首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Understanding long-term changes in forest ecosystem carbon stocks under forest management practices such as timber harvesting is important for assessing the contribution of forests to the global carbon cycle. Harvesting effects are complicated by the amount, type, and condition of residue left on-site, the decomposition rate of this residue, the incorporation of residue into soil organic matter and the rate of new detritus input to the forest floor from regrowing vegetation. In an attempt to address these complexities, the forest succession model LINKAGES was used to assess the production of aboveground biomass, detritus, and soil carbon stocks in native Eucalyptus forests as influenced by five harvest management practices in New South Wales, Australia. The original decomposition sub-routines of LINKAGES were modified by adding components of the Rothamsted (RothC) soil organic matter turnover model. Simulation results using the new model were compared to data from long-term forest inventory plots. Good agreement was observed between simulated and measured above-ground biomass, but mixed results were obtained for basal area. Harvesting operations examined included removing trees for quota sawlogs (QSL, DBH >80 cm), integrated sawlogs (ISL, DBH >20 cm) and whole-tree harvesting in integrated sawlogs (WTH). We also examined the impact of different cutting cycles (20, 50 or 80 years) and intensities (removing 20, 50 or 80 m3). Generally medium and high intensities of shorter cutting cycles in sawlog harvesting systems produced considerably higher soil carbon values compared to no harvesting. On average, soil carbon was 2–9% lower in whole-tree harvest simulations whereas in sawlog harvest simulations soil carbon was 5–17% higher than in no harvesting.  相似文献   

2.
Harvest impacts on soil carbon storage in temperate forests   总被引:1,自引:0,他引:1  
Forest soil carbon (C) storage is a significant component of the global C cycle, and is important for sustaining forest productivity. Although forest management may have substantial impacts on soil C storage, experimental data from forest harvesting studies have not been synthesized recently. To quantify the effects of harvesting on soil C, and to identify sources of variation in soil C responses to harvest, we used meta-analysis to test a database of 432 soil C response ratios drawn from temperate forest harvest studies around the world. Harvesting reduced soil C by an average of 8 ± 3% (95% CI), although numerous sources of variation mediated this significant, overall effect. In particular, we found that C concentrations and C pool sizes responded differently to harvesting, and forest floors were more likely to lose C than mineral soils. Harvesting caused forest floor C storage to decline by a remarkably consistent 30 ± 6%, but losses were significantly smaller in coniferous/mixed stands (−20%) than hardwoods (−36%). Mineral soils showed no significant, overall change in C storage due to harvest, and variation among mineral soils was best explained by soil taxonomy. Alfisols and Spodosols exhibited no significant changes, and Inceptisols and Ultisols lost mineral soil C (−13% and −7%, respectively). However, these C losses were neither permanent nor unavoidable. Controls on variation within orders were not consistent, but included species composition, time, and sampling depth. Temporal patterns and soil C budgets suggest that forest floor C losses probably have a lesser impact on total soil C storage on Alfisols, Inceptisols, and Ultisols than on Spodosols, which store proportionately large amounts of C in forest floors with long C recovery times (50–70 years). Mineral soil C losses on Inceptisols and Ultisols indicate that these orders are vulnerable to significant harvest-induced changes in total soil C storage, but alternative residue management and site preparation techniques, and the passage of time, may mitigate or negate these losses. Key findings of this analysis, including the dependence of forest floor and mineral soil C storage changes on species composition and soil taxonomic order, suggest that further primary research may make it possible to create predictive maps of forest harvesting effects on soil C storage.  相似文献   

3.
Interest in the use of bioenergy is increasing because of the need to mitigate climate change, the increasing costs and finite supply of fossil fuels, and the declining price of lumber and paper. Sound bioenergy policies must be informed by accurate estimates of potential feedstock production, rights to the production, social values and economics. Two of the main sources of bioenergy feedstock from forests are (i) harvesting residue and (ii) dead wood resulting from natural disturbances (i.e. standing dead timber). We modeled the production of bioenergy feedstock from these two sources from 2005 to 2020 for Canada's managed forest south of 60° N so that this information can be used in provincial and national strategic planning. Published estimates of harvesting residue vary widely, and our objective was to provide more precise estimates based on new forest inventory data and regional modeling. Natural disturbances result in very large quantities of dead wood on the landscape, but estimates of future stocks and annual production have not previously been made. Our estimates included a 50% discount factor to net-down theoretically available quantities to a more realistic estimate of potential ecologically sustainable bioenergy feedstock. The total future annual production averaged 51 ± 17 Tg year−1 from natural disturbances and 20 ± 0.6 Tg year−1 from clearcut harvesting residues. Harvesting residue for the area logged varied spatially from a low of 1.0 ± 0.77 kg m−2 year−1 to a high of 6.7 ± 0.1 kg m−2 year−1. Dead wood production due to insects was forecast to peak in the Montane Cordillera of British Columbia (BC) at 16.7 Tg year−1 due to the current mountain pine beetle outbreak. Total dead wood production due to fire was highest in the western portion of the boreal forest (3.6 Tg year−1 in the Boreal Shield of Saskatchewan), in part due to the high frequency of fires in these ecosystems and the large area of western boreal forest, but the highest density production was in BC: >9 kg m−2 year−1 in the burned area. Our results showed that the dead wood stocks of 331 Tg oven-dry matter potentially available for bioenergy in 2020 are much smaller than the 3100 ± 84 Tg of dead wood stocks estimated based on ecosystem dynamics. While bioenergy use will accelerate the release of greenhouse gases compared to on-site decay, the energy is renewable and can be used as a substitute for fossil fuels. The net benefit to the atmosphere of forest bioenergy use is affected by many factors, and future research should further assess which sustainable wood-based bioenergy strategies yield the greatest net greenhouse gas benefits over the different time scales needed for post-disturbance forest recovery.  相似文献   

4.
We compared soil organic carbon (SOC) stocks and stability under two widely distributed tree species in the Mediterranean region: Scots pine (Pinus sylvestris L.) and Pyrenean oak (Quercus pyrenaica Willd.) at their ecotone. We hypothesised that soils under Scots pine store more SOC and that tree species composition controls the amount and biochemical composition of organic matter inputs, but does not influence physico-chemical stabilization of SOC. At three locations in Central Spain, we assessed SOC stocks in the forest floor and down to 50 cm in the mineral in pure and mixed stands of Pyrenean oak and Scots pine, as well as litterfall inputs over approximately 3 years at two sites. The relative SOC stability in the topsoil (0-10 cm) was determined through size-fractionation (53 μm) into mineral-associated and particulate organic matter and through KMnO4-reactive C and soil C:N ratio.Scots pine soils stored 95-140 Mg ha−1 of C (forest floor plus 50 cm mineral soil), roughly the double than Pyrenean oak soils (40-80 Mg ha−1 of C), with stocks closely correlated to litterfall rates. Differences were most pronounced in the forest floor and uppermost 10 cm of the mineral soil, but remained evident in the deeper layers. Biochemical indicators of soil organic matter suggested that biochemical recalcitrance of soil organic matter was higher under pine than under oak, contributing as well to a greater SOC storage under pine. Differences in SOC stocks between tree species were mainly due to the particulate organic matter (not associated to mineral particles). Forest conversion from Pyrenean oak to Scots pine may contribute to enhance soil C sequestration, but only in form of mineral-unprotected soil organic matter.  相似文献   

5.
We measured the change in above- and below-ground carbon and nutrient pools 11 years after the harvesting and site preparation of a histic-mineral soil wetland forest in the Upper Peninsula of Michigan. The original stand of black spruce (Picea mariana), jack pine (Pinus banksiana) and tamarack (Larix laricina) was whole-tree harvested, and three post-harvest treatments (disk trenching, bedding, and none) were randomly assigned to three Latin square blocks (n = 9). Nine control plots were also established in an adjoining uncut stand. Carbon and nutrients were measured in three strata of above-ground vegetation, woody debris, roots, forest floor, and mineral soil to a depth of 1.5 m. Eleven years following harvesting, soil C, N, Ca, Mg, and K pools were similar among the three site preparation treatments and the uncut stand. However, there were differences in ecosystem-level nutrient pools because of differences in live biomass. Coarse roots comprised approximately 30% of the tree biomass C in the regenerated stands and 18% in the uncut stand. Nutrient sequestration, in the vegetation since harvesting yielded an average net ecosystem gain of 332 kg N ha−1, 110 kg Ca ha−1, 18 kg Mg ha−1, and 65 kg K ha−1. The likely source for the cations and N is uptake from shallow groundwater, but N additions could also come from non-symbiotic N-fixation and N deposition. These are the only reported findings on long-term effects of harvesting and site preparation on a histic-mineral soil wetland and the results illustrate the importance of understanding the ecohydrology and nutrient dynamics of the wetland forest. This wetland type appears less sensitive to disturbance than upland sites, and is capable of sustained productivity under these silvicultural treatments.  相似文献   

6.
The knowledge of tree species effects on soil C and N pools is scarce, particularly for European deciduous tree species. We studied forest floor and mineral soil carbon and nitrogen under six common European tree species in a common garden design replicated at six sites in Denmark. Three decades after planting the six tree species had different profiles in terms of litterfall, forest floor and mineral soil C and N attributes. Three groups were identified: (1) ash, maple and lime, (2) beech and oak, and (3) spruce. There were significant differences in forest floor and soil C and N contents and C/N ratios, also among the five deciduous tree species. The influence of tree species was most pronounced in the forest floor, where C and N contents increased in the order ash = lime = maple < oak = beech ? spruce. Tree species influenced mineral soil only in some of the sampled soil layers within 30 cm depth. Species with low forest floor C and N content had more C and N in the mineral soil. This opposite trend probably offset the differences in forest floor C and N with no significant difference between tree species in C and N contents of the whole soil profile. The effect of tree species on forest floor C and N content was primarily attributed to large differences in turnover rates as indicated by fractional annual loss of forest floor C and N. The C/N ratio of foliar litterfall was a good indicator of forest floor C and N contents, fractional annual loss of forest floor C and N, and mineral soil N status. Forest floor and litterfall C/N ratios were not related, whereas the C/N ratio of mineral soil (0–30 cm) better indicated N status under deciduous species on rich soil. The results suggest that European deciduous tree species differ in C and N sequestration rates within forest floor and mineral soil, respectively, but there is little evidence of major differences in the combined forest floor and mineral soil after three decades.  相似文献   

7.
Tropical plantation forests are meeting an increasing proportion of global wood demand and comprehensive studies assessing the impact of silvicultural practices on tree and soil functioning are required to achieve sustainable yields. The objectives of our study were: (1) to quantify the effects of contrasting organic residue (OR) retention methods on tree growth and soil nutrient pools over a full Eucalyptus rotation and (2) to assess the potential of soil analyses to predict yields of fast-growing plantations established on tropical sandy soils. An experiment was set up in the Congo at the harvesting of the first rotation after afforestation of a native herbaceous savanna. Six treatments were set up in 0.26 ha plots and replicated in 4 blocks, with OR mass at planting ranging from 0 to 46.5 Mg ha−1. Tree growth over the whole rotation was highly dependent on OR management at planting. Over-bark trunk volume 7 years after planting ranged from 96 m3 ha−1 in the treatment with forest floor and harvest residue removal at planting to 164 m3 ha−1 in the treatment with the largest amount of OR. A comparison of nutrient stocks within the ecosystem at planting and at the end of the rotation suggested that nutrient contents in OR were largely involved in the different response observed between treatments. OR management treatments did not significantly modify most of the nutrient concentrations in the upper layers of the mineral soil. Conventional soil analyses performed before planting and at ages 1 and 3 years were unable to detect differences between treatments despite large differences in tree growth. In contrast, linear regressions between stand aboveground biomass at harvesting and OR mass at planting (independent variable) showed that OR mass was an excellent predictor of stand yield (R2 = 0.99). A large share of soil fertility comes from organic material above the mineral soil in highly weathered sandy soils and OR mass at planting might be used in conjunction with soil analyses to assess the potential of these soils to support forest plantations.  相似文献   

8.
The aim of this study was to determine the effect of whole-tree harvesting (WTH) on the growth of Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies (L.) Karst.) as compared to conventional stem harvesting (CH) over 10 and 20 years. Compensatory (WTH + CoF) and normal nitrogen-based (CH + F or WTH + F) fertilisation were also studied. A series of 22 field experiments were established during 1977-1987, representing a range of site types and climatic conditions in Finland, Norway and Sweden. The treatments were performed at the time of establishment and were repeated after 10-13 years at 11 experimental sites. Seven experiments were followed for 25 years.Volume increment was on average significantly lower after WTH than after CH in both 10-year periods in the spruce stands. In the pine stands thinned only once, the WTH induced growth reduction was significant during the second 10-year period, indicating a long-term response.Volume increment of pine stands was 4 and 8% and that of spruce stands 5 and 13% lower on the WTH plots than on CH during the first and the second 10-year period, respectively. For the second 10-year period the relative volume increment of the whole-tree harvested plots tended to be negatively correlated with the amount of logging residue. Accordingly, the relative volume increment decreased more, the more logging residue was harvested, stressing the importance of developing methods for leaving the nutrient-rich needles on site.If nutrient (N, P, K) losses with the removed logging residues were compensated with fertiliser (WTH + CoF), the volume increment was equal to that in the CH plots. Nitrogen (150-180 kg ha−1) or N + P fertilisation increased tree growth in all experiments except in one very productive spruce stand. Pine stands fertilised only once had a normal positive growth response during the first 10-year period, on average 13 m3 ha−1, followed by a negative response of 5 m3 ha−1 during the second 10-year period. The fertilisation effect of WTH + F and WTH + CoF on basal area increment was both smaller and shorter than with CH + F.  相似文献   

9.
In the future it may become common practice to return wood-ash to forest ecosystems in order to replenish nutrients removed when brash has been extracted as a source of bioenergy. Wood-ash contains most of the nutrients that are present in the brash before its removal and burning, with the important exception of nitrogen (N). In the present paper we report measurements of CO2 emissions and net N mineralisation in the humus layer and the upper 5 cm of mineral soil 12 years after the application of wood-ash to two study sites, representing different tree species, climatic conditions and N deposition histories. We hypothesized that application of wood-ash would increase both carbon (C) and net N mineralisation rates at Torup, an N-rich site with Norway spruce (Picea abies (L.) Karst.) in the south, whereas the net N mineralisation rates would not be affected at Vindeln, an N-poor site with Scots pine (Pinus sylvestris L.) in the north, where a possible N-limitation would restrict any N mineralisation. The treatments, comprising additions of 0, 1, 3 or 6 Mg of granulated wood-ash ha−1, were applied in a randomised block design, replicated three times. Wood-ash from the same batch was used for all treatments at both sites. All factors were measured under laboratory conditions with controlled temperature and moisture levels. The potential CO2 emissions (kg ha−1 year−1 of CO2–C) at Torup were significantly higher in the 3 and 6 Mg ha−1 treatments than in the control treatment, and the highest application resulted in an extra loss of 0.5 Mg ha−1 of soil C annually as compared to the control. No such differences were detected at Vindeln. The results suggest that wood-ash application can deplete soil organic C at locations with similar characteristics (N-rich soil, spruce dominated, warm climate) as at Torup in this study.  相似文献   

10.
We compared avian communities among three timber harvesting treatments in 45-m wide even-age riparian management zones (RMZs) placed between upland clearcuts and along one side of first- or second-order streams in northern Minnesota, USA. The RMZs had three treatments: (1) unharvested, (2) intermediate residual basal area (RBA) (targeted goal 11.5 m2/ha, realized 16.0 m2/ha), and (3) low RBA (targeted goal 5.7 m2/ha, realized 8.7 m2/ha). Surveys were conducted one year pre-harvest and three consecutive years post-harvest. There was no change in species richness, diversity, or total abundance associated with harvest but there were shifts in the types of birds within the community. In particular, White-throated Sparrows (Zonotrichia albicollis) and Chestnut-sided Warblers (Dendroica pensylvanica) increased while Ovenbirds (Seiurus aurocapilla) and Red-eyed Vireos (Vireo olivaceus) decreased. The decline of avian species associated with mature forest in the partially harvested treatments relative to controls indicates that maintaining an unharvested RMZ adjacent to an upland harvest may aid in maintaining avian species associated mature forest in Minnesota for at least three years post-harvest. However, our observations do not reflect reproductive success, which is an area for future research.  相似文献   

11.
We assessed changes in mineral soil total carbon (C) and nutrient (exchangeable Ca, K, Mg, and total N) pools to 60 cm depth 5 years after manipulating biomass and competing vegetation at two contrasting Douglas-fir plantations (Matlock, WA, and Molalla, OR). Biomass treatments included whole-tree (WT) and bole-only (BO) harvest, and competing vegetation control (VC) treatments were applied as either initial or annual herbicide applications. There were main effects of biomass removal and VC on the absolute change in soil pools of some elements at both sites, but significant effects were more prevalent at the lower soil quality Matlock site than the Molalla site, and were generally confined to the top 15 cm of soil. In all cases, treatment effects were associated with increases in C and nutrients following BO and initial VC treatments combined with little change in soil pools following WT and annual VC treatments. At the Matlock site, total soil pools (0-60 cm) of C, N, and Ca significantly increased in the BO and initial VC treatments, and Mg increased and K decreased regardless of treatment. At the Molalla site, soil C and nutrient pools did not change in response to treatments, but total soil Mg increased in all treatments during the study period. Correlation analyses indicated little influence of soil nutrient pools on early growth at Matlock likely because soil water is more limiting than nutrient availability at that site, but vegetation growth was correlated to nutrient pools at Molalla indicating changes in pools associated with harvesting and treatment could influence crop development in the future. These early results indicate low potential for intensive management practices to reduce mineral soil pools of C and nutrients, but there is uncertainty on the long-term growth response because treatments may have influenced nutrient storage in pools other than mineral soil.  相似文献   

12.
Incorporation of forest slash during stand establishment is proposed as a means of increasing soil carbon and nutrient stocks. If effective, the increased soil carbon and nutrient status may result in increased aboveground tree growth. Eight years after study installation, the impact of forest slash incorporation into the soil on soil carbon and nutrient stocks, foliar nutrients and loblolly pine growth are examined on mineral and organic sites on the North Carolina Lower Coastal Plain. Treatments include leaving forest slash on the surface and flat planting (control); V-shear and bedding (conventional), mulch forest slash followed by bedding (strip mulch) and mulch forest slash and till into the soil followed by bedding (strip mulch till). After eight years, mulching and/or tillage did not have a significant impact (p > 0.05) on soil bulk density or soil chemical properties (pH, cation exchange capacity, soil nutrients). Additionally, neither tree foliar nutrients nor stand volume were significantly impacted. However, significant effects were observed for soil phosphorus contents and stand volume between the control plots and the other treatment plots. For example, the mean stand volumes on the mineral site were 24.49 ± 1.28, 38.16 ± 2.90, 44.59 ± 3.07 and 46.96 ± 2.74 m3 ha−1 for the control, conventional, strip mulch and strip mulch till plots. These observations are more likely due to the effect of bedding rather than mulching or tillage of the forest slash. These results are consistent for the mineral and the organic sites. Considering the greater expense to install the mulch and tillage treatments, the lack of a treatment effect on soil carbon and nutrient stocks and tree growth does not justify these treatments on these sites.  相似文献   

13.
Soil surface CO2 flux (Sflux) is the second largest terrestrial ecosystem carbon flux, and may be affected by forest harvest. The effects of clearcutting on Sflux have been studied, but little is known about the effect of alternative harvesting methods such as selective tree harvest on Sflux. We measured Sflux before and after (i) the creation of forest canopy gaps (simulating group tree selection harvests) and (ii) mechanized winter harvest but no tree removal (simulating ground disturbance associated with logging). The experiment was carried out in a sugar maple dominated forest in the Flambeau River State Forest, Wisconsin. Pre-treatment measurements of soil moisture, temperature and Sflux were measured throughout the growing season of 2006. In January–February 2007, a harvester created the canopy gaps (200–380 m2). The mechanization treatment consisted of the harvester traveling through the plots for a similar amount of time as the gap plots, but no trees were cut. Soil moisture and temperature and Sflux were measured throughout the growing season for 1 year prior to harvest and for 2 years after harvest. Soil moisture and temperature were significantly greater in the gap than mechanized and control treatments. Instantaneous Sflux was positively correlated to soil moisture and soil temperature at 2 and 10 cm, but temperature at 10 cm was the single best predictor. Annual Sflux was not significantly different among treatments prior to winter 2007 harvest, and was not significantly different among treatments after harvest. Annual (+1 std. err.) Sflux averaged 967 + 72, 1011 + 72, and 1012 + 72 g C m−2 year−1 in the control, mechanized and gap treatments, respectively, for the 2-year post-treatment period. The results from this study suggest selective group tree harvest significantly increases soil moisture and temperature but does not significantly influence Sflux.  相似文献   

14.
For two Scots pine (Pinus sylvestris) ecosystems in S Germany with different atmospheric N deposition (Pfaffenwinkel, intermediate N deposition; Pustert, large N deposition), the supply with phosphorus (P) has been monitored for unfertilized and fertilized plots over more than four decades by foliar analysis (1964–2007). Additionally, topsoil concentrations and stocks of total P and plant-available P (citric-acid-extractable phosphate) were quantified in 10-year intervals (1982/1984, 1994, 2004). At both sites, fertilization experiments, including the variants control, NPKMgCa + lime, PKMgCa + lime + introduction of lupine, corresponding to an addition of 75 and 90 kg ha−1 P in Pustert and Pfaffenwinkel, respectively had been established in 1964. Our study revealed different trends of the P nutritional status for the pines at the two sites during the recent four decades: At Pustert, elevated atmospheric N deposition together with small topsoil P pools resulted in significant deterioration of Scots pine P nutrition and in an increasingly unbalanced N/P nutrition. At Pfaffenwinkel a trend of improved P nutrition from 1964 to 1991 was replaced by an opposite trend in the most recent 15 years. For our study sites, which are characterized by acidic soils with thick O layers, the forest floor stock of citric-acid-extractable phosphate showed a strong and significant correlation with the P concentration in current-year pine foliage, and thus was an appropriate variable to predict the P nutritional status of the stands. Total P stocks as well as the concentrations of total P in the forest floor or in the mineral topsoil were poorly correlated with pine foliar P concentrations and thus inappropriate predictors of P nutrition. P fertilization in the 1960s sustainably improved the P nutritional status of the stands. At Pfaffenwinkel, foliar P concentrations and topsoil stocks of citric-acid-extractable phosphate were increased at the fertilized plots relative to the control plots even 40 years after fertilization; at Pustert, foliar P concentrations were increased for about 20 years.  相似文献   

15.
When spring frosts occur on recently planted forest sites, severe damage may occur to the seedlings. The aim of the present study was to test how different low levels of nutrient concentrations in Norway spruce (Picea abies (L.) Karst.) seedlings affected spring frost hardiness and time of bud break. Seedlings were grown in a greenhouse for one season and supplied with fertiliser containing 22, 43 and 72 mg N l–1, respectively. The treatments resulted in needle nitrogen concentrations ranging from 0.9 to 1.8% in autumn. After winter storage at 0 °C, bud break was recorded on seedlings growing in the greenhouse, outdoors and in growth chambers at 12 °C and at 17 °C. Freezing tests were performed on seedlings directly removed from winter storage and following one week growth in the greenhouse. Seedlings receiving fertiliser with 43 mg N l–1 had less freezing injury than the two other fertilisation treatments in the present study. The earliest bud break occurred in seedlings receiving 72 mg N l–1.  相似文献   

16.
Sustainable management of bottomland hardwood forest ecosystems requires a knowledge of responses to management impacts, including timber harvesting. The effects of clearcutting and partial cutting on woody vegetation regeneration dynamics, surface and groundwater quality, soil physical properties, and soil respiration were tested in a bottomland hardwood ecosystem in southeastern Texas, USA, through comparison with non-cut control areas. Overstory removal only slightly affected composition of woody vegetation regeneration 1 year after harvesting compared with pre-harvest composition. Initial composition in both cutting treatments appeared to be the strongest determinant of post-harvest composition, at least for the first year after harvesting. There were few significant differences in groundwater properties when harvesting treatments were compared with control areas during a 17-month period following harvest. Turbidity, temperature, electrical conductivity, dissolved O2, NH4-N, NO3-N, and PO4-P of streamwater did not vary significantly among treatments. Slight decreases in total and macroporosity were observed in association with higher bulk densities at 0–5 cm depth in the clearcut and partial cut treatments. Saturated hydraulic conductivity values did not decline significantly with treatment intensity. No significant differences among treatments in measured soil physical properties were observed at 5–10 cm depth. Although in situ soil respiration increased with harvest intensity, treatment had no significant effect on mineral soil respiration. In summary, most variables showed only slight response to harvesting, thereby indicating that harvesting practices can be conducted with minimal initial impacts on measured response variables.  相似文献   

17.
Effects of harvest residues on nutrient leaching and soil chemical properties were studied in a lysimeter experiment. Treatments were: (A) forest floor litter and harvest residues, other than branches, incorporated into the soil, (B) as A, but with branches cut in 20 cm long bits and placed on the soil surface, (C) as B, but with bits incorporated into the soil, (D) as B, but with branches chopped into chips, (E) as C, but with branches chopped into chips, (F) forest floor litter and harvest residues on the soil surface, with branches cut in 20 cm long bits, (G) as F, but with branches chopped into chips, and (H) absence of harvest residues (control). Treatments were applied in zero-tension lysimeters containing 25 kg of soil. Leachates were collected for a 6-year period. At the end of the experiment, lysimeters were dismantled and soil was divided in four layers. Residues, other than branches, increased N leaching, as compared with the control. Branches on the soil surface reduced N leaching when cut in chips. Branches incorporated into the soil reduced leaching independently of their size. Organic residues on the soil surface showed similar effect to those incorporated into the soil. However, harvest residues on the soil surface increased leachate volume, and reduced Ca and P losses. Such a placement of residues led to high contents of Ca and P in the 0–5 cm top soil layer. Contents of organic C, total N and base cations were not affected by the treatments.  相似文献   

18.
Soil carbon (C) stocks in forest ecosystems have been widely estimated to a fixed soil depth (i.e., 0-30 cm) to clarify temporal changes in the C pool. However, surface elevations change as a result of compaction or expansion of the soil under forest management and land use. On the other hand, the calculation of soil C stocks based on “equivalent soil mass” is not affected by compaction or expansion of forest soil. To contribute to the development of a forest C accounting methodology, we compared changes in soil C stocks over 4 years between depth- and mass-based approaches using original soil data collected at 0-30 cm depths in young plantations and secondary forests in West Java, Indonesia. Our methodology expanded on the mass-based approach; rather than using one representative value for the mass-based calculation of soil C stocks, we adjusted individual values, maintaining the coefficient of variance in soil mass. We also considered the effect of an increase or decrease in soil organic matter on equivalent soil mass. Both increasing and decreasing trends in soil C stocks became clearer when the mass-based approach was used rather than the depth-based approach. The trends in soil C stocks based on equivalent soil mass were particularly evident in the surface soil layers (0-5 cm) and in plantation sites, compared with those for soil profiles including subsurface soil layers (0-30 cm) and in secondary forests. These trends in soil C stocks corresponded with temporal trends in litter stocks. We suggest that equivalent mass-basis soil C stock for the upper 30 cm of soil be calculated based on multiple soil layers to reduce estimation errors. Changes in soil organic matter mass had little effect on the estimation of soil C stock on an equivalent mass basis. For the development of a forest C accounting system, the mass-based approach should be used to characterize temporal trends in soil C stocks and to improve C cycle models, rather than simpler methods of calculating soil C stocks. These improvements will help to increase the tier level of country-specific forest C accounting systems.  相似文献   

19.
Understory plants could can act as indicators of temperate forest sustainability, health and conservation status due to their importance in ecosystem function. Harvesting impacts on understory plant diversity depends on their intensity. Variable retention has been proposed to mitigate the harmful effects of timber harvesting, but its effectiveness remains unknown in southern Patagonian Nothofagus pumilio forests. The objectives of this study were to: (i) define a baseline of understory plant diversity in old-growth forests along a site quality gradient and under canopy gaps; (ii) evaluate stands with three different variable retention treatments compared to old-growth forests; and (iii) assess temporal changes during 4 years after harvesting (YAH). A 61 ha N. pumilio forest was selected. Understory plant (Dicotyledonae, Monocotyledonae and Pteridophyta) richness, cover (including woody debris and bare forest floor) and aboveground dry biomass were characterized in summer for 5 years. Before harvesting, baseline samples were conducted along a site quality gradient and outside/inside canopy gaps. Analyzed treatments include a control of old-growth forest (OGF) and three different harvesting treatments with variable retention: (i) dispersed retention (DR) of 30 m2 ha−1 (20-30% retention); (ii) aggregated retention (AR) with one aggregate per hectare and clear-cuts (28% retention); and (iii) combined dispersed and aggregated retention (DAR) with one aggregate per hectare and dispersed retention of 10-15 m2 ha−1 (40-50% retention). Data analyses included parametric and permutational ANOVAs, multivariate classification and ordinations.Before harvesting, 31 plant species were found, where richness, cover and biomass were directly related to site quality. The presence of canopy gaps did not have a significant impact on the measured variables. After harvesting, 20 new species appeared from adjacent associated environments (two from N. antarctica forests and 18 from grasslands and peatlands). At the stand level, understory values were higher in AR > DR > DAR > OGF. Most (81-95%) plant richness at baseline conditions was conserved in all treatments, where inside the aggregates understory remained similar to OGF. Combination of aggregated and dispersed retention (DAR) better limited exotic species introduction and protected sensitive species, improving conservation in harvested stands. Changes in understory variables were observed after the first YAH in all treatments; greater changes were observed in the harvested areas than in aggregates. Changes stabilized at the fourth YAH. As a conclusion, the location of retention aggregates should be selected to preserve species understory diversity of more speciose and diverse habitats or particularly uncommon stands. Implementation of different kinds (patterns and levels) of retention for improvement of biodiversity conservation in harvested forests should be included in timber and forest management planning.  相似文献   

20.
We examined the effect of management history on the availability of decayed downed wood and the use of downed wood as a regeneration substrate in mixed-species stands in the Acadian Forest of Maine. Regeneration of red spruce (Picea rubens Sarg.), eastern hemlock (Tsuga canadensis (L.) Carr.), balsam fir (Abies balsamea L. Mill), and red maple (Acer rubrum L.) was quantified. Treatments included variants of selection cutting, commercial clearcutting (unregulated harvesting), and no harvesting for >50 years (reference). Area of wood substrate (wood ≥ Decay Class III and ≥10 cm on at least one end) was less in the commercial clearcut than in the reference; other treatments were not differentiated. Spruce and hemlock seedlings were found at higher densities on wood than paired forest floor plots of equal area, regardless of treatment. Conversely, fir and maple were less abundant on wood than forest floor plots in reference and selection treatments, but more or equally abundant on wood than forest floor plots in the commercial clearcut. These findings suggest that silvicultural treatment affects both the availability of decayed downed wood and seedling-substrate relationships, and that forest management in the Acadian Region should consider availability of downed woody material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号