首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sudden oak death (SOD), caused by the recently discovered non-native invasive pathogen, Phytophthora ramorum, has already killed tens of thousands of native coast live oak and tanoak trees in California. Little is known of potential short and long term impacts of this novel plant–pathogen interaction on forest structure and composition. Coast live oak (Quercus agrifolia) and bay laurel (Umbellularia californica) form mixed-evergreen forests along the northern California coast. This study measured tree mortality over a gradient of disease in three time periods. Direct measurements of current mortality were taken during 2004, representing a point-in-time estimate of present and ongoing mortality. Past stand conditions, c. 1994, were estimated using a stand reconstruction technique. Future stand conditions, c. 2014, were calculated by assuming that, given a lack of host resistance, live trees showing signs of the disease in 2004 would die. Results indicate that coast live oaks died at a rate of 4.4–5.5% year−1 between 1994 and 2004 in highly impacted sites, compared with a background rate of 0.49% year−1, a ten-fold increase in mortality. From 2004 to 2014, mortality rates in the same sites were 0.8–2.6% year−1. Over the entire period, in highly impacted sites, a 59–70% loss of coast live oak basal area was predicted, and coast live oak decreased from 60% to 40% of total stand basal area, while bay laurel increased from 22% to 37%. Future stand structures will likely have greater proportions of bay laurel relative to coast live oak.  相似文献   

2.
Carbon pools in two Quercus petraea (sessile oak) dominated chronosequences under different forest management (high forest and coppice with standards) were investigated. The objective was to study temporal carbon dynamics, in particular carbon sequestration in the soil and woody biomass production, in common forest management systems in eastern Austria along with stand development. The chronosequence approach was used to substitute time-for-space to enable coverage of a full rotation period in each system. Carbon content was determined in the following compartments: aboveground biomass, litter, soil to a depth of 50 cm, living root biomass and decomposing residues in the mineral soil horizons. Biomass carbon pools, except fine roots and residues, were estimated using species-specific allometric functions. Total carbon pools were on average 143 Mg ha−1 in the high forest stand (HF) and 213 Mg ha−1 in the coppice with standards stand (CS). The mean share of the total organic carbon pool (TOC) which is soil organic carbon (SOC) differs only marginally between HF (43.4%) and CS (42.1%), indicating the dominance of site factors, particularly climate, in controlling this ratio. While there was no significant change in O-layer and SOC stores over stand development, we found clear relationships between living biomass (aboveground and belowground) pools and C:N ratio in topsoil horizons with stand age. SOC pools seem to be very stable and an impact of silvicultural interventions was not detected with the applied method. Rapid decomposition and mineralization of litter, indicated by low O-horizon pools with wide C:N ratios of residual woody debris at the end of the vegetation period, suggests high rates of turnover in this fraction. CS, in contrast to HF benefits from rapid resprouting after coppicing and hence seems less vulnerable to conditions of low rainfall and drying topsoil.  相似文献   

3.
We used a 5-decade chronosequence of harvest openings to characterize population and community-level responses of small mammals to forest management targeting oak regeneration in southern Indiana. Live-trapping at 42 different sites allowed modeling of occupancy and relative abundance using environmental covariates while incorporating imperfect detection. Species richness was higher in smaller openings on southwest-facing aspects. Similarity between species richness of different age classes decreased with increasing site age. Eastern chipmunk (Tamias striatus) relative abundance was greater in early seral stages, i.e., at young sites with low basal areas. Relative abundance of white-footed mice (Peromyscus leucopus) exhibited different responses to coarse woody debris on sites versus microsites. Pine voles (Microtus pinetorum) and short-tailed shrews (Blarina brevicauda) were more likely to occupy older sites. We observed a greater relative abundance of short-tailed shrews at sites with steep and northeast-facing slopes. Northeast-facing slopes also resulted in higher short-tailed shrew occupancy rates. Incorporating detection probability enabled us to derive more accurate estimates of relative abundance and, when coupled with a Bayesian framework, permitted the estimation of occupancy for uncommon species. Our estimated responses can be used by forest managers to determine the potential impacts of even-aged and uneven-aged oak management on small mammals, and the statistical methodology we used can be applied even more broadly to improve understanding of wildlife responses to forest management.  相似文献   

4.
Much of the dry tropical forest biome has been converted to agricultural land uses over the past several centuries. However, in conservation areas such as those in the Guanacaste and Tempisque regions of Costa Rica, tropical dry forests are regenerating due to management practices including fire suppression. To better understand the patterns of secondary succession occurring in Costa Rican tropical dry forest, we established 60 20 × 50 m plots in mature and regenerating forests in the Sector Santa Rosa (formerly known as Parque Nacional Santa Rosa) and Palo Verde National Park. Plots were stratified into three plant communities: tropical dry oak forest (Quercus oleoides) (SROAK), Santa Rosa tropical dry forest (SRTDF), and Palo Verde tropical dry forest (PVTDF). In these plots we measured and identified and all individuals >10 cm DBH, measured but did not identify stems <10 cm but taller than 1.3 m, counted woody seedlings (<1.3 m height) and analyzed soil chemical and physical properties.  相似文献   

5.
Forest management is often carried out in different ways, without any appropriate environmental restrictions. Stands of pedunculate oak (Quercus robur L.) in Galicia (NW Spain) have been harvested by alternating high forest and, mainly, coppice forest. However, some totally inappropriate silvicultural treatments have been used, such as thinning of the best trees and inadequate pruning. The objective of the present study was to analyse how environmental characteristics affect the management of oak forests in Galicia. For this, a botanical inventory was carried out in 39 selected stands of Q. robur and a total of 42 parameters were measured, 4 of which were physiographical, 12 climatic, 19 edaphic and 7 silvicultural. In order to analyse the possible relationships among these variables, the silvicultural data were compared with the other data, by canonical correlation analysis. All parameters were correlated with the silvicultural regime, although the correlation was weak for the floristic data. It is therefore evident that the environmental conditions affect how forest stands should be managed, although this does not imply that more profitable use of the stands cannot be achieved than at present, and alternative silvicultural methods must be found to enable appropriate management and conservation of oak stands.  相似文献   

6.
Plant succession and mycorrhizal fungi both play crucial roles in shaping the development of forest ecosystems. However, despite the strong potential for interactions between them, few studies have examined how patterns of forest succession affect mycorrhizal associations that a majority of plant species depend on to alleviate soil resource constraints. Fire suppression in subalpine forests over the last century has changed successional patterns in ways that may have important implications for mycorrhizal associations of forest tree species. To better understand these relationships we conducted a field and greenhouse study in which we examined mycorrhizal infection along gradients of light intensity and soil nutrient availability that develop as aspen becomes seral to conifers under longer fire return intervals. We examined whether ectomycorrhizal associations of quaking aspen (Populus tremuloides), a shade intolerant, early succession species, were more sensitive to light and soil resource limitations than subalpine fir (Abies lasiocarpa), a shade tolerant, late succession species. In the field study, ectomycorrhizal infection of aspen roots was reduced by 50% in conifer dominated stands relative to aspen stands. In contrast, subalpine fir maintained its EM associations regardless of the successional status of the stand. The greenhouse results were consistent with field results and indicated that light limitation was the driving force behind reductions in EM infection of aspen roots in later stages of succession. These results suggest that nutrient limitations constraining early successional species may be exacerbated by losses in EM associations via light limitations created by late successional species. This is one potential mechanism by which climax forest species create a competitive advantage over early successional species and these results suggest that it is likely exacerbated by longer fire return intervals.  相似文献   

7.
This paper discusses determinants of the historical and current spatial extent of the floodplain forest in Leipzig as well as its tree species composition using a GIS-data based delineation model and historical forest inventories for the floodplain forest in the district of Leipzig in Germany from the 19th to the 20th century. We found that the spatial extent of the floodplain forest remained considerably stable in spite of an overall decline in the entire floodplain area from the period where the city first experienced industrialisation in the 19th century to now. However, with river regulations and the alteration of forest management from coppice-with-standards forest to high forest in the 19th century, major changes can be found in the tree species composition of the floodplain forest. Comparing these findings with references from other European floodplain forests we discuss the impact of historical and current forest management as well as the city location's influence on the extent and tree species composition of urban floodplain forests. For urban forest management in particular there is a great need to integrate biophysical, historical and forestry knowledge when predicting future developmental trends.  相似文献   

8.
Plantations of exotic trees for industrial and agricultural purposes are burgeoning in the tropics, and some of them offer the opportunity to study community ecology of animals in a simplified forest setting. We examined bird community assembly in different aged groves of the industrial tree mangium (Acacia mangium) at two plantations in Malaysian Borneo: Sabah Softwoods near Tawau, Sabah, and the Planted Forest Project, near Bintulu, Sarawak. Bird communities were compared among three age-groups of mangium (2-, 5-, and 7-years old) and logged native forest. Mangium rapidly developed into a secondary forest consisting of a wide diversity of understory trees and shrubs. The bird community correspondingly increased in species richness and diversity, and we were able to relate these increases specifically to canopy height, secondary canopy development, and shrub cover. Species of common, small bodied frugivores, nectarivores, and insectivores were diverse in older plantation groves, as were common mid-sized insectivores. However, large, specialized, and normally uncommon taxa (e.g., galliforms, pigeons, hornbills, barbets, midsized woodpeckers, muscicapine flycatchers, and wren babblers) were rare or nonexistent in the plantations. Because we lacked species-specific data on foraging, nesting, and other behaviors of most groups of birds, it was difficult to explain the precise causes of seral diversification in any group except woodpeckers, which have been well studied in Southeast Asia. Thus, in future, particular emphasis needs to be placed on obtaining such data. Industrial plantations, by virtue of their simple structure, variably aged groves, and bird community richness, are good places to gather such data.  相似文献   

9.
Altered fire regimes and increased drought can lead to major vegetation changes, especially in ecotones. A decrease in fire can lead to woody species encroachment in prairies and increasing forest stand density. The threat of global climate change raises questions about potential increases in the length, severity, and incidence of droughts substantially altering species composition. Re-measured upland forests in south-central North America's midcontinent forest-prairie ecotone exhibited major changes in woody species composition and structure over fifty years and successional trajectories appeared to favor invasive Juniperus virginiana L. over the previous dominant Quercus species. The objective of this study was to determine whether climate and fire exclusion affected the recruitment history of dominant woody species in these upland forests located near the xeric western edge of the eastern deciduous forest biome of North America. We removed cores and cross-sections from 992 J. virginiana, Quercus marilandica Münchh. and Q. stellata Wangenh. trees from eleven forest stands located across central and northwest Oklahoma, and determined their ages using standard dendrochronological methods. Recruitment of all species increased following a severe mid-20th century drought, but a rapid increase in J. virginiana recruitment and decrease in Quercus recruitment appeared to be linked to a decrease in fire. Future fire regime changes and increased drought due to global climate change could lead to widespread shifts from Quercus- to Juniperus- dominated forests and cause substantial changes to ecosystem services.  相似文献   

10.
Secondary cavity-nesting birds (SCN), which cannot create their own breeding cavities, are expected to be influenced by habitat alteration caused by forest management practices, but the mechanisms underlying the distribution pattern of SCN subjected to different management systems are poorly known. To improve our knowledge on these mechanisms, we examine cavity abundance, cavity occupation and reproductive performance of SCN in Pyrenean oak (Quercus pyrenaica) forests subjected to two management systems: (i) dense “young forests”, maintained at such stage by clear-cuttings and burns, and (ii) “old forest”, subjected to extensive traditional grazing and scarce firewood extraction by selective cutting. Young forests had considerably lower density of cavities (1.29 ± 0.71 vs 15.09 ± 2.00 cavities ha−1), SCN species (0.18 ± 0.11 vs 0.61 ± 0.07 species ha−1) and nests (0.40 ± 0.27 vs 2.67 ± 0.25 nests of all SCN ha−1) than old forests, indicating that a low availability of cavities may limit SCN assemblages in young oak forests. However, reproductive parameters of great (Parus major) and blue (Cyanistes caeruleus) tits associated with the availability of food (laying date, clutch size, nestling number and weight, adult weight) did not differ between both forest types, suggesting that food supply was not reduced in young forests, at least for tits during the breeding season. Large diameter (up to 170 cm dbh) decayed trees were the most likely to hold cavities, but birds preferred smaller living cavity-trees for nesting (90% of nests in 21-65 cm dbh trees). The preservation of cavity-trees within traditionally managed old oak forests is crucial in providing nesting opportunities to SCN. Besides, the protection of these traditionally managed forests would also benefit to other forest organisms that depend on old and open oak forests.  相似文献   

11.
There has been a recent increase in the frequency and extent of wildfires in interior Alaska, and this trend is predicted to continue under a warming climate. Although less well documented, corresponding increases in fire severity are expected. Previous research from boreal forests in Alaska and western Canada indicate that severe fire promotes the recruitment of deciduous tree species and decreases the relative abundance of black spruce (Picea mariana) immediately after fire. Here we extend these observations by (1) examining changes in patterns of aspen and spruce density and biomass that occurred during the first two decades of post-fire succession, and (2) comparing patterns of tree composition in relation to variations in post-fire organic layer depth in four burned black spruce forests in interior Alaska after 10-20 years of succession. We found that initial effects of fire severity on recruitment and establishment of aspen and black spruce were maintained by subsequent effects of organic layer depth and initial plant biomass on plant growth during post-fire succession. The proportional contribution of aspen (Populus tremuloides) to total stand biomass remained above 90% during the first and second decades of succession in severely burned sites, while in lightly burned sites the proportional contribution of aspen was reduced due to a 40-fold increase in spruce biomass in these sites. Relationships between organic layer depth and stem density and biomass were consistently negative for aspen, and positive or neutral for black spruce in all four burns. Our results suggest that initial effects of post-fire organic layer depths on deciduous recruitment are likely to translate into a prolonged phase of deciduous dominance during post-fire succession in severely burned stands. This shift in vegetation distribution has important implications for climate-albedo feedbacks, future fire regime, wildlife habitat quality and natural resources for indigenous subsistence activities in interior Alaska.  相似文献   

12.
Tropical montane cloud forest has been undergoing a drastic reduction because of its widespread conversion to pastures. Once these forests have been cleared exotic grasses are deliberately introduced for forage production. Exotic grass species commonly form monodominant stands and produce more biomass than native grass species, resulting in the inhibition of secondary succession and tree regeneration. The purpose of this study was to assess the effect of native vs. exotic grass species on the early establishment of two native tree seedlings (Mexican alder, Alnus acuminata and Jalapa oak, Quercus xalapensis) on an abandoned farm in central Veracruz, Mexico. Seedling survival and growth were monitored (over 46 weeks) in relation to grass cover and height, and available photosynthetic active radiation (PAR). More seedlings survived in the presence of the native grass Panicum glutinosum than those growing with the exotic grass Cynodon plectostachyus (92% vs. 48%). The causes of seedling mortality varied between species; Q. xalapensis was affected by herbivory by voles but mainly in the exotic grass-dominated stands, whereas A. acuminata seedlings died due to competition with the exotic grass. A. acuminata seedlings increased more in height in the exotic grass-dominated stands (102 ± 7.8 cm) compared to native grass-dominated stands (51 ± 4.7 cm). Grass layer height, cover and available PAR were correlated (Pearson; p < 0.05). In the exotic grass dominated plots, grass layer height was correlated with the relative height growth rates of Q. xalapensis (Pearson; p < 0.05). These results indicate that the exotic grass may be affecting tree regeneration directly (grass competition) and indirectly (higher herbivory). Passive restoration may occur once P. glutinosum dominated pastures are abandoned. However, when C. plectostachyus dominates, introduction of early and mid successional tree seedlings protected against vole damage is needed.  相似文献   

13.
The rejuvenation ecology of three main tree species in anthropogenic pine (Pinus sylvestris L.) forests is explored in our study. We focus on the scale of micro-plots, which provide the safe sites for tree rejuvenation. We thrive on the multi-factorial relationship of tree establishment and driving ecological factors using a large dataset from pine stands in NE Germany and applying multivariate analyses. The success of the establishment of the investigated focal tree species Fagus sylvatica L., Quercus petraea Liebl. and Pinus sylvestris L. is, on general, mostly affected by three factors, i.e. water balance of the upper soil layers, browsing pressure, and diaspore sources. Our investigations on the micro-plot scale revealed species-specific differences. For beech saplings <50 cm growth height, primarily the availability of water, indicated by available water capacity (AWC), thickness, quality, and structure of the organic layer, silt and humus content in the topsoil, and the lack of a dense competitive herb layer, were identified as most important factors. On the contrary, oak seems hardly be restricted by hydrologic and/or trophic deficits in the topsoil or humus layer. In conclusion and comparison to Fagus sylvatica L., we assume for Quercus petraea Liebl. advantages in natural regeneration processes under sub-continental climate conditions and thus under the scenarios of climate change. Pinus sylvestris L. regeneration in our investigation area occurs only in a narrow niche. We conclude with regard to future forest development and the objective of stand conversion with low management intensity that oak should be favoured within natural stand regeneration.  相似文献   

14.
Litterfall is an important ecological process in forest ecosystems, influencing the transfer of organic matter, carbon (C), nitrogen (N), phosphorous (P) and other nutrients from vegetation to the soil. We examined the production of different litterfall fractions as well as nutrient content and nutrient inputs by senesced and green leaf-litter in a semiarid forest from central Mexico. From September 2006 to August 2007, monthly litter sampling was carried out in monospecific and mixed stands of Quercus potosina and Pinus cembroides. Litterfall displayed a marked bimodal pattern with the largest annual amount (5993 ± 655 kg ha−1 yr−1) recorded in mixed stands, followed by Q. potosina (4869 ± 510 kg ha−1 yr−1), and P. cembroides (3023 ± 337 kg ha−1 yr−1). Leaves constituted the largest fraction of total litterfall reaching almost 60%, while small branches contributed with 20–30%. Overall, N content in leaf-litter was higher while lignin content was significantly lower for Q. potosina than for P. cembroides. Thus, greater litter quality together with higher litter production caused the largest C, N and P inputs to forest soils to occur in monospecific Q. potosina stands. Green leaf fall displayed significantly lower lignin:N and C:N ratios in Q. potosina than P. cembroides suggesting faster decomposition and nutrient return rates by the former. Although we recorded only two green leaf fall events, they accounted for 18% and 11% of the total N and P input, respectively, from leaf-litter during the study period. Apart, from the large spatiotemporal heterogeneity introduced by differences in litter quantity and quality of evergreen, deciduous and mixed stands, green litterfall appears to represent a much more important mechanism of nutrient input to semiarid forest ecosystems than previously considered.  相似文献   

15.
We compared the understory communities (herbs, shrubs, and tree seedlings and saplings) of old-growth and second-growth eastern hemlock forests (Tsuga canadensis) in western Massachusetts, USA. Second-growth hemlock forests originated following clear-cut logging in the late 1800s and were 108–136 years old at the time of sampling. Old-growth hemlock forests contained total ground cover of herbaceous and shrub species that was approximately 4 times greater than in second-growth forests (4.02 ± 0.41%/m2 versus 1.06 ± 0.47%/m2) and supported greater overall species richness and diversity. In addition, seedling and sapling densities were greater in old-growth stands compared to second-growth stands and the composition of these layers was positively correlated with overstory species composition (Mantel tests, r > 0.26, P < 0.05) highlighting the strong positive neighborhood effects in these systems. Ordination of study site understory species composition identified a strong gradient in community composition from second-growth to old-growth stands. Vector overlays of environmental and forest structural variables indicated that these gradients were related to differences in overstory tree density, nitrogen availability, and coarse woody debris characteristics among hemlock stands. These relationships suggest that differences in resource availability (e.g., light, moisture, and nutrients) and microhabitat heterogeneity between old-growth and second-growth stands were likely driving these compositional patterns. Interestingly, several common forest understory plants, including Aralia nudicaulis, Dryopteris intermedia, and Viburnum alnifolium, were significant indicator species for old-growth hemlock stands, highlighting the lasting legacy of past land use on the reestablishment and growth of these common species within second-growth areas. The return of old-growth understory conditions to these second-growth areas will largely be dependent on disturbance and self-thinning mediated changes in overstory structure, resource availability, and microhabitat heterogeneity.  相似文献   

16.
Species choice is potentially an important management decision for increasing carbon stocks in forest ecosystems. The substitution of a slow-growing hardwood species (Quercus petraea) by a fast-growing conifer plantation (Pinus nigra subsp. laricio) was studied in central France. Simulations of carbon stocks in tree biomass were conducted using stand growth models Fagacées for sessile oak and PNL for Corsican pine. The changes in soil carbon were assessed using the Century model and data from two European soil monitoring networks: 16 km × 16 km grid and RENECOFOR. Carbon in wood products was assessed with life cycle analysis and lifespan of final products. However, only carbon stocks and their variation were accounted for: effects of energy-consuming materials or fossil fuel substitution are excluded from the analysis. To compare the growth of these two types of forest stands, an important part of the study was to assess the productivity of both species at the same site, using National Forest Inventory data.  相似文献   

17.
Characterizing the flammability of litter fuels is of major importance for assessing wildland fire ignition hazard. Here we compared the flammability of litter within a mosaic of Quercus suber (cork oak) woodlands and shrublands in a Mediterranean fire-prone area (Maures massif, southeastern France) to test whether the characteristics and the flammability of litter vary with the vegetation types. We tested experimentally the ignitability, the sustainability, the combustibility and the consumability of undisturbed (=non-reconstructed) litter samples with a point-source mode of ignition. Although the frequency of ignition was similar between all the vegetation types, we distinguished four groups having litter of specific composition and flammability: low and sparse shrublands dominated by Cistus species, medium shrublands with cork oak, high Erica shrublands with sparse cork oak woodlands, and mixed mature oak woodlands with Q. suber, Q. ilex and Q. pubescens. As these vegetation types corresponded to a specific range of past fire recurrence, we also tested the effect of the number of fires and the time since the last fire on litter flammability. Litters of plots recurrently burned had low ability to propagate flames and low flame sustainability. We discuss how the recent fire history can modify vegetation and litter flammability, and thus the fire ignition hazard.  相似文献   

18.
The opportunity of cross-pollination in mixed stands of two oak species (cork oak and holm oak) was studied by characterizing individual phenologies of flowering. In the spring of 1998 at one stand consisting of 64 marked trees, there was a period of 19 days when maximal pollen release in one species and stigma receptivity in the other occurred simultaneously, enabling interspecific gene flow in either direction. This happened in spite of an average time separation of 22 days between the two species, reflecting a considerable intraspecific variation in the timings of flowering. Flowering intensities (as estimated from male flower abundance) were high, but fruiting intensities were comparatively low. Shortly after pollination, considerable abortion of female flowers and early fruits was recorded. In 2000, the interspecific overlap of phenologies was drastically reduced due to a delay in cork oak flowering. On the other hand, the individual timings were repeatable for most trees, at least in holm oak. Two other mixed stands were subject of parallel studies, with similar results in all traits except for a less dramatic reduction in fruiting intensities. In spite of the high opportunity for cross-pollination in 1998, and given the lack of hybrids among the progenies from the subsequent fruiting season [Oliveira, P., Custódio, A.C., Branco, C., Reforço, I., Rodrigues, F., Varela, M.C., Meierrose, C., 2003. Hybrids between cork oak and holm oak: isoenzyme analysis. Forest Genet. 10, 283–298], it can be concluded that the prerequisite of cross-pollination is clearly insufficient for hybridization to succeed. Post-pollination processes must play an important role in the maintenance of reproductive isolation between the two species.  相似文献   

19.
Old growth stands of boreonemoral spruce (Picea abies) forests frequently have a shrub layer dominated by hazel (Corylus avellana) – a species which is generally excluded in intensively managed forests due to clearcutting activities. We sampled understory species composition, richness and biomass, as well as environmental variables beneath these two species and also within forest ‘gaps’ in order to determine the effect of overstory species on understory vegetation. Species richness and biomass of herbaceous plants was significantly greater under Corylus compared with plots under Picea and in forest gaps. Indicator species analysis found that many species were significantly associated with Corylus. We found 45% of the total species found under woody plants occurred exclusively under Corylus. Light availability in spring and summer was higher in gaps than under forest cover but no difference was found between plots under Corylus and Picea. Hence, reductions in light availability cannot explain the differences in species composition. However, Ellenberg indicator values showed that more light demanding species were found under Corylus compared to Picea, but most light demanding species were found in gaps. The litter layer under Picea was three times thicker than under Corylus and this may be an important mechanism determining differences in understory composition and richness between the woody species. The presence of Corylus is an important factor enhancing local diversity and small-scale species variation within coniferous stands. Hence, management should maintain areas of Corylus shrubs to maintain understory species diversity in boreal forests.  相似文献   

20.
Forest grazing has been recognised as being a useful tool in fire-risk reduction, in addition to having the potential to preserve or enhance forest biodiversity if managed correctly. Concern for natural regeneration of forest trees in Europe has also prompted interest in the effects of large herbivores on seedling and sapling growth and mortality. An investigation was carried out into sapling damage and density of natural regeneration of oak (Quercus robur) in a mature, pony-grazed, Pinus radiata forest in Galicia, NW Spain under two different grazing regimes (continuous and rotational). In all treatments significantly more oak seedlings and saplings were recorded in areas of grass sward than areas dominated by taller ground flora species. Damage to oak saplings was assessed from the form (height and canopy) relative to stem diameter. The height and average canopy diameter of similar-aged saplings were found to be significantly greater in ungrazed (control) than both continuous and rotationally grazed treatments. Height and canopy diameters of similar-aged oak were not significantly different between the two grazing treatments. Significant differences were observed in tree form, with unbrowsed saplings having the greatest height to canopy width ratio and those in the continuously browsed plots having the smallest. An obvious decrease in the goodness of fit (R2) of regression analyses were found in continuously grazed areas compared to rotational and control plots for both height and canopy data. The differences in damage observed were not significantly different enough to suggest one method of grazing over the other as being better for minimising sapling damage. Management requirements are more likely to dictate grazing regime. Overall, stock density is likely to have a more significant effect on damage than stocking system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号