首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Natural regeneration in canopy gaps is a key process affecting long-term dynamics of many forests, including northern hardwood forests. The density and composition of regenerating trees are often highly variable, reflecting sensitivity to a suite of driving factors operating at different scales (e.g., harvest gap to regional landscape), including production of seeds, physical characteristics of gaps and stands, competition with non-tree vegetation, and browsing by animals. Multivariate analyses over broad geographic areas provide insights into the relative effects of these factors and permit exploration of spatial patterns in regeneration. We examined the effects of gap-, stand-, and landscape-scale factors on densities of tree seedlings (<1 m tall) and saplings (1-2 m tall) in 59 selection-harvested northern hardwood stands located across a 4500 km2 region of Michigan's Upper Peninsula. We used Bayesian multilevel modeling to account for the hierarchical structure of the data and assess uncertainty in parameter estimates. Sugar maple (Acer saccharum) saplings were absent from 61% of 154 m2 plots centered in harvest gaps (n = 347) despite its high shade tolerance and overstory dominance, but densities were high in other gaps. Densities of sugar maple seedlings and/or saplings were negatively associated with a combination of greater stand-scale densities of white-tailed deer (Odocoileus virginianus), greater gap-scale cover of non-tree vegetation, and lower gap-scale light availability, with deer density having the greatest effect. Densities of unpalatable and commercially less valuable ironwood (Ostrya virginiana), the second most common regeneration species, were positively related to gap-scale seed-production potential but were unrelated to factors affecting sugar maple. Ironwood tended to replace sugar maple saplings in areas with high deer density. At the landscape scale, densities of sugar maple seedlings and saplings decreased with decreasing latitude and snow depth and increasing winter deer densities. These inverse spatial patterns suggest that deer herbivory can lead to landscape-scale variation in regeneration success. However, the spatial distribution of habitat types (a proxy for soil moisture and nutrient conditions) confound this observation, with higher densities of sugar maple generally located on stands with less nutrient-rich habitat types. Results demonstrate that combinations of factors operating at different scales, and with different relative magnitudes of impact, contribute to high variation in regeneration composition and density following timber harvest. Selection silvicultural practices, as currently applied, do not ensure regeneration of desirable species; practices might require modifications in general (e.g., increasing gap size) and to match them to regionally varying factors like deer density.  相似文献   

3.
One of the arguments against using prescribed fire to regenerate oak (Quercus spp.) forests is that the improvement in species composition of the hardwood regeneration pool is temporary and multiple burns are necessary to achieve and maintain oak dominance. To explore this concern, I re-inventoried a prescribed fire study conducted in the mid-1990s to determine the longevity of the effects of a single prescribed fire on hardwood regeneration. The initial study was conducted in three oak shelterwood stands in central Virginia, USA. In 1994, each stand was divided into four treatments (spring, summer, and winter burns and a control) and the hardwood regeneration was inventoried before the fires. During the burns, fire intensity was measured and categorized in each regeneration sampling plot. Second-year postfire data showed marked differences in species mortality rates, depending on season-of-burn and fire intensity: oak and hickory (Carya spp.) regeneration dominated areas burned by medium- to high-intensity fire during the spring and summer while yellow-poplar (Liriodendron tulipifera) and red maple (Acer rubrum) seedlings dominated unburned areas and all areas treated with low-intensity fire regardless of season-of-burn. The treatments were re-inventoried in 2006 and 2007 to determine whether these fire effects were still present. The new data show that the species distributions by season-of-burn and fire intensity found in 1996 still existed 11 years after the treatments. The fact that fire effects in oak shelterwood stands can last at least a decade has important management implications for resource professionals interested in sustaining oak forests in the eastern United States.  相似文献   

4.
Upland hardwood stands on mesic, escarpment-oriented sites on the Cumberland Plateau region of northeastern Alabama provide a myriad management opportunities. Stands are primarily managed for Quercus, but the high species diversity allows for management that targets multiple species. Stand composition is unique in that dominant species include shade tolerant species such as Acer saccharum, intermediate tolerant Quercus spp. and Carya spp., and intolerant Liriodendron tulipifera. Three replications of five levels of disturbance were created to assess species compositional changes; disturbances included three levels of harvest intensity, a mid-story herbicide treatment, and a control. After eight growing seasons, there were no discernable differences in species richness, diversity or evenness. Importance values based on relative basal area and relative density also changed little, except for clearcuts where L. tulipifera greatly increased. An initial gradient in basal area, canopy cover, and light created by harvesting or thinning dissipated following five growing seasons. Options exist for future stand management, including promoting two-aged or uneven-aged systems. Maintenance of Quercus will require additional tending.  相似文献   

5.
Virgin beech Fagus orientalis forests in northern Iran provide a unique opportunity to study the disturbance regimes of forest ecosystems without human influence. The aim of this research was to describe characteristics of natural canopy gaps and gap area fraction as an environmental influence on the success of beech seedling establishment in mature beech stands. All canopy gaps and related forest parameters were measured within three 25 ha areas within the Gorazbon compartment of the University of Tehran’s Kheyrud Experimental Forest. An average of 3 gaps/ha occurred in the forest and gap sizes ranged from 19 to 1250 m2 in size. The most frequent (58%) canopy gaps were <200 m2. In total, canopy gaps covered 9.3% of the forest area. Gaps <400 m2 in size were irregular in shape, but larger gaps did not differ significantly in shape from a circle. Most gaps (41%) were formed by a single tree-fall event and beech made up 63% of gap makers and 93% of gap fillers. Frequency and diversity of tree seedlings were not significantly correlated with gap size. The minimum gap size that contained at least one beech gap-filling sapling (<1.3 m tall) was 23.7 m2. The median gap size containing at least one beech gap-filling sapling was 206 m2 and the maximum size was 1808 m2. The management implications from our study suggest that the creation of small and medium sized gaps in mixed beech forest should mimic natural disturbance regimes and provide suitable conditions for successful beech regeneration.  相似文献   

6.
  • ? In mixed-species forest stands, large losses in tree species diversity often occur during the regeneration phase. In a former coppice-with-standards, we investigated whether the limiting stage in the recruitment process of advance regeneration is the immediate seedling response to canopy release. Experimental canopy gaps were opened and the survival and growth of advance seedlings (Fagus sylvatica, Acer pseudoplatanus, Acer campestre, Acer platanoides) growing in the gaps or under closed canopy were monitored for three years.
  • ? All species responded positively and rapidly to canopy release. Survival was not affected by gap opening. Diameter increment after gap opening was similar across species, and height increment was greater for Acer platanoides and for Acer pseudoplatanus. Post-release diameter and height growth were mainly determined by pre-release seedling size. Competition from neighbouring seedlings did not affect growth in the three years following canopy opening.
  • ? In the recruitment process of F. sylvatica and Acer sp. advance regeneration, the recovery from canopy release did not appear as a limiting step that would filter against some species. Pre-release size was the main factor accounting for post-release growth and is probably a major determinant of long-term seedling dominance.
  •   相似文献   

    7.
    Altered fire regimes and increased drought can lead to major vegetation changes, especially in ecotones. A decrease in fire can lead to woody species encroachment in prairies and increasing forest stand density. The threat of global climate change raises questions about potential increases in the length, severity, and incidence of droughts substantially altering species composition. Re-measured upland forests in south-central North America's midcontinent forest-prairie ecotone exhibited major changes in woody species composition and structure over fifty years and successional trajectories appeared to favor invasive Juniperus virginiana L. over the previous dominant Quercus species. The objective of this study was to determine whether climate and fire exclusion affected the recruitment history of dominant woody species in these upland forests located near the xeric western edge of the eastern deciduous forest biome of North America. We removed cores and cross-sections from 992 J. virginiana, Quercus marilandica Münchh. and Q. stellata Wangenh. trees from eleven forest stands located across central and northwest Oklahoma, and determined their ages using standard dendrochronological methods. Recruitment of all species increased following a severe mid-20th century drought, but a rapid increase in J. virginiana recruitment and decrease in Quercus recruitment appeared to be linked to a decrease in fire. Future fire regime changes and increased drought due to global climate change could lead to widespread shifts from Quercus- to Juniperus- dominated forests and cause substantial changes to ecosystem services.  相似文献   

    8.
    Gap formation in forests can have impacts on forest ecosystems beyond the physical boundary of the canopy opening. The extent of gap influence may affect responses of many components of forest ecosystems to gap formation on stand and landscape scales. In this study, spatial extent of gap influence on understory plant communities was investigated in and around 0.1 and 0.4 ha harvested canopy gaps in four young Douglas-fir (Psuedotsuga menziesii) dominated stands in western Oregon. In larger gaps, the influence of gap creation on understory plant communities in surrounding forests was minimal. The area showing evidence of gap influence extended a maximum of 2 m beyond the edge of the canopy opening, suggesting that the area affected by gap creation did not differ greatly from the area of physical canopy removal. In smaller gaps, influence of the gap did not extend to the edge of the canopy opening. In fact, the area in which understory vegetation was influenced by gap creation was smaller than the physical canopy opening. Gap influence appears to be limited to areas where ruderal or competitor species are able to replace stress-tolerator species, likely due to elimination or reduction of these species by physical disturbance or competition. The limited gap influence extent exhibited here indicates that gap creation may not have a significant effect on understory plant communities beyond the physical canopy opening. This suggests a limited effectiveness of gaps, especially smaller gaps, as a tool for management of understory plant diversity, and perhaps biodiversity in general, on a larger scale.  相似文献   

    9.
    Species richness and evenness have greatly declined in oak–hickory forests in the central hardwood region in the U.S.A. in the past 100 years due to the rapid population growth of Acer saccharum. This study used a 50-year record of spatial dynamics to examine how demographic processes, particularly recruitment, may have contributed to this increase in an old-growth forest remnant, Brownfield Woods, Urbana, Illinois, U.S.A. The impact of canopy disturbance, including the outbreak of Dutch elm disease, on this increase was also evaluated. Historical maps of trees (≥7.6 cm DBH) from 1951, 1988, and 2001 in a 180 m × 280 m area were used to develop a series of univariate Ripley's L(d) functions to study changes in spatial patterns of three size classes of A. saccharum over time. Bivariate Ripley's L(d) functions were also utilized to evaluate spatial associations between recruitment and canopy disturbance. Our results indicated that A. saccharum was aggregated at most spatial scales up to 80 m during 1951–2001. Such aggregation arose mainly from small individuals. Furthermore, newly recruited individuals were aggregated at multiple spatial scales, and were significantly associated with canopy disturbance in general, as well as gaps created by Ulmus trees killed by Dutch elm disease. The aggregation of the 1951 initial group of small individuals changed via mortality to a random distribution over time. The results indicate that tree deaths caused by disturbances of different scales and types were the main cause of increased recruitment of A. saccharum in Brownfield Woods. The occurrence of Dutch elm disease further accelerated its population increase. This study demonstrated a direct spatial link between recruitment of A. saccharum and disturbance, and provided a long-term case study of a population explosion.  相似文献   

    10.

    Context

    Implementing nature-based silviculture requires understanding the structural and compositional changes that occur in forested stands under known disturbance types and intensities.

    Aims

    The objectives were to assess the (a) resistance of hardwood forests to change, (b) their trajectory of recovery following disturbance, and (c) how closely resulting forests resemble original forests.

    Methods

    We characterized tree structure and composition at three points in time (pre-disturbance, 1-year post-disturbance, and ~15 years following disturbance) along a harvesting disturbance gradient created by removing trees in different forest canopy strata.

    Results

    Significant differences to pre-disturbance conditions were noted immediately post-harvest for tree basal area, density, species richness, and tree species composition; treatment differences were observed for all parameters except diversity. Plots exposed to the least extreme harvesting disturbances (cutting small and intermediate trees) had returned to pre-disturbance conditions for most parameters after 15 years, while the most extreme harvesting disturbance (cutting large trees) had not yet recovered.

    Conclusions

    Although not initially resistant, Central Appalachian eastern hardwoods are fairly resilient to the removal of trees in the subcanopy or a mixture of the subcanopy and canopy; only the removal of solely canopy trees (i.e., high grading) and complete removal (i.e., clearcutting) appear to impose harvesting disturbances to which these forests may not be resilient.  相似文献   

    11.
    12.
    Eastern white pine (Pinus strobus L.) is a moderately shade-tolerant species that co-occurs with hardwood tree species in many forests of the eastern United States, as well as in pure stands. The species is valued for its timber, as well as for wildlife and recreation. Regeneration of this species is somewhat unpredictable and often occurs in patches of similarly-aged cohorts. We described the regeneration patterns of this species and examined their relation to environmental variables within hardwood forests of southwestern Virginia, USA. An average of 5.3 white pine patches per ha were observed in this study. The majority of patches consisted of saplings (85%), with 9% of patches in pole size classes, and 6% in seedling size classes. The average density of patches was 43.5 stems with an average age of 20 years. The size of patches averaged 80.6 m2. The total density of seedlings and the number of regeneration patches of all sizes of regeneration (seedlings, saplings, and poles) in plots was related to the surrounding density of large white pine trees (potential seed trees). The density of seedlings or patches was not significantly related to current vegetation cover or soil surface cover variables, but more than half of regeneration patches were located in or adjacent to old canopy gaps, most of which were old logging gaps. While seedling regeneration may occur within the understory of these forests near seed trees, advancement to the sapling and pole stage appears to be associated with canopy gap formation.  相似文献   

    13.
    Canopy gaps play a significant role in maintaining structure and composition of tropical forests. This study was carried out in tropical evergreen forests of central Western Ghats in India to understand the influence of canopy gap size and the relationship of gap regime attributes to diversity measures and regeneration. The average gap size in the study area was found to be 396 m2 and around half of gaps were 4–8 years old. Gaps created by natural single tree fall were smaller in size but significantly higher in number. Diversity and regeneration of woody species were compared with canopy gaps and intact vegetation. Species richness and diversity was higher in gaps than in intact vegetation. Macaranga peltata, a shade intolerant species dominated gaps while intact vegetation was dominated by shade tolerant Kingiodendron pinnatum.Gap size significantly influenced species diversity and regeneration. Gap area and age were significantly and negatively correlated with diversity measures but positively correlated with regeneration. Among all the attributes of gaps, regeneration was significantly positively correlated with light intensity. Gaps maintained species diversity and favored regeneration of woody species. In addition to gap size and age, other gap ecological attributes also affected species diversity and regeneration.  相似文献   

    14.
    Tree seedling recruitment was monitored after various types of logging in mixed conifer and deciduous forests of northern British Columbia, Canada. Predicting tree seedling recruitment after disturbance is fundamental to understanding forest dynamics and succession and is vital for forest management purposes. Seedling recruitment success in multi-species northern latitude forests varied as a function of mature tree canopy cover, gap size and position in a gap. Recruitment was abundant within canopy gaps across a wide range of gap sizes (20–5000 m2), but recruit numbers dropped off rapidly under the closed forest canopy and in the open conditions of clearcuts. Inside canopy gaps, recruitment was similar by gap position in small gaps (<300 m2) but, in these northern latitude forests, exhibited a trend of increasing density from the sunny north to shady south end of larger gaps. This was true for all tree species regardless of their shade tolerance ranking. There was no evidence of gap partitioning by any of the tree species during the regeneration phase suggesting that adaptation to the subtleties of gap size during early recruitment are not well developed in these tree species. Favorable locations for emergence and early establishment of germinants were less favorable for growth and survival of established seedlings, i.e. the regeneration niches in these forests were discordant. Tree abundance and species diversity appears to be controlled more by differentiation among growth and survival niches than by the regeneration niches. From the perspective of forest management, abundant natural regeneration of all the dominant tree species of these mixed-species forests can be obtained after partial cutting.  相似文献   

    15.
    Canopy closure and soil characteristics are commonly used to explain regeneration distribution at local and regional scales, although very few studies take both factors into account. The combination of environmental variables defined at broad and local scales is necessary to provide regeneration distribution models with a small resolution (tree scale) that are valid on a large spatial scale (regional scale). Our aim was to quantify how gap partitioning among tree species at the seedling stage varies across large soil and stand type gradients. Regeneration inventories performed 5 years after gap creation were used to analyse the combined effects of soil type, stand type, and position within canopy gaps on the regeneration development of eight western European broadleaved species: Acer campestre, Acer pseudoplatanus, Betulapendula, Carpinusbetulus, Fagussylvatica, Fraxinusexcelsior, Quercus sp., and Salixcaprea. A clear pattern of gap partitioning among the eight species was observed. All species had higher density at the gap edge except birch and willow showing the highest presence in gap centres. For all species, the probability of presence of tall seedlings (height > 0.5 m) increased from gap edge to gap centre. Small seedlings presented the opposite trend except birch and willow. Soil pH influenced probability of presence for each species, but did not affect the pattern of gap partitioning among species. Both local (location within the gap) and regional (soil pH and stand type) scale factors affect recruitment distribution and are thus necessary to predict seedling distribution. The models developed may be used to determine the optimal gap size in order to obtain a given species composition according to soil and stand type conditions.  相似文献   

    16.
    Gap-associated spruce (Picea abies (L.) Karst.) regeneration in Sphagnum-Myrtillus stands of south taiga forests (Central Forest Biosphere reserve, Tver region, Russia) was studied to evaluate the role of different disturbances in spruce dynamics. Sampled gaps (n=70) ranged from 40 m2 to 1.7 ha in size, and from 1 to 70 years since disturbance moment. Formation of gaps lead to increase in the number of stems per ha in all gap size classes (small: 40–200 m2, medium: 200–3000 m2, and large: >3000 m2 gaps). Spruce was the most important species in gap refilling, although its role was not the same in different gap classes. The highest values of relative abundance (compared to other species) were recorded in small gaps, and much lower values – in middle and large gaps. However, as refilling of gaps proceeded, spruce showed rather active regeneration in middle and large gaps and partly regained its abundance in middle-age disturbances. In general, all types of gaps studied supported spruce regeneration into the forest canopy. Almost perfect correlation between predicted outcome of spruce dynamics in gaps and its current role in the canopy of Sphagnum-Myrtillus stands suggests a good adaptation of this species to the current disturbance regime and a steady state of the these forests.  相似文献   

    17.
    Inonotus dryadeus is newly reported in eastern Canada (Ontario) on Acer platanoides and Acer saccharinum, both new hosts, and Ulmus americana. The host range, incidence, and available distributional data in continental North America are summarized in a table. The fungus occurs primarily on Quercus, Abies, and Tsuga. Occasionally, it is found on Picea and Pinus as well as many other hardwood trees. Colder climates and host differences in the boreal forests may be limiting distributional factors. Inonotus dryadeus appears to favour very old trees. The maximum known width of the fruiting body is revised upward to 74.9 cm.  相似文献   

    18.
    闽北毛竹林枯落物层持水功能研究   总被引:11,自引:3,他引:11       下载免费PDF全文
    以杉木林和常绿阔叶林为对照,对闽北典型毛竹林(杉竹混交林、毛竹纯林、竹阔混交林)林下枯落物储量、持水特性及其对降雨的拦蓄能力进行研究,结果表明:(1)各林分未分解层、半分解层和已分解层枯落物储量、最大持水量和有效拦蓄差异较大,但均以半分解层最高,分解层次之,未分解层最小;杉木纯林枯落物总储量、最大持水量和有效拦蓄均最高,分别为14.6 t·hm-2、2.668 mm和1.43mm,竹阔混交林次之,分别为7.0 t·hm-2、1.298 mm和0.76 mm,毛竹纯林最低,分别仅为4.7 t·hm-2、0.916 mm和0.58 mm。(2)5种林分各层枯落物持水量与浸泡时间的关系为:S=k ln(t)+p,在0 - 2 h内,枯落物持水量迅速增加,此后增加速度逐渐减缓;其吸水速率与浸泡时间的关系为:V=at-1+b,在0 - 1 h内,枯落物吸水速率迅速下降,2 h后下降速度逐渐减缓。(3)竹阔混交林枯落物持水能力虽小于杉木纯林但在竹林中最强,对此,在竹林改造和竹林经营过程中应加以重视。  相似文献   

    19.
    Abstract

    In this study, I defined a gap as a small opening formed in a forest canopy (area < 0.1 ha) and tried to synthesize gap-disturbance regimes of primary mature stands in different forest types of Japan, such as warm temperate evergreen broad-leaved (4 stands in 3 localities), cool temperate deciduous broad-leaved (10 in 5) and subalpine evergreen coniferous (3 in 1) forests. Mean percentage of the total gap area within the total forested area (percentage gap area) in each forest type was 17.0% in warm temperate (number of surveyed gaps was 161), 13.8% in cool temperate (278 gaps), and 8.0% in subalpine (100 gaps) forests. Mean gap density (ha-1) and mean gap size (m2) were 19.5 and 77.1 in warm temperate, 16.4 and 92.0 in cool temperate, and 19.1 and 41.9 in subalpine forests, respectively. These figures indicate that gap density is not substantially different among the forest types, but the mean gap size of subalpine forests is smaller than the other two, resulting in lower percentage gap area of this forest type. The gap size distributions were similar among the forest types; smaller gaps were much more frequent than larger ones, and gaps > 400 rrr were rare in warm temperate and cool temperate forests. In subalpine forests gaps > 200 m2 were rare. Gaps formed by multiple gapmakers comprised 19.9% of all gaps in warm temperate, 9.9% in cool temperate, and 44.9% in subalpine forests, which implies that gap formation by simultaneous tree fall or gap enlargement is more frequent in subalpine forests. Canopy trees died less often by uprooting in every forest type; dominant mode for the death of canopy trees was by leaving standing-dead or with broken trunks in every forest type. Since typhoons are obviously a chief agent of forest disturbance in Japan, frequency or magnitude of typhoon disturbance may influence these differences in the gap-disturbance regimes. In addition to the disturbance, tree architectures seem to affect some of these differences; narrower crown size of conifers compared with broad-leaved trees is considered one major cause for smaller gap size of the conifer forest.  相似文献   

    20.
    It remains unclear whether or not creating gaps in planted forests can increase the plant species composition, structure, and biodiversity, and also whether it can be helpful for restoring planted forests (to a more natural state). Based on a comparison of species composition and structure among forest patches, small gaps (4-25 m2), medium gaps (25-150 m2) and large gaps (150-450 m2), we found that (1) creating gaps enhanced vascular plant diversity. Both the species richness and Shannon diversity indices of small, medium and large gaps were significantly higher than in the understory. The pattern of increasing diversity of vascular plants with gap creation could be partly attributed to the emergence of novel shade intolerant species in gaps. (2) Creating gaps favored the colonization and regeneration of native species. Gap size influenced not only the emergence and density of individuals of different species, but also the emergence of different life form types. Small gaps promoted the regeneration of some shrub species, such as Ostryopsis davidiana, Rosa hugonis, and Forsythia suspense, leading to these species becoming canopy dominants early on in succession. The medium and large gaps favored the growth of tree species, such as Populus davidiana and Betula platyphylla (early successional stage), and Quercus liaotungensis and Pinus tabulaeformis (later successional phase). (3) The canonical correspondence analysis showed that plant species composition and distribution were mainly influenced by gap size and slope aspect, and that the recorded plant species could be divided into three life forms (trees, shrubs and herbs) on the biplot diagram. (4) Finally, creating gaps provided opportunities not only for native pioneer species in the early successional stage, but also for climatic climax species to grow to canopy dominants in later successional phases, suggesting that a more natural forest will develop with plant succession. Gap size plays an important role in plant regeneration, and it could be used to produce desired successional communities in near natural management for planted forests.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号