new stand development trajectories. Information about immediate, post-disturbance tree regeneration will provide insight on dynamics of future stand composition and structure. We compared tree regeneration in eight paired harvested and untreated lodgepole pine stands in the Fraser Experimental Forest that experienced more than 70% overstory mortality due to beetles. New seedlings colonized both harvested and untreated stands in the first years after the beetle outbreak. In harvested areas the density of new seedlings, predominantly lodgepole pine and aspen, was four times higher than in untreated stands. Annual height growth of pine and fir advance regeneration (e.g., trees established prior to the onset of the outbreak) has doubled following overstory mortality in untreated stands. Growth simulations based on our regeneration data suggest that stand basal area and stem density will return to pre-beetle levels in untreated and harvested stands within 80-105 years. Furthermore, lodgepole pine will remain the dominant species in harvested stands over the next century, but subalpine fir will become the most abundant species in untreated areas. Owing to terrain, economic and administrative limitations, active management will treat a small fraction (<15%) of the forests killed by pine beetle. Our findings suggest that the long-term consequences of the outbreak will be most dramatic in untreated forests where the shift in tree species composition will influence timber and water production, wildfire behavior, wildlife habitat and other forest attributes.  相似文献   

3.
Studies on the dynamics of Alaska boreal forest are sporadic and rare, and forest management in the region has been conducted in the absence of a useful growth model. This paper presents a matrix stand growth model to study the dynamics and management of Alaska's boreal forest, with harvests and artificial regeneration being accounted for. The model was calibrated with data from 446 constantly monitored permanent sample plots distributed across interior and south-central Alaska, and was tested to be accurate on an independent validation sample. The present model was applied on a most frequent commercial stand in interior Alaska to study a forest management regime that is being commonly used in the region. The simulation was for 300 years with a 40-year cutting cycle, and management outcomes under various permafrost levels and site elevations were investigated with sensitivity analysis. Despite the comparatively low financial returns, current management regime may generally benefit wildlife species by maintaining continuous forest cover and decent stand diversity, and properly managed forests had potential for timber production and wood-based energy. It was predicted by the model that both permafrost and site elevation had substantial impact on the management outcomes. Other variables being held constant at sample mean, net present value of harvests increased from $434 to $831 ha−1 and the annual volume of harvest more than tripled from 1.68 to 5.75 m3 ha−1 y−1 as permafrost declined from obvious to unlikely. Managers were also advised to focus on stands on medium elevation (300 m), as stands on lower or higher elevations were expected to produce less harvested volume and net present value. For rural Alaska communities suffering from expensive heating costs, it was suggested that approximately 20 ha of properly managed forest could sustain a household's annual heating requirement, while continuous forest coverage and decent diversity could still be maintained.  相似文献   

4.
  • ? Mixed coniferous, subalpine forest communities in the Rocky Mountains are historically dense and have experienced infrequent, high-severity fire. However, many of these high-elevation stands are thinned for a number of perceived benefits.
  • ? We explored the effects of forest stand density on ecosystem properties in subalpine forests in Colorado, USA, 17–18 y after forests were managed for timber.
  • ? Forest structure significantly altered the composition and chemical signature of plant communities. Previously managed stands contained lower density of overstory trees and higher ground cover compared to paired reference stands. Foliar phenolic concentration of several species was negatively related to basal area of overstory trees. Furthermore, reductions in stand density increased total foliar phenolic:nitrogen ratios in some species, suggesting that gap formation may drive long-term changes in litter quality. Despite significant changes in forest structure, reductions in stand density did not leave a strong legacy in surface soil properties, likely due to the integrity of soil organic matter reserves.
  • ? Changes in forest structure associated with past management has left a long-term impact on plant communities but has only subtly altered soil nutrient cycling, possibly due to trade offs between litter decomposability and microclimate associated with reductions in canopy cover.
  •   相似文献   

    5.
    Alternative silvicultural approaches to timber management, such as regeneration treatments with different degrees of stand retention, may mitigate negative effects of clear-cutting or shelterwood cuts in forested ecosystems, including changes in old-growth forest bird communities. The aims of this work were: (a) to compare bird species richness and densities among different silvicultural designs with variable retention (dispersed and/or aggregated) and unmanaged primary forests, and (b) to assess temporal changes at community and species levels before and after treatments. A baseline avian survey was conducted prior to harvesting to evaluate canopy gap presence and forest stand site quality influences. Subsequent to harvesting, data on bird species richness and density were collected by point-count sampling during the summer season for 5 consecutive years (4 treatments × 5 years × 6 sampling points × 5 counts). Bird species richness and density (15 species and 9.2 individuals ha−1) did not change significantly with forest site quality of the stands and canopy gap presence in unmanaged forests. However, both variables were significantly modified in managed forests, increasing over time to 18 species and reaching to 39 individuals ha−1. Inside the aggregated retention, bird communities were more similar to unmanaged primary forests than those observed within the dispersed retention or in clear-cuts. Opting for a regeneration method with dispersed and aggregated retention has great potential for managing birds in Nothofagus pumilio forests. This method retained enough vegetation structure in a stand to permit the establishment of early successional birds (at least in dispersed retention), and to maintain the bird species of old-growth forests which could persisted in the retention aggregates.  相似文献   

    6.
    Simulation models such as forest patch models can be used to forecast the development of forest structural attributes over time. However, predictions of such models with respect to the impact of forest dynamics on the long-term protective effect of mountain forests may be of limited accuracy where tree regeneration is simulated with little detail. For this reason, we improved the establishment submodel of the ForClim forest patch model by implementing a more detailed representation of tree regeneration. Our refined submodel included canopy shading and ungulate browsing, two important constraints to sapling growth in mountain forests. To compare the old and the new establishment submodel of ForClim, we simulated the successional dynamics of the Stotzigwald protection forest in the Swiss Alps over a 60-year period. This forest provides protection for an important traffic route, but currently contains an alarmingly low density of tree regeneration. The comparison yielded a significantly longer regeneration period for the new model version, bringing the simulations into closer agreement with the known slow stand dynamics of mountain forests. In addition, the new model version was applied to forecast the future ability of the Stotzigwald forest to buffer the valley below from rockfall disturbance. Two scenarios were simulated: (1) canopy shading but no browsing impact, and (2) canopy shading and high browsing impact. The simulated stand structures were then compared to stand structure targets for rockfall protection, in order to assess their long-term protective effects. Under both scenarios, the initial sparse level of tree regeneration affected the long-term protective effect of the forest, which considerably declined during the first 40 years. In the complete absence of browsing, the density of small trees increased slightly after 60 years, raising hope for an eventual recovery of the protective effect. In the scenario that included browsing, however, the density of small trees remained at very low levels. With our improved establishment submodel, we provide an enhanced tool for studying the impacts of structural dynamics on the long-term protective effect of mountain forests. For certain purposes, it is important that predictive models of forest dynamics adequately represent critical processes for tree regeneration, such as sapling responses to low light levels and high browsing pressure.  相似文献   

    7.
    In the last decades, a large body of literature has grown to evaluate the impact of forest management on epiphytic lichens in boreal coniferous forests. However, information is still lacking on coniferous forests of the Alps. This study compares lichen diversity between spruce forest stands of four successional stages: (1) young, (2) intermediate, (3) mature forests managed for timber production with a rotation cycle of 120–180 years, and (4) old-growth protected forests. The emphasis was placed on the occurrence of nationally rare and calicioid species (lichens and fungi traditionally referred to as Caliciales, known to be indicative of forest age and continuity). For each forest successional stage, four plots were selected. In each plot, 7 spruce individuals were surveyed for epiphytic lichens according to a standardised sampling method. Species richness increased from young to mature stands, while no difference was detected between mature and old-growth stands. This pattern was also confirmed for rare and calicioid species which are, however, more frequent in old-growth stands. Differences in species composition were also found between the different forest successional stages. Mature and old-growth plots slightly overlap, indicating that to some extent comparable lichen assemblages could be found in these stands. A nested pattern of species assemblages was found, old-growth stands hosting most of the species which were also found in stands belonging to the previous forest successional stages. Our results support the hypothesis that the management regime applied to spruce forests of the Italian Alps renders mature stands managed for timber production somewhat similar to old-growth stands as lichen habitat. However, we found a higher complexity in old-growth forests, and many species of conservation concern clearly preferred old-growth stands. In this perspective, a further prolongation of the normal cycle it is likely to be a most favourable conservation-oriented management to be recommended at least within protected areas and Natura 2000 sites, where conservation purposes should receive a high priority.  相似文献   

    8.
    Knowledge about the stand structure and dynamics of subalpine forests is crucial to preserve their multifunctionality. In the present study, we reconstructed the spatiotemporal dynamics of a subalpine Pinus cembra forest in the eastern Italian Alps in response to natural disturbances and forest management. We adopted a concurrent point pattern, dendroecological and growth dominance (GD) analysis. We mapped and measured all trees of Pinus cembra and Larix decidua in a 1?ha plot. We analyzed intra- and interspecific spatial patterns and spatial autocorrelation of tree size and age. We explored establishment dynamics and shifts in competition by analyzing growth suppression/release patterns and GD trends. Results showed a clumped, uneven-aged, multilayered structure where pine was dominant. The synergic action of ecological and human-induced factors is discussed to explain the prevalence of pine over time. Spatial pattern and autocorrelation analyses suggest a different colonization strategy of the two species, in which pine established after small-scale perturbations and experienced a stronger inter- and intra-specific competition. The interruption of tree establishment and shift in GD toward large trees resulting from the lack of forest management are the most important findings of this research. This highlights the importance of an active management to avoid the homogenization of the forest structure that is generally associated with a reduction in biodiversity and protective ability of forests.  相似文献   

    9.
    The recovery process of fallow stands in the mountainous region of Northwestern Vietnam was studied, based on a chronosequence of 1–26-year-old secondary forests after intensive shifting cultivation. The number of species present in a 26-year-old secondary forest attained 49% of the 72 species present in an old-growth forest. Total stem density decreased gradually from 172,500 ha−1 in a 3-year-old forest to 24,600 ha−1 in the 26-year-old stand, but stem density of larger trees (diameter at breast height (D) ≥ 5 cm) increased from 60 ha−1 in a 7-year-old to 960 ha−1 in the 26-year-old forests, which was similar to that of an old-growth forest. Annual biomass increment of the 26-year-old stand was 4.2 Mg ha−1 year−1. A saturation curve was fitted to biomass accumulation in secondary forests. After an estimated time of 60 years, a secondary forest can achieve 80% of the biomass of old-growth forests (240 Mg ha−1). Species diversity expressed by Shannon Index shows that it takes 60 years for a secondary forest in fallow to achieve a plant species diversity similar to that of old-growth forests.  相似文献   

    10.
    Coppice forest stands can play a key protective role on active rockfall slopes in mountainous regions. This paper aims at quantifying their protection function and at explaining the role of different stand parameters in this function. To achieve these objectives we first made field inventories focussing on the dendrometric and spatial characteristics of 13 coppice stands. Then, we developed a 2D simulation model, called RockCop, to quantify their protective function against rockfall. The simulations show that the predominant size of the falling rocks conditions which of the dendrometric stand parameters mainly determine the protective function of a coppice stand. In the case of small rocks (20 cm Ø), we conclude that a higher stand density improves the protective function. Thus, for those rocks, young stands are most adequate. An acceptable level of protection against medium-sized rocks (50 cm Ø) is only fulfilled by few coppice stands and determined by specific combinations of stand density, stem diameters, basal area and species composition. None of the investigated stands offer sufficient protection against large rocks (1 m Ø).  相似文献   

    11.
    There is limited understanding of the carbon (C) storage capacity and overall ecological structure of old-growth forests of western Montana, leaving little ability to evaluate the role of old-growth forests in regional C cycles and ecosystem level C storage capacity. To investigate the difference in C storage between equivalent stands of contrasting age classes and management histories, we surveyed paired old-growth and second growth western larch (Larix occidentalis Nutt)–Douglas-fir (Pseudostuga menziesii var. glauca) stands in northwestern Montana. The specific objectives of this study were to: (1) estimate ecosystem C of old-growth and second growth western larch stands; (2) compare C storage of paired old-growth–second growth stands; and (3) assess differences in ecosystem function and structure between the two age classes, specifically measuring C associated with mineral soil, forest floor, coarse woody debris (CWD), understory, and overstory, as well as overall structure of vegetation. Stands were surveyed using a modified USFS FIA protocol, focusing on ecological components related to soil, forest floor, and overstory C. All downed wood, forest floor, and soil samples were then analyzed for total C and total nitrogen (N). Total ecosystem C in the old-growth forests was significantly greater than that in second growth forests, storing over 3 times the C. Average total mineral soil C was not significantly different in second growth stands compared to old-growth stands; however, total C of the forest floor was significantly greater in old-growth (23.8 Mg ha−1) compared to second growth stands (4.9 Mg ha−1). Overstory and coarse root biomass held the greatest differences in ecosystem C between the two stand types (old-growth, second growth), with nearly 7 times more C in old-growth trees than trees found on second growth stands (144.2 Mg ha−1 vs. 23.8 Mg ha−1). Total CWD on old-growth stands accounted for almost 19 times more C than CWD found in second growth stands. Soil bulk density was also significantly higher on second growth stands some 30+ years after harvest, demonstrating long-term impacts of harvest on soil. Results suggest ecological components specific to old-growth western larch forests, such as coarse root biomass, large amounts of CWD, and a thick forest floor layer are important contributors to long-term C storage within these ecosystems. This, combined with functional implications of contrasts in C distribution and dynamics, suggest that old-growth western larch/Douglas-fir forests are both functionally and structurally distinctive from their second growth counterparts.  相似文献   

    12.
    We examined the regeneration and structure of mixed conifer forests under single-tree harvest management in western Bhutan. Sixteen 900 m2 (30 m × 30 m) plots were sampled at four Forest Management Units (FMUs; Chamgang, Gidakom, Paro-Zonglela, and Haa-East) representing the forest type, including half the plots in single-tree harvest stands and half in unlogged stands. In addition, we solicited information on traditional forest management practices from informants using survey questionnaires and collected tree species data from felling records from respective local forest offices. Rural timber demand is concentrated on the removal of straight and well-formed bluepine trees for beams, planks, and scaffolding. Single-tree harvest, however, has not significantly altered stand structures from unlogged stands. Similarly, tree regeneration is not different when comparing single-tree harvest and unlogged stands, except at Chamgang FMU, where seedling densities were generally higher in harvested stands than in unlogged stands. These results indicate that single-tree harvest is not detrimental to regeneration and utilization of mixed conifer forests in western Bhutan.  相似文献   

    13.
    Old-growth forests are ecologically relevant reservoirs of biodiversity and provide valuable and unique ecosystem functions in the landscape. However, what constitutes an old-growth stand is confusing because the definition depends largely on the forest type under study. Despite the ecological importance of old-growth temperate rainforests in southern Chile in comparison to other global forests, no attempts have been made to characterize them as a way to assess their structural variability. Here, we characterized old-growth stands of Valdivian and North Patagonian rain forest types located in Chiloé Island (Chile, 42°30′S) using inventory data from 23 permanent plots (0.1 ha each) located in rural landscapes and protected areas of northern Chiloé Island. For each stand, its age (average age of the oldest trees present in each stand) and disturbance regimes (evidence of recent human impact, e.g. cuttings or fires, and tree growth rates) were used as defining old-growth criteria. We characterized the structure (tree species richness, size-density distributions, vertical stratification and presence of snags) and floristic composition of each stand. Environmental variables (i.e. temperature, distance to coastline and elevation) were related to stand structure using multivariate constrained correspondence analysis. Old-growth forests were commonly characterized by (a) tree basal areas >80 m2/ha; (b) density of shade-tolerant tree species in the emergent and dominant canopy layer >36%; (c) higher tree species richness (>7 tree species) than successional stands; (d) presence of large canopy emergents (>80 cm dbh, >25 m tall); (e) high vertical heterogeneity; and (f) minimum stand ages older than 200 years. Old-growth forests showed a distinctive structural variability and floristic diversity influenced both by stand age and disturbance history of the stands. Structural variability was also related to environmental differences among sites (e.g. air temperature, distance to coastline, soil types). Old-growth forest features described here can offer a baseline for managers interested in maintaining and restoring old-growth forest structure in southern temperate rain forests.  相似文献   

    14.
    The increasing commercial interest and advancing exploitation of new remote territories of the boreal forest require deeper knowledge of the productivity of these ecosystems. Canadian boreal forests are commonly assumed to be evenly aged, but recent studies show that frequent small-scale disturbances can lead to uneven-aged class distributions. However, how age distribution affects tree growth and stand productivity at high latitudes remains an unanswered question. Dynamics of tree growth in even- and uneven-aged stands at the limit of the closed black spruce (Picea mariana) forest in Quebec (Canada) were assessed on 18 plots with ages ranging from 77 to 340 years. Height, diameter and age of all trees were measured. Stem analysis was performed on the 10 dominant trees of each plot by measuring tree-ring widths on discs collected each meter from the stem, and the growth dynamics in height, diameter and volume were estimated according to tree age. Although growth followed a sigmoid pattern with similar shapes and asymptotes in even- and uneven-aged stands, trees in the latter showed curves more flattened and with increases delayed in time. Growth rates in even-aged plots were at least twice those of uneven-aged plots. The vigorous growth rates occurred earlier in trees of even-aged plots with a culmination of the mean annual increment in height, diameter and volume estimated at 40–80 years, 90–110 years earlier than in uneven-aged plots. Stand volume ranged between 30 and 238 m3 ha−1 with 75% of stands showing values lower than 120 m3 ha−1 and higher volumes occurring at greater dominant heights and stand densities. Results demonstrated the different growth dynamics of black spruce in single- and multi-cohort stands and suggested the need for information on the stand structure when estimating the effective or potential growth performance for forest management of this species.  相似文献   

    15.
    Roads are recognised as having different ecological roles such as barrier, corridor or habitat, but the spatial extent of road effects on plant communities in forests remains unclear. We studied the effect of forest road distance on plant understory diversity at 20 sites in young and adult oak stands in a French lowland forest with a long history of management and road construction. All vascular and bryophyte species were collected at five distances ranging from the road verge to 100 m into the adjacent forest stand. We analysed species composition, individual species response, a priori life-history traits response – life form, habitat preference and dispersal mode – and environmental indicator values in relation to road distance and stand age. Plant composition strongly differed between road verge and forest interior habitats. The main road effect extended less than 5 m into the forest stand. A third habitat was detected at the forest-road edge resulting from the road effect on light and soil conditions, and from edge-specific topography. Non-forest species were almost absent from the forest interior. In contrast, many bryophytes and several vascular plants kept away from the road. We identified a posteriori six species groups that better explained the variability of plant response profiles than a priori life-history traits. Plant response to road distance was also dependent on stand age: some species colonised from the road into the forest interior in young stands following regeneration cutting, while other species displayed the reverse pattern in adult stands once canopy closed above the forest road. Even if the depth of forest road effect measured in lowland managed stands was narrow, building of a new forest road has non-negligible effects on plant population dynamics. Forest managers should take into account the impacts of roads on biodiversity, since the expected intensification of silviculture in response to global changes is set to accentuate the effect of forest roads. We recommend further study on the role of dispersal by vehicles (i.e. agestochory) in road effects.  相似文献   

    16.
    17.
    In September 2003 Hurricane Isabel swept through eastern North Carolina and Virginia, destroying most of what formerly ranked among the most extensive remaining stands of Atlantic White-cedar (Chamaecyparis thyoides L., cedar). As Atlantic White-cedar communities are dependent on irregular, large-scale disturbances, the hurricane event can be viewed as an opportunity for perpetuating cedar populations in the Great Dismal Swamp. The success of cedar regeneration in the Dismal Swamp has been influenced by the management strategies employed by Great Dismal Swamp National Wildlife Refuge (active management) and by the adjacent Dismal Swamp State Park (passive management). We investigated the regeneration success of Atlantic White-cedar 5 years following Hurricane Isabel by sampling five stands at the Dismal Swamp State Park withstanding varying impact from the storm and previous windthrow events. We compared our findings to regeneration surveys completed at the adjacent Great Dismal Swamp National Wildlife Refuge. Atlantic White-cedar seedling densities were up to 100 times higher in the actively managed Wildlife Refuge compared to the passively managed State Park. We also determined the seedbank of viable cedar seeds and we described the vegetation at the State Park. The stands at the State Park are now dominated by red maple (Acer rubrum) with a dense shrubby understory. Since viable cedar seeds were still present in the seedbank (>800,000 ha−1), future seedling establishment is possible at the State Park. However, active management is essential for achieving sufficient seedling densities and survival for regenerating a mature cedar stand.  相似文献   

    18.
    Many mountain forests in the Swiss Alps are dense and overmature. The resulting lack of tree regeneration threatens their future ability to provide products and services for humans, e.g., protecting settlements and infrastructure against avalanches. To promote natural regeneration, slit-shaped gaps have been cut since the 1980s in many of Switzerland's Alpine forests dominated by Norway spruce (Picea abies). However, little is known about the success of this silvicultural technique. We sampled 38 gaps in 2001 and 2006 and analysed the density and vitality of P. abies seedlings in these gaps, and monitored the growth and survival of selected seedlings between the two inventories. The gaps analysed were located in upper montane and subalpine P. abies dominated forests in the Vorderrhein valley in the Grisons. The density and vitality of large (10–129 cm tall) and small (<10 cm tall) P. abies seedlings were assessed in three parallel transects running perpendicular to the longitudinal axis of each gap. The mean density of large seedlings increased significantly between 2001 and 2006 from 0.1 to 0.3 seedlings/m2, whereas that of small seedlings stayed constant at 0.7 seedlings/m2, even though it shifted locally between inventories. Significantly higher regeneration densities were found for gaps with NE–SW orientation (afternoon sun) and for those located at lower altitudes. While in gaps on North-facing slopes large P. abies seedlings were more frequent on the middle transect, in gaps on South-facing slopes they were denser near the lower gap edge which is usually less exposed to direct radiation. As expected regeneration density was significantly higher within the gaps than just outside underneath the adjacent stands for all P. abies seedlings. Damage caused by browsing did not turn out to be problematic in this study site. From the selected 280 small seedlings monitored in 2001, 53% died until 2006, 33% became large seedlings and 14% remained small (<10 cm). Our results suggest that creating slit-shaped gaps is a successful procedure to promote P. abies regeneration in the upper montane and subalpine belt of the northern intermediate Alps and helps to preserve protection forests and their goods and services for the coming generations.  相似文献   

    19.
    Black spruce forests growing on clay soils in northwestern Quebec change structure from dense even-aged stands to open uneven-aged stands such that almost all forests older than 200 years have an open canopy. These forests become unproductive over time because they are prone to paludification. The main goal of our study was to document the transition between dense and open stands in terms of gap dynamics, with a focus on tree regeneration. Our objective was to determine whether forests remain open due to a lack of regeneration, a lack of growth or both. Nine stands along a 50–250-year-old time since fire gradient were sampled with the line intersect sampling method. Gap fraction increased with stand age and reached a maximum of 77% in the oldest site. In old-growth stands, gaps were interconnected due to the low density of these forests. Most of the gap makers were found with broken stems. Regeneration was dominated by black spruce layers and was relatively abundant (1.71 stems/m2). However, the majority of gap fillers were smaller than 1 m in height in stands of all ages. Instead of a lack of regeneration, the opening of the forests is due to a lack of growth associated with cold and wet organic deposits. Partial harvesting could be implemented on the most productive sites, while management techniques including soil disturbances will be required on low productivity sites to recreate good growth conditions.  相似文献   

    20.
    Forest ecosystems are increasingly expected to produce multiple goods and services, such as timber, biodiversity, water flows, and sequestered carbon. While many of these are not mutually exclusive, they cannot all be simultaneously maximised so that management compromise is inevitable. We used a 42-year dataset from a naturally regenerating floodplain forest of the river red gum (Eucalyptus camaldulensis) to investigate the effects of pre-commercial thinning on long-term patterns in habitat quality, forest structure and rates of carbon storage (i.e. standing aboveground carbon). Estimates of habitat quality were based on the density of hollow-bearing trees because hollows are ecologically important to many species of vertebrates and invertebrates in these forests. Thinning improved habitat value by producing 20 (±8) hollow-bearing trees per ha after 42 years, while the unthinned treatment produced none. Unthinned (highest density) stands were dominated by many slender trees, mostly <25 cm in diameter, whereas thinned stands produced negatively skewed size distributions with higher median and maximum stem diameters. Moderately thinned stands (560 trees ha−1) had the highest aboveground carbon storage rate (4.1 t C year−1) and the highest aboveground carbon stocks (200.2 ± 9.6 t C ha−1) after 42 years, while the unthinned treatment had the lowest carbon storage rate (1.6 t C year−1) and an intermediate level of aboveground standing carbon (165.1 ± 31.1 t C ha−1). Our results highlight the importance of early stand density as a determinant of long-term forest structure, habitat quality and carbon storage rates. We recommend that thinning be considered as one component of a broader strategy for enhancing the structure, habitat value and aboveground carbon storage of developing floodplain forests.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号