首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
[Objective]To study the leaf calorific value of different forest types.[Method]This study focused on four common forest types widely distributed across China, including boreal coniferous forest, warm temperate deciduous broad-leaved forest, subtropical evergreen broad-leaved forest, and tropical monsoon forest. The leaf calorific values of 175 dominant (or common) tree species were measured. The leaf calorific value characteristics of the trees found in the different forest types were analyzed, and the primary factors affecting leaf calorific value were investigated, including leaf morphological traits, nutrient elements, climate, and soil traits. [Result]The results showed that in these forest types, the leaf calorific values ranged from 14.84 to 21.98 KJ·g-1, with an overall mean of 19.06 KJ·g-1. The presence of organisms appeared to affect the leaf calorific value, which differed among forest types as follows: coniferous trees > broadleaf trees or evergreen trees > deciduous trees. [Conclusion]The latitudinal pattern of tree leaf calorific value, ordered from north to south, is as follows: warm temperate deciduous broad-leaved forest > subtropical evergreen broad-leaved forest > tropical mountain rainforest. The mean leaf calorific value of boreal coniferous forest was slightly lower than those of warm temperate deciduous broad-leaved forest and subtropical evergreen broad-leaved forest. The leaf calorific values were significantly correlated with leaf carbon content (R2= 0.89, P<0.001). A multiple regression equation was established to describe the relationships among leaf calorific value, leaf carbon content, leaf nitrogen content, and leaf thickness.  相似文献   

2.
We compared differences in leaf properties, leaf gas exchange and photochemical properties between drought-deciduous and evergreen trees in tropical dry forests, where soil nutrients differed but rainfall was similar. Three canopy trees (Shorea siamensis Miq., Xylia xylocarpa (Roxb.) W. Theob. and Vitex peduncularis Wall. ex Schauer) in a drought-deciduous forest and a canopy tree (Hopea ferrea Lanessan) in an evergreen forest were selected. Soil nutrient availability is lower in the evergreen forest than in the deciduous forest. Compared with the evergreen tree, the deciduous trees had shorter leaf life spans, lower leaf masses per area, higher leaf mass-based nitrogen (N) contents, higher leaf mass-based photosynthetic rates (mass-based P(n)), higher leaf N-based P(n), higher daily maximum stomatal conductance (g(s)) and wider conduits in wood xylem. Mass-based P(n) decreased from the wet to the dry season for all species. Following onset of the dry season, daily maximum g(s) and sensitivity of g(s) to leaf-to-air vapor pressure deficit remained relatively unchanged in the deciduous trees, whereas both properties decreased in the evergreen tree during the dry season. Photochemical capacity and non-photochemical quenching (NPQ) of photosystem II (PSII) also remained relatively unchanged in the deciduous trees even after the onset of the dry season. In contrast, photochemical capacity decreased and NPQ increased in the evergreen tree during the dry season, indicating that the leaves coped with prolonged drought by down-regulating PSII. Thus, the drought-avoidant deciduous species were characterized by high N allocation for leaf carbon assimilation, high water use and photoinhibition avoidance, whereas the drought-tolerant evergreen was characterized by low N allocation for leaf carbon assimilation, conservative water use and photoinhibition tolerance.  相似文献   

3.
IntroductionItissurethatpresentelevatiollsofCO2a11dotllergrcc11-housegasesinducedbyhumanactivitiesaren1akli1gglobalclimategothroughinexperielICedcl1anges(Scl1le-subgerl987).Thecurrentquasi-equilibriulllstatesofbio-sphereecosystCm,esPeciallyterrestrialecosystems,wouldbebrokenbecausetl1estructure,fu11ction,distributio11andtlledynamicsofanyexistedecosystemsareIberesultsoflongtermadaptationofbio-systemtocurrentclin1ate.Theec()systemsdistributedinhighlatitlldeareawouldhavemuchbiggerchai1ge(Bona…  相似文献   

4.
Fine roots absorb nutrients and water for photosynthesizing leaves, which in return provide them with hydrocarbon products. Knowledge of the fine root biomass (FRB) at the individual tree level and its relationships with other components related to tree growth, especially leaves aboveground, is scarce. Therefore, we reviewed the FRB of major forest-forming species using a database of 518 forest stands compiled from the literature, including 21 tree species and 16 shrub species, in order to confirm the relationships between environmental or forest stand variables and FRB at the stand and tree levels, and we further determine the relationships between fine roots belowground and leaves aboveground. Correlations between FRB and site characteristics (latitude, elevation, age, density, and basal area) appeared to be species-specific. There were hardly any significant correlations between stand FRB and latitude, elevation, stand age and stand density. Tree FRB was better correlated with tree basal area than stand FRB with stand basal area. There was a significant linear relationship between tree FRB and tree basal area. In addition, individual FRB was significantly linearly related to leaf biomass for all analyzed species. When these species were grouped into coniferous and deciduous, or all species together, there were still significant linear relationships between tree FRB and tree basal area and leaf biomass. The ratios of FRB to leaf biomass varied between and among species and even among regions for the same species. For both Picea abies and Pinus sylvestris, the ratio of FRB to leaf biomass was negatively related to the ratio of annual actual evapotranspiration to annual potential evapotranspiration, which was an indicator of water availability.  相似文献   

5.
Nutrient resorption before abscission is an important nutrient conservation mechanism regulated by climatic conditions and soil nutrients. However, our current understanding of leaf nutrient resorption is primarily derived from site-specific studies or from the use of green-leaf nutrient concentrations to represent those in soils. It remains unknown how nutrient resorption responds to natural soil-nutrient concentrations at a global scale. The effects of plant functional groups, climatic conditions, and soil nutrients and their interactions on leaf nutrient resorption are also unknown. In this study, we established a global database derived from 85 published papers, including 547 reports of nitrogen and phosphorus resorption efficiency (NRE and PRE), climatic factors (LAT, latitude; MAT, mean annual temperature; MAP, mean annual precipitation) and soil-nutrient data (STN, soil total nitrogen; STP, soil total phosphorus) across 111 research sites. The results demonstrated that mean NRE and PRE were 48.4 and 53.3%, respectively. NRE of trees was lower than those of shrubs. NRE and PRE of coniferous species were both higher than those of broad-leaved species. Evergreen species had higher PRE than did deciduous species. NRE was negatively related to STN, but PRE and STP were not related. Both NRE and PRE decreased with increasing MAT and MAP but increased with increasing LAT. Plant functional groups, climate and soil nutrients jointly explained 22 and 32% of the variations in NRE and PRE, respectively. It is important to note that climate (especially MAT) explained 12 and 29% of the variations in NRE and PRE, respectively, implying that continuing global warming will exert an increasingly profound influence on plant nutrient cycles.  相似文献   

6.
Abstract

There is a growing interest in the effects of deciduous trees on biodiversity, soil processes and long-term productivity in boreal, conifer-dominated forests. This study investigated whether individual birch trees allowed to grow to maturity in the coniferous forest can have a local effect on floristic richness and regeneration of tree saplings. The ground vegetation was compared in 2?m radius plots around the stem under the canopies of matched conifer–deciduous trees in a mature, conifer-dominated forest, and included in the analysis variables that could potentially mediate the tree effect (soil pH, cover of lichens, bryophytes, leaf and needle litter). The field layer vegetation was more species rich under birch (Betula pendula and B. pubescens) than under conifers (Picea abies and Pinus sylvestris), and several vascular plant species (including saplings of tree species) occurred more often under birch than under conifers. However, when the effect of the number of subordinate trees was taken into account the difference between birch and pine was not significant. The number of tree regenerations (saplings) was lowest under pines, but did not differ between spruce and birch. There were no effects of the canopy species on soil pH or on cover of lichens and bryophytes. The difference in diversity may be caused by the different effects of leaf and needle litter, and it is also likely that canopy structure has an influence via interception and throughfall and by affecting the light and microclimate.  相似文献   

7.
Long-term natural vegetation succession plays a substantial role in the accumulation and distribution of plant and soil C:N:P stoichiometry.However,how plant and soil C:N:P relationships or ratios change along with successional stages over a century in the severely eroded areas remain unclear.These were measured over a 100-year natural succession in five successional stages from annual grasses to climax forests.The results show that natural succession had significant effects on carbon(C),nitrogen(N) and phosphorous(P) concentrations in leaf-litter-soil and their ratios in severely eroded areas.Nitrogen concentrations and N:P ratios in leaf and litter increased from annual grasses to the shrub stage and then decreased in the late successional forest stages.Leaf P levels decreased from annual grasses to shrub stages and did not significantly change during late successional stages.Litter P concentration decreased in the early successional stages and increased during late successional stages,with no overall significant change.Soil C and N concentrations and C:N,C:P and N:P ratios increased with successional stages.Soil C and N concentrations decreased with the increasing soil depth.Both were significantly different between any successional stages and controls(cropland) in the upper 10 cm and 10-20 cm soil layers.Leaf N:P ratios may be used to indicate nutrient limitations and this study suggests that plant growth during the grass stages was limited by N,during the shrub stage,by P,and during the forest stages,by both of N and P.In addition,there were close correlations between litter and leaf C:N:P ratios,soil and litter C and N levels,and C:P and N:P ratios.These results show that long-term natural vegetation succession is effective in restoring degraded soil properties and improving soil fertility,and provide insights into C:N:P relationships of leaf,litter and soil influenced by vegetation succession stage.  相似文献   

8.
马占相思等5个树种叶中养分含量和养分利用效率的研究   总被引:4,自引:3,他引:4  
测定了阔叶树马占相思、木荷和红锥及针叶树杉木和加勒比松叶中的养分含量。结果表明 :5个树种中马占相思叶的N、P、K含量最高 ,杉木叶的Ca、Mg含量最高 ,而加勒比松叶的 5种养分含量最低。马占相思、红锥和加勒比松叶的养分含量为N >K >Ca >P >Mg ,而木荷和杉木叶的养分含量为N >K >Ca >Mg >P。各树种养分利用效率为P或Mg >Ca >K >N。  相似文献   

9.
不同林龄樟子松叶片养分含量及其再吸收效率   总被引:28,自引:0,他引:28  
树木叶片的养分再吸收效率能够反映树木对养分保存、利用以及对养分贫瘠环境的适应能力。以科尔沁沙地东南缘章古台地区樟子松人工林为研究对象,分析了11、20、29、45年生树木叶片的基本特征、养分含量及其再吸收效率。结果表明:叶片衰老后其质量和面积明显减少;叶片凋落前的平均养分含量没有表现出随樟子松年龄增加而出现有规律的变化;凋落叶片中的N、P、K、Mg含量表现出随年龄增加而增加的趋势,而Ca的趋势与之相反;11年生和20年生的樟子松叶片N、P、K的再吸收效率相似,都显著高于29年生和45年生樟子松(P<0.05),而樟子松叶片对Mg的再吸收效率表现出随年龄增大而显著降低,Ca随叶片的衰老而不断累积,再吸收效率表现为负值,20年生的樟子松叶片Ca再吸收效率最大,11年生和45年生最低。樟子松叶片的N、P、K、Mg养分再吸收效率随年龄增加而降低的趋势表明,随年龄增加樟子松对贫瘠养分生境的适应能力逐渐降低,反映了樟子松养分保存方面的衰退特征。  相似文献   

10.
Heavy atmospheric nitrogen (N) deposition has been associated with altered nutrient cycling, and even N saturation, in forest ecosystems previously thought to be N-limited. This observation has prompted application to such forests of non-N mineral nutrients as a mitigation measure. We examined leaf gas-exchange, leaf chemistry and leaf and shoot morphological responses of Acer saccharum Marsh. saplings and mature trees to experimental additions of non-nitrogenous mineral nutrients (dolomitic lime, phosphorus + potassium (P + K) and lime plus P + K) over 2 years in the Haliburton region of central Ontario, which receives some of the largest annual N inputs in North America. Nutrients were adsorbed in the mineral soil and taken up by A. saccharum trees within 1 year of fertilizer application; however, contrary to expectation, liming had no effect on soil P availability. Saplings and canopy trees showed significant responses to both P + K fertilization and liming, including increased foliar nutrient concentration, leaf size and shoot extension growth; however, no treatment effects on leaf gas-exchange parameters were detected. Increases in shoot extension preceded increases in diameter growth in saplings and canopy trees. Vector analysis of shoot extension growth and nutrient content was consistent with sufficiency of N but marked limitation of P, with co-limitation by calcium (Ca) in saplings and by Ca, Mg and K in canopy trees.  相似文献   

11.
通过"样方标准地调查法"研究了依兰国营林场不同林分结构内柞树的生长状况,通过方差分析和多重比较方法得到柞树在针阔混交林、阔叶混交林和柞树纯林中的生长状况排序。结果表明:针阔混交林内柞树的胸径年均生长量、树高年均生长量和材积年均生长量3项指标在18~42 a之间均明显高于阔叶混交林内柞树和柞树纯林,优势明显。所以,无论从生态角度还是用材角度,培育混交异龄复层林结构对森林的永续经营和利用具有重要的作用。  相似文献   

12.
The knowledge of tree species effects on soil C and N pools is scarce, particularly for European deciduous tree species. We studied forest floor and mineral soil carbon and nitrogen under six common European tree species in a common garden design replicated at six sites in Denmark. Three decades after planting the six tree species had different profiles in terms of litterfall, forest floor and mineral soil C and N attributes. Three groups were identified: (1) ash, maple and lime, (2) beech and oak, and (3) spruce. There were significant differences in forest floor and soil C and N contents and C/N ratios, also among the five deciduous tree species. The influence of tree species was most pronounced in the forest floor, where C and N contents increased in the order ash = lime = maple < oak = beech ? spruce. Tree species influenced mineral soil only in some of the sampled soil layers within 30 cm depth. Species with low forest floor C and N content had more C and N in the mineral soil. This opposite trend probably offset the differences in forest floor C and N with no significant difference between tree species in C and N contents of the whole soil profile. The effect of tree species on forest floor C and N content was primarily attributed to large differences in turnover rates as indicated by fractional annual loss of forest floor C and N. The C/N ratio of foliar litterfall was a good indicator of forest floor C and N contents, fractional annual loss of forest floor C and N, and mineral soil N status. Forest floor and litterfall C/N ratios were not related, whereas the C/N ratio of mineral soil (0–30 cm) better indicated N status under deciduous species on rich soil. The results suggest that European deciduous tree species differ in C and N sequestration rates within forest floor and mineral soil, respectively, but there is little evidence of major differences in the combined forest floor and mineral soil after three decades.  相似文献   

13.
Carbon (C), nitrogen (N), and phosphorous (P) levels and their stoichiometry in plant components (leaves, branch trunks, roots) of trees in a karst forest and non-karst forest are compared. The results show that the C contents, C:N and C:P ratios of dominant species in the karst forest were lower than those in the non-karst forest, but the N and P and the N:P ratio were higher;C:N:P ratios in plant organs of trees in the karst forest were in the order of trunks>roots>branches>leaves. However, C:N:P ratio in the non-karst forest trees were trunks>branches>roots>leaves. Moreover, ratio of C:N:P in trunks was highest and lowest in leaves in both forests. In non-karst forest trees, N:P was in the order of leaves> roots>branches>trunks. There were no significant differences in the ratio of N:P in different plant components of trees in the karst forest. However, in karst and non-karst forest trees, the ratio of N:P in leaves was highest;positive correlations between N and P contents, and N and N:P ratios were observed in both karst and non-karst forests (p<0.001). Negative correlations between P and N:P ratios (p<0.05) were observed in karst forest trees, while positive correlations were observed in non-karst forest trees.  相似文献   

14.
Seasonal differences in phenology between coniferous and deciduous tree species need to be considered when developing models to estimate CO(2) exchange in temperate forest ecosystems. Because seasonal variations in CO(2) flux in temperate forests are closely correlated with plant phenology, we quantified the phenology of forest species in a multilayered forest with patches of Scots pine (Pinus sylvestris L.) and oak (Quercus robur L.) in Brasschaat, Belgium. A scaling-up modeling approach was developed to simulate reflectance at the leaf and canopy scales over a one-year cycle. Chlorophyll concentration, water content, specific leaf area and leaf area index of the forest species were measured throughout an entire year (1997). Scaling-up from the leaf to canopy was achieved by linking the PROSPECT and SAIL models. The result is the annual progression of the fraction of absorbed photosynthetically active radiation (fAPAR) in a 1 km(2) forest area, which can be directly related to high-resolution, remotely sensed data.  相似文献   

15.
《林业研究》2021,32(4)
Foliar C/N stoichiometry is an indicator of geochemical cycling in forest ecosystems,but the driving changes for its response to urbanization at the wide scale is not clear.In this study,data on tree-leaf C and N stoichiometry were collected in papers from across 105 tree species from 82 genera and 46 families.The foliar C/N of urban forest trees varied among different climate zones and tree taxonomic variation and tended to be higher in trees of urban forests near the equator and in eastern regions,mainly driven by lowered foliar N concentration.Neither the foliar C concentration nor foliar C/N for trees of urban forests was statistically higher than those of rural forests.For variation by taxonomic classification,C_4 species Amaranthus retroflexus and Chenopodium ambrosoides(Amaranthaceae) had lower foliar C/N than did other species and families.Myrsine guianensis(Primulaceae) and Myconia fallax(Asteraceae) had the highest foliar C/N.Therefore,urbanization has not caused a significant response in forest trees for foliar C/N.The change in foliar N concentration was globally the main force driving of the differences in foliar C/N for most tree species in urban forests.More work is needed on foliar C/N in trees at cities in polar regions and the Southern Hemisphere.  相似文献   

16.
In The Netherlands, insect pests on trees and shrubs are being monitored continuously since 1946. During these years, almost all insect pest populations showed marked changes, which may be the result of changes in forest management, shifts in forest composition, climate change and the arrival of new pests from the Mediterranean region or from other continents. In order to generate hypothesis about possible relationships between species ecology and environmental factors, we have analyzed 61 years of population development of the 98 most abundant species in the database while paying attention to life history traits and preferred host plants. The 22 species with infestations lasting a few years only were excluded from the analysis. Of the remaining 76 species, 18 were present over the entire observation period of 61 years. Of the other species, 27 showed a decline and 31 showed an increase. On coniferous trees most species showed decreasing populations. Increasing populations were found most on deciduous trees. Not directly climate-related factors such as changes in forest age, tree composition and forest management were identified as the most important causes for the fluctuations in pest insect populations. Climate change is a possible driver of the population increase in Thaumetopoea processionea, Haematoloma dorsatum and of the population decrease in Euproctis chrysorrhoea. The recently increasing exotic species Eupulvinaria hydrangeae and Pulvinaria regalis were exclusively found on trees in cities, presumably in relation to the higher temperatures of the urban habitat.  相似文献   

17.
本文选择川西亚高山针叶纯林和针阔混交林作为研究对象,并于2007年7月~12月采用收集框法研究了森林凋落物量以及N、P、K养分归还量。结果表明,混交林凋落量(2 090.47 kg·hm-2)比针叶林凋落量(1 189.59kg.hm-2)高出43%,林分凋落动态和归还动态呈单峰型,其高峰都出现在10月份。混交林中阔叶对凋落量的贡献达69%。同时,阔叶的养分归还量大于针叶的养分归还量。混交林和针叶林养分归还量都表现为N﹥K﹥P,针阔混交林凋落物养分归还量大于针叶林。在川西亚高山地区针阔混交林比针叶纯林具有更强的自肥能力。  相似文献   

18.
森林生态系统营养元素的生物循环   总被引:30,自引:0,他引:30       下载免费PDF全文
  相似文献   

19.
The nutrient status of Norway spruce in pure and in mixed-species stands   总被引:1,自引:0,他引:1  
Atmospheric deposition of N and S appears to have caused nutrient imbalance in Norway spruce stands in southern Sweden. This calls for a change of forest management to procedures that promote nutrient balance. Studies have shown lower soil acidity in Norway spruce/deciduous mixed stands than in spruce monocultures, but the tree nutrient status in such mixtures has not been much investigated so far.

The nutrient status of Norway spruce foliage and top mineral soil chemistry in monocultures and in stands mixed with beech, birch, or oak was investigated through paired comparisons on 30 sites in southern Sweden (27 sites) and eastern Denmark (three sites). In total, 45 mixed stands and 34 pure stands were included in the study.

Spruce needles from mixed stands had higher concentrations and ratios to N of K, P, and Zn than needles from pure spruce stands. Among the mixed stands, the K status appeared to be positively correlated with the percentage of deciduous tree basal area. Soil samples from mixed stands had a higher Mg concentration, base saturation, and BC/Al ratio than soil samples from pure stands. The spruce needle nutrient status was comparable in pure stands on fertile sites and in mixed stands on poor sites. We did not detect any differences in spruce tree growth between pure and mixed stands.

This paper discusses possible reasons for a positive effect on the tree nutrient status in mixed-species stands and the possibility of using mixed-species stands as a forest management procedure to avoid nutrient imbalance.  相似文献   


20.
We investigated the sapling leaf display in the shade among trees of various leaf lifespans co-occurring under the canopy of a warm-temperate conifer plantation. We measured leaf-area ratio (aLAR) and morphological traits of saplings of evergreen broadleaved tree species and a deciduous tree species. Although we found large interspecific and intraspecific differences in aLAR even among saplings of similar size in the homogeneous light environment, we did not find a consistent trend in aLAR with leaf lifespan among the species. While deciduous trees annually produced a large leaf area, some evergreen broadleaved trees retained their leaves across years and had aLAR values as high as those of deciduous trees. Among leaf-level, shoot-level, and individual-level morphological traits, aLAR was positively correlated with current-year shoots mass per aboveground biomass in deciduous trees, and with the area of old leaves per aboveground mass in evergreen broadleaved trees. Thus, tree-to-tree variation in the degrees of annual shoot production and the accumulation of old leaves were responsible for the interspecific and intraspecific variations in aLAR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号