首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
毛竹扩张对常绿阔叶林土壤性质的影响及相关分析   总被引:2,自引:0,他引:2       下载免费PDF全文
[目的]为探讨毛竹向邻近常绿阔叶林扩张对土壤性质的影响。[方法]本研究选取江西大岗山森林生态定位站常绿阔叶林、2∶8竹阔混交林、8∶2竹阔混交林和毛竹纯林为研究对象,对土壤有机碳、密度、孔隙度、持水量和贮水量等土壤性质和水分特征进行研究。[结果]常绿阔叶林在毛竹扩张过程中,土壤碳元素含量呈先增后降的趋势。相关分析表明:土壤有机碳与非毛管持水量和现有贮水量呈极显著相关,与土壤密度和总孔隙度呈显著相关,各指标相互作用共同影响了土壤有机碳含量在扩张过程中的变化特征。[结论]常绿阔叶林表层土壤密度、孔隙度和持水量等特征综合优于混交林和毛竹纯林,这为竹鞭扩张后竹笋萌发创造了条件;当常绿阔叶林演替到毛竹纯林时,10 60 cm土壤物理性质和持水能力都有所改善,但有机碳含量降为4个林分最低值,大量竹鞭虽然优化了土壤物理性质,但无性繁殖导致土壤碳元素大量消耗,加之择伐和挖笋等人工干扰,毛竹纯林土壤有机碳含量较低。调节土壤碳含量以及土壤结构和水分特征可能是今后控制毛竹林扩张,维持群落生态系统稳定性的重要生态策略。  相似文献   

2.
Monitoring soil CO2 efflux rates and identifying controlling factors, such as forest composition or soil texture, can help guide forest management and will likely gain relevance as atmospheric CO2 continues to increase. We examined soil CO2 efflux and potential controlling factors in managed mixed pine forests in southwestern Georgia. Soil CO2 efflux was monitored periodically in two stands that differed in soil texture in 2001 and 2002, and in six additional stands in 2003. We also monitored controlling factors: soil temperature, moisture, organic layer mass, and A layer depth. Soil moisture and CO2 efflux varied with soil texture differences among the stands. As expected, soil temperature had a strong influence on soil CO2 efflux. Soil moisture, organic layer mass, and A layer depth also were correlated with soil CO2 efflux during periods of water stress, but these relationships differed with soil texture. Forest management activities can alter components of soil CO2 efflux, including soil carbon pools, temperature, and moisture; understanding the underlying variation of these components and resultant CO2 efflux over soil types can help guide management toward desired forest carbon balance trends in southeastern mixed pine forests.  相似文献   

3.
以赣中毛竹纯林(MC)、竹阔混交林(ZK)、竹杉混交林(ZS)3种不同类型毛竹林地土壤容重、孔隙状况、团聚体数量、大小和稳定性等土壤结构特征进行了研究,同时以阔叶林(KY)和杉木纯林(SC)为对照,并采用灰色关联度分析法进行了土壤结构综合评价。结果表明,各林分土壤容重大小排序为ZK>MC>ZS>KY>SC;土壤孔隙状况总体表现为阔叶林优于杉木林,毛竹林类型较差;>0.25 mm土壤团聚体含量在94.43%~97.25%,土壤各层均为阔叶林最大;土壤团聚体分形维数均值大小排序为MC>ZK>ZS>SC>KY;不同林分类型间土壤MWD和GMD存在差异,与毛竹纯林比较,竹阔和竹杉混交林0~60 cm土层中土壤MWD和GMD均值分别提高了3.38%、4.10%和5.04%、8.11%;灰色关联度分析法的结果表明,各林分类型土壤结构指标关联度大小排序为KY>SC>ZK>ZS>MC,研究结果可为我国亚热带地区林地资源合理经营及植被建设提供科学依据。  相似文献   

4.

Relatively few studies have documented the impacts of afforestation, particularly production forestry, on belowground carbon dioxide (CO2) effluxes to the atmosphere. We evaluated the changes in the soil CO2 efflux—a proxy for soil respiration (Rs)—for three years following a native grassland conversion to eucalypt plantations in southern Brazil where minimum tillage during site preparation created two distinct soil zones, within planting row (W) and between-row (B). We used root-exclusion and carbon (C)- isotopic approaches to distinguish Rs components (heterotrophic-Rh and autotrophic-Ra respirations), and a CO2 profile tube (1-m deep) to determine the concentration ([CO2]) and isotopic C signature of soil CO213[CO2]). The soil CO2 efflux in the afforested site averaged 0.37 g CO2 m?2 h?1, which was 56% lower than the soil CO2 efflux in the grassland. The δ13CO2 in the afforested site ranged from ? 14.1‰ to ? 29.4‰, indicating a greater contribution of eucalypt-derived respiration (both Rh and Ra) over time. Higher soil CO2 efflux and lower [CO2] were observed in W than B, indicating that soil preparation creates two distinct soil functional zones with respect to C cycling. The [CO2] and δ13[CO2] decreased in both zonal positions with eucalypt stand development. Although the equilibrium in C fluxes and pools across multiple rotations is needed to fully account for the feedback of eucalypt planted forests to climate change, we provide quantitative information on soil CO2 dynamics after afforestation and show how soil preparation can leverage the feedback of planted forests to climate change.

  相似文献   

5.
文章以流溪河林场5 种不同林分为研究对象,分析其枯落物和土壤持水特性。结果表明:(1) 5 种林分枯落物持水能力表现为:荔枝(Litchi chinensis)林> 针阔混交林> 杉木林> 阔叶混交林> 毛竹 林;(2)5 种林分0 ~ 60 cm 土壤容重随土层深度增加而增大,60 cm 土层平均容重大小依次为:毛竹林< 针阔混交林< 阔叶混交林< 杉木林< 荔枝林;(3)5 种林分土壤总孔隙度平均大小依次为毛竹林> 针阔 混交林> 阔叶混交林> 杉木林> 荔枝林;(4)5 种林分土壤贮水量大小为毛竹林> 针阔混交林> 荔枝林> 杉木林> 阔叶混交林。总体而言,荔枝林枯落物持水性最好,毛竹林土壤持水性最强。  相似文献   

6.
At the Takayama deciduous broadleaved forest Asiaflux site in Japan, the ecosystem carbon dynamics have been studied for more than two decades. In 2005, we installed non-dispersive infrared CO2 sensors in the soil below the site’s flux tower to systematically study vertical soil–air CO2 dynamics and explain the behavior of soil surface CO2 efflux. Soil–air CO2 concentrations measured from June 2005 through May 2006 showed sinusoidal variation, with maxima in July and minima in winter, similar to the soil CO2 effluxes measured simultaneously using open-flow chambers. Soil–air CO2 concentrations increased with soil depth from 5 to 50 cm: from 2,000 to 8,000 ppm in the summer and from 2,000 to 3,000 ppm in the winter under snow. Summer soil–air CO2 concentrations were positively correlated with soil moisture on daily and weekly scales, indicating that the Oi, Oe, and A horizons, where decomposition is accelerated by high-moisture conditions, contributed substantially to CO2 emissions. This result is consistent with the short residence time (about 2 h) of CO2 in the soil and larger emissions in shallow soil layers based on our diffusion model. We revealed for the first time that soil–air CO2 concentrations in winter were correlated with both snow depth and wind speed. CO2 transfer through the snow was hundreds of times the gas diffusion rates in the soil. Our estimate of the CO2 efflux during the snow-cover season was larger than previous estimates at TKY, and confirmed the important contribution of the snow-cover season to the site’s carbon dynamics.  相似文献   

7.
To better understand the effect of forest succession on carbon sequestration, we investigated carbon stock and allocation of evergreen broadleaf forest, a major zonal forest in subtropical China. We so...  相似文献   

8.
Jiang L  Shi F  Li B  Luo Y  Chen J  Chen J 《Tree physiology》2005,25(9):1187-1195
The potential capacity of soil to sequester carbon in response to global warming is strongly regulated by the ratio of rhizosphere respiration to respiration by soil microbial decomposers, because of their different temperature sensitivities. To quantify relative contributions of rhizosphere respiration to total soil respiration as influenced by forest stand development, we conducted a trenching study in two larch (Larix gmelini (Rupr.) Rupr.) plantations, aged 17 and 31 years, in northeastern China. Four plots in each plantation were randomly selected and trenched in early May 2001. Soil surface CO2 effluxes both inside and outside the plots were measured from May 2001 to August 2002. Soil respiration (i.e., the CO2 effluxes outside the trenched plots) varied similarly in the two plantations from 0.8 micromol m(-2) s(-1) in winter to 6.0 micromol m(-2) s(-1) in summer. Rhizosphere respiration (i.e., CO2 efflux outside the trenched plots minus that inside the plots) varied from 0.2 to 2.0 micromol m(-2) s(-1) in the old forest and from 0.3 to 4.0 micromol m(-2) s(-1) in the young forest over the seasons. Rhizosphere respiration, on average, accounted for 25% of soil respiration in the old forest and 65% in the young forest. Rhizosphere and soil respiration were significantly correlated with soil temperature but not with soil water content. We conclude that the role forests play in regulating climate change may depend on their age.  相似文献   

9.
中山市7种林分类型土壤涵养水源效能的初步研究   总被引:1,自引:0,他引:1  
以马尾松、湿地松、大叶相思、竹林、杉木、针阔混交林、阔叶林等7种林分为研究对象,研究了中山市不同林分类型的土壤贮水能力和土壤渗透性能。结果如下:7种林分类型0~100 cm土壤最大持水量平均值为562.7 mm,以大叶相思和阔叶林这两种阔叶林分为最大、在600 mm以上,而杉木、湿地松和马尾松等针叶林较小、在510~536 mm之间;针阔混交林和竹林居中。土壤的初渗速度15.78~39.50 mm/min,稳渗速度2.08~4.40 mm/min;土壤入渗过程的回归方程表现为幂函数形式,回归系数R值均大于0.95,方程拟合效果好。  相似文献   

10.
在福建泰宁县大田乡选择4种不同经营模式的毛竹林分,即模式A为毛竹阔叶树混交林(树冠投影比5∶5)、模式B为毛竹阔叶树混交林(树冠投影比8∶2)、模式C为毛竹纯林、模式D为毛竹杉木混交林,分析比较不同模式的毛竹林分生物量结构,结果表明:不同模式林分的毛竹胸径、竹高等生长因子差异显著,阔叶混交林的毛竹平均单株生物量、胸径和竹高值较高;毛竹单株器官生物量以竹秆所占比例最大,达46.81%~54.27%,其中以模式B的最高;毛竹单株总生物量最大的为模式A,达34.98 kg/株;毛竹群落总生物量最大的为模式D,达139.42 t/hm2。  相似文献   

11.

Aims

Globally, extensive areas of native forest have been almost replaced by plantations to meet the demands for timber, fuel material and other forest products. This study aimed to evaluate the effects of forest conversion on labile soil organic C (SOC), soil respiration, and enzyme activity, and to quantify their relationship in subtropical forest ecosystems.

Methods

Surface mineral soil (0–20 cm) was collected from a Cunninghamia lanceolata Hook. plantation, Pinus massoniana Lamb. plantation, Michelia macclurei Dandy plantation, and an undisturbed native broadleaf forest. Soil microbial biomass C, dissolved organic C, permanganate-oxidizable C, basal respiration, and six enzyme activities were investigated.

Results

Soil microbial biomass C was higher by 45.9 % in native broadleaf forest than that in M. macclurei Dandy plantation. The ratio of soil microbial biomass C to total SOC was 27.6 % higher in the M. macclurei Dandy plantation than in the native broadleaf forest. The soil respiration increased by 25.2 % and 21.7 % after conversion from native broadleaf forest to P. massoniana Lamb. and M. macclurei Dandy plantations respectively. The effects of forest conversion on the soil enzyme activities differed among the tree species. Soil microbial biomass C had higher correlation with soil respiration than with the other SOC fractions. Moreover, soil microbial biomass C was positively correlated with urease and negatively correlated with cellulase activity. Soil respiration had higher correlation with soil microbial biomass C, dissolved organic C and permanganate-oxidizable C.

Conclusion

Forest conversion affected the soil microbial biomass C, soil respiration, invertase, cellulase, urease, catalase, acid phosphatase, and polyphenol oxidase activities, but their response depended on tree species. Soil respiration was mainly controlled by labile SOC, not by total SOC.  相似文献   

12.
We estimated the potential of plantation forests for the restoration of the original plant community. We compared the understory vegetation in hinoki (Chamaecyparis obtusa [Sieb. et Zucc.] Endlicher) plantations at the understory re-initiation stage and in adjacent natural forests. To estimate the effect of the original natural forests on the understory species composition of plantation forests, we established study sites in five types of natural forests (mature evergreen broadleaf, mature deciduous broadleaf, mature evergreen coniferous, immature deciduous broadleaf warm-temperate, and immature deciduous broadleaf cool-temperate) and nearby plantation forests. The understory vegetation of the plantation forests had a higher species richness, a higher proportion of early-seral species, and a higher proportion of herb or fern species than the natural forests. The differences between natural and plantation forests varied according to the species composition of the natural forests. The composition of the understory vegetation of the plantations at the understory re-initiation stage was similar to that of the immature deciduous forests. The characteristics of immature, disturbed forests remained in the understory vegetation of the hinoki forests. No great loss of species was observed. Our findings suggest that most of the original forest species still survive in the understory of the plantation forests. These forests have the potential to follow the successional pathway to broadleaf or mixed forests via thinning or clear-cutting without planting.  相似文献   

13.
高黎贡山南段2种森林类型的土壤特性研究   总被引:1,自引:4,他引:1  
对设于高黎贡山自然保护区南段中山湿性常绿阔叶林的5块样地和季风常绿阔叶林3块样地的土壤进行了调查研究,结果表明:2种森林类型主要有黄红壤、黄壤、黄棕壤、棕壤4种土壤。样地土壤的有机质等养分含量丰富,而土壤盐基饱和度较低。中山湿性常绿阔叶林样地的土壤养分含量、阳离子交换量明显高于季风常绿阔叶林。2块中山湿性常绿阔叶林样地的土壤总孔隙度大于50%,通透性尚好,其余样地土壤通透性稍差,样地土壤的交换性能较好。  相似文献   

14.
Tropical forests, like boreal forests, are considered key ecosystems with regard to climate change. The temperature sensitivity of soil CO2 production in tropical forests is unclear, especially in eastern Asia, because of a lack of data. The year-round variation in temperature is very small in tropical forests such that it is difficult to evaluate the temperature sensitivity of soil CO2 production using field observations, unlike the conditions that occur in temperate and boreal forests. This study examined the temperature sensitivity of soil CO2 production in the tropical hill evergreen forest that covers northern Thailand, Laos, and Myanmar; this forest has small temperature seasonality. Using an undisturbed soil sample (0.2 m diameter, 0.4 m long), CO2 production rates were measured at three different temperatures. The CO2 production (SR, mg CO2 m−2 s−1) increased exponentially with temperature (T, °C); the fitted curve was SR = 0.023 e0.077T, with Q10 = 2.2. Although still limited, our result supports the possibility that even a small increase in the temperature of this region might accelerate carbon release because of the exponential sensitivity and high average temperature.  相似文献   

15.
不同植被类型土壤理化性质及水源涵养功能研究   总被引:6,自引:0,他引:6  
对丽水实验林场3种植被类型的土壤理化性质和涵养水源的功能进行了实验研究,结果表明,阔叶林、毛竹林土壤有机质含量相对较高,这2种林分可较好改善土壤养分状况;马尾松下的土壤pH值较低,酸性较强,土壤有效P含量高,各植被类型下的林地枯落物持水量大小依次是:阔叶林(16.453t/hm^2)〉毛竹林(7.142t/hm^2)〉马尾松林(2.656t/hm^2);土壤持水量大小依次是:毛竹林〉阔叶林〉马尾松林。  相似文献   

16.
Changes in land use management practices may have multiple effects on microclimate and soil properties that affect soil greenhouse gas (GHG) emissions. Soil surface GHG emissions need to be better quantified in order to assess the total environmental costs of current and possible alternative land uses in the Missouri River Floodplain (MRF). The objective of this study was to evaluate soil GHG emissions (CO2, CH4, N2O) in MRF soils under long-term agroforestry (AF), row-crop agriculture (AG) and riparian forest (FOR) systems in response to differences in soil water content, land use, and N fertilizer inputs. Intact soil cores were obtained from all three land use systems and incubated under constant temperature conditions for a period of 94 days using randomized complete block design with three replications. Cores were subjected to three different water regimes: flooded (FLD), optimal for CO2 efflux (OPT), and fluctuating. Additional N fertilizer treatments for the AG and AF land uses were included during the incubation and designated as AG-N and AF-N, respectively. Soil CO2 and N2O emissions were affected by the land use systems and soil moisture regimes. The AF land use resulted in significantly lower cumulative soil CO2 and N2O emissions than FOR soils under the OPT water regime. Nitrogen application to AG and AF did not increase cumulative soil CO2 emissions. FLD resulted in the highest soil N2O and CH4 emissions, but did not cause any increases in soil cumulative CO2 emissions compared to OPT water regime conditions. Cumulative soil CO2 and N2O emissions were positively correlated with soil pH. Soil cumulative soil CH4 emissions were only affected by water regimes and strongly correlated with soil redox potential.  相似文献   

17.
This research encompasses soil CO2 emission studies from forest and pasture couplets located in northwestern Spain, where two mature oak forest ecosystems partially cleared for pasture 5 or 50?years ago were selected to monitor soil C effluxes during 2?years. The CO2 exchanges in the soil–atmosphere interphase of forest and pasture plots were seasonally determined using portable infrared gas analysers. At the same time, soil samples from both forest and pasture ecosystems were used to carry out long-term incubations under laboratory conditions. Solid-state 13C-NMR with cross-polarization/magic angle spinning was applied to determine the deforestation effects on soil organic matter (SOM) composition. Pasture implantation caused a notable decline of the labile C pool and a decrease in the total soil C, with an increase in both the SOM humification and the relative concentration of phenolic and carboxyl C. After only 5?years, the deforestation caused a general decrease in the soil CO2 emissions with reduced seasonal fluctuations, these effects being even more intense 50?years after clearing. The correlation observed in oak forests between the CO2 measured in situ and the soil temperature, is masked in pasture ecosystems by the high summer soil dryness. After the partial disappearance of soil C stocks caused by deforestation, a new long-term C input/output equilibrium seems to be established, probably due to the joint adaptation of both SOM and microbial communities in the old pasture soil; however, the entire soil C retention capacity remains still degraded as compared with the original uncleared forest ecosystem.  相似文献   

18.
不同森林类型土壤肥力状况研究   总被引:1,自引:0,他引:1  
利用贵州天保工程效益监测网络设置在9个监测县和2个自然保护区的101个固定样地土壤分析结果,按常绿落叶阔叶林、常绿阔叶林、落叶阔叶林、针阔混交林、针叶林、针叶混交林、灌木林、竹林等8种不同森林植被类型在不同基岩发育的森林土壤中营养元素含量,对不同森林土壤的综合肥力进行分析评价。结果显示,不同森林植被类型的森林土壤的A层土中有机质、水解性氮、有效磷、速效钾等各项指标含量与森林植被类型呈正相关趋势且高于B层,B层土随不同基岩不同而有所变化,显示不同森林植被类型对土壤综合肥力的影响大于基岩;不同森林植被类型土壤的综合肥力大小顺序依次为:常绿落叶阔叶林>常绿阔叶林>针针混交林>落叶阔叶林>灌木林>针阔混交林>针叶林>竹类。  相似文献   

19.
Understory vegetation is an important component in forest ecosystems. However, the effects of understory on soil properties in subtropical forests are not fully understood. We thus conducted an experimental manipulative study in two young fast-growing plantations—Eucalyptus urophylla and Acacia crassicarpa—in southern China, by removing understory vegetation in both plantations, to estimate the effects of understory vegetation on microclimate, soil properties and N mineralization. Our data showed that, after 6 months, understory removal (UR) in both plantations had greatly increased soil surface luminous intensity (90–500 cd) and temperature (0.5–0.8 °C); soil moisture was reduced in the Eucalyptus plantation but not in the Acacia plantation. Understory removal also reduced soil organic matter (SOM), but had little impact on other soil chemical properties, including total phosphorus, C/N, pH, exchangeable cations (K, Ca, Mg), available P, ande extractable NH4–N and NO3–N. We found a significant decline of soil N mineralization and nitrification rates in the 0–5 cm soils of UR in both plantations. The decline of SOM in UR may contribute to the lower N transformations rates. This study indicates that a better understanding of understory vegetation effects on soil N cycling would be beneficial to forest management decisions and could provide a critical foundation for advancing management practices.  相似文献   

20.
《林业研究》2021,32(5)
In this study,nitrogen fluxes or flows in litterfall,nitrogen stocks and available nitrogen in soils of two plots representing evergreen broadleaf and Bulgarian fir forests were assessed.Both plots are in good quality sites and for this reason,the litterfall quantities and nitrogen fluxes were relatively high.The woody litterfall flux of nitrogen was significantly higher in the fir forest than in the evergreen broadleaf one.The total nitrogen stock was higher in the soil under the fir forest.However,the percentage of the available nitrogen(ammonium+nitrates) was significantly higher in the upper 20 cm soil layer of the evergreen broadleaf forest in spite of the higher average C/N ratios in the foliar litterfall of the broadleaf forest and insignificant difference of the C/N ratios in all soil layers of the two ecosystems.The microclimatic conditions(higher soil temperatures in the evergreen broadleaf forest) is probable possible cause for this difference.The available nitrogen in the soils and its retranslocation from senescing leaves cover the nitrogen requirements of trees.It is hypothesized that trees may also take up nitrogen from deeper soil layers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号