首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Vast areas of ponderosa pine (Pinus ponderosa Dougl. ex Laws.) forest in the western United States have become unnaturally dense because of relatively recent land management practices that include fire suppression and livestock grazing. In many areas, thinning treatments can re-establish the natural ecological processes and help restore ecosystem structure and function. Precipitous global climate change has focused attention on the carbon storage in forests. An unintended consequence of fire suppression has been the increased storage of carbon in ponderosa stands. Thinning treatments reduce standing carbon stocks while releasing carbon through the combustion of fuel in logging machinery, burning slash, and the decay of logging slash and wood products. These reductions and releases of stored carbon must be compared to the risk of catastrophic fire burning through the stand and releasing large quantities of carbon to the atmosphere to more fully understand the costs and benefits – in carbon terms – of forest restoration strategies.  相似文献   

2.
Concerns about the long-term sustainability of overstocked dry conifer forests in western North America have provided impetus for treatments designed to enhance their productivity and native biodiversity. Dense forests are increasingly prone to large stand-replacing fires; yet, thinning and burning treatments, especially combined with other disturbances such as drought and grazing, may enhance populations of colonizing species, including a number of non-native species. Our study quantifies plant standing crop of major herbaceous species across contrasting stand structural types representing a range in disturbance severity in northern Arizona. The least disturbed unmanaged ponderosa pine stands had no non-native species, while non-native grasses constituted 7–11% of the understory plant standing crop in thinned and burned stands. Severely disturbed wildfire stands had a higher proportion of colonizing native species as well as non-native species than other structural types, and areas protected from grazing produced greater standing crop of native forbs compared to grazed unmanaged stands. Standing crop of understory plants in low basal area thinned and burned plots was similar to levels on wildfire plots, but was comprised of fewer non-native graminoids and native colonizing plants. Our results also indicate that size of canopy openings had a stronger influence on standing crop in low basal area plots, whereas tree density more strongly constrained understory plant standing crop in dense stands. These results imply that treatments resulting in clumped tree distribution and basal areas <10 m2 ha−1 will be more successful in restoring native understory plant biomass in dense stands. Multiple types and severity of disturbances, such as thinning, burning, grazing, and drought over short periods of time can create greater abundance of colonizing species. Spreading thinning and burning treatments over time may reduce the potential for non-native species colonization compared to immediately burning thinned stands.  相似文献   

3.
Antelope bitterbrush is a dominant shrub in many interior ponderosa pine forests in the western United States. How it responds to prescribed fire is not well understood, yet is of considerable concern to wildlife and fire managers alike given its importance as a browse species and as a ladder fuel in these fire-prone forests. We quantified bitterbrush cover, density, and biomass in response to repeated burning in thinned ponderosa pine forests. Low- to moderate-intensity spring burning killed the majority of bitterbrush plants on replicate plots. Moderately rapid recovery of bitterbrush density and cover resulted from seedling recruitment plus limited basal sprouting. Repeated burning after 11 years impeded the recovery of the bitterbrush community. Post-fire seed germination following the repeated burns was 3–14-fold lower compared to the germination rate after the initial burns, while basal sprouting remained fairly minor. After 15 years, bitterbrush cover was 75–92% lower on repeated-burned compared to unburned plots. Only where localized tree mortality resulted in an open stand was bitterbrush recovery robust. By controlling bitterbrush abundance, repeated burning eliminated the potential for wildfire spread when simulated using a customized fire behavior model. The results suggest that repeated burning is a successful method to reduce the long-term fire risk imposed by bitterbrush as an understory ladder fuel in thinned pine stands. Balancing the need to limit fire risk yet provide adequate bitterbrush habitat for wildlife browse will likely require a mosaic pattern of burning at the landscape scale or a burning frequency well beyond 11 years to allow a bitterbrush seed crop to develop.  相似文献   

4.
Historical land use and management practices in the southeastern United States have resulted in the dominance of loblolly pine (Pinus taeda L.) on many upland sites that historically were occupied by longleaf pine (Pinus palustris Mill.). There is currently much interest in restoring high quality longleaf pine habitats to such areas, but managers may also desire the retention of some existing canopy trees to meet current conservation objectives. However, fast-growing natural loblolly pine regeneration may threaten the success of artificially regenerated longleaf pine seedlings. We evaluated the establishment and growth of natural loblolly pine regeneration following different levels of timber harvest using single-tree selection (Control (uncut, residual basal area ∼16 m2/ha), MedBA (residual basal area of ∼9 m2/ha), LowBA (residual basal area of ∼6 m2/ha), and Clearcut (complete canopy removal)) and to different positions within canopy gaps (approximately 2800 m2) created by patch cutting at two ecologically distinct sites within the longleaf pine range: Fort Benning, GA in the Middle Coastal Plain and Camp Lejeune, NC in the Lower Coastal Plain. The density of loblolly pine seedlings was much higher at Camp Lejeune than at Fort Benning at the end of the first growing season after harvesting. Following two growing seasons, there were no significant effects of canopy density or gap position on the density of loblolly pine seedlings at either site, but loblolly pine seedlings were taller on treatments with greater canopy removal. Prescribed fires applied following the second growing season killed 70.6% of loblolly pine seedlings at Fort Benning and 64.3% of seedlings at Camp Lejeune. Loblolly pine seedlings were generally less than 2 m tall, and completeness of the prescribed burns appeared more important for determining seedling survival than seedling size. Silvicultural treatments that include canopy removal, such as patch cutting or clearcuts, will increase loblolly pine seedling growth and shorten the window of opportunity for control with prescribed fire. Therefore, application of prescribed fire every 2-3 years will be critical for control of loblolly pine regeneration during restoration of longleaf pine in existing loblolly pine stands.  相似文献   

5.
Southwestern USA ponderosa pine (Pinus ponderosa C. Lawson var. scopulorum Engelm.) forests evolved with frequent surface fires and have changed dramatically over the last century. Overstory tree density has sharply increased while abundance of understory vegetation has declined primarily due to the near cessation of fires. We examined effects of varying prescribed fire-return intervals (1, 2, 4, 6, 8, and 10 years, plus unburned) on the abundance and composition of understory vegetation in 2007 and 2008 after 30+ years of fall prescribed burning at two ponderosa pine sites. We found that after 30 years, overstory canopy cover remained high, while understory plant canopy cover was low, averaging <12% on all burn intervals. We attributed the weak understory response to a few factors – the most important of which was the high overstory cover at both sites. Graminoid cover and cover of the major grass species, Elymus elymoides (squirreltail), increased on shorter fire-return intervals compared to unburned plots, but only at one site. Community composition differed significantly between shorter fire-return intervals and unburned plots at one site, but not the other. For several response variables, precipitation levels appeared to have a stronger effect than treatments. Our findings suggest that low-severity burn treatments in southwestern ponderosa pine forests, especially those that do not decrease overstory cover, are minimally effective in increasing understory plant cover. Thinning of these dense forests along with prescribed burning is necessary to increase cover of understory vegetation.  相似文献   

6.
Salvage logging after natural disturbance has received increased scrutiny in recent years because of concerns over detrimental effects on tree regeneration and increased fine fuel levels. Most research on tree regeneration after salvage logging comes from fire-prone systems and is short-term in scope. Limited information is available on longer term responses to salvage logging after windstorms or from forests outside of fire-prone regions. We examined tree and shrub regeneration after a stand-replacing windstorm, with and without salvage logging and prescribed fire. Our study takes place in northern Minnesota, USA, a region where salvage logging impacts have received little attention. We asked the following questions: (i) does composition and abundance of woody species differ among post-disturbance treatments, including no salvage, salvage alone, and salvage with prescribed burning, 12 years after the windstorm?; (ii) is regeneration of Populus, the dominant pre-blowdown species, inhibited in unsalvaged treatments?; and (iii) how do early successional trajectories differ among post-blowdown treatments? Twelve years after the wind disturbance, the unsalvaged forest had distinctly different composition and abundance of trees and woody shrubs compared to the two salvage treatments, despite experiencing similar wind disturbance severities and having similar composition immediately after the blowdown. Unsalvaged forest had greater abundance of shade tolerant hardwoods and lower abundance of Populus, woody shrubs, and Betulapapyrifera, compared to salvage treatments. There was some evidence that adding prescribed fire after the blowdown and salvage logging further increased disturbance severity, since the highest abundances of shrubs and early successional tree species occurred in the burning treatment. These results suggest that salvage treatments (or a lack thereof) can be used to direct compositional development of a post-blowdown forest along different trajectories, specifically, towards initial dominance by early successional Populus and B.papyrifera with salvage logging or towards early dominance by shade tolerant hardwoods, with some Populus, if left unsalvaged.  相似文献   

7.
8.
Prescribed burning is used to reduce fuel loads and return ponderosa pine forests of the Western U.S. to their historical structure and function. The impact of prescribed burning on soil is dependent on fire severity which is largely managed by burning in the fall or the spring; frequency of fire will also regulate long-term fire impacts. The objective of this study was to determine if soils and soil organic matter (SOM) were affected by prescribed burning in the fall or the spring using singular or multiple prescribed burns. Prescribed burning was initiated in the spring of 1997 and fall of 1997 at 5-year intervals and once during a 15-year period on a study site located within the Malheur National Forest of the southern Blue Mountains of eastern Oregon. Soils were sampled by major genetic horizon in 2004. The 5-year interval plots had burned twice with 1–2 years of recovery while the 15-year interval plots had burned only once with 6–7 years of recovery. Samples were analyzed for pH, carbon (C), nitrogen (N), C/N ratio, cation exchange capacity, base saturation, water repellency, and humic substance composition by alkali extraction. Fall burning decreased C and N capital of the soil (O horizon +30 cm depth mineral soil) by 22–25%. Prescribed burning did not have an effect on fulvic or humic acid C concentration (FA and HA, respectively) of the mineral soil and only a minor effect on FA and HA concentration of the O horizon. One or two fall burns decreased humin and the alkali non-soluble C (NS) content of O horizon by 15 and 30%, respectively. Initiating fall burning in fire-suppressed stands may not preserve soil C, N, humin, and NS content, but may replicate the natural fire regime. Spring burning using a return interval of 5 or more years reduces the fuel load while having little impact on soil C, N, and SOM composition and may be used to prepare a site for subsequent fall burns.  相似文献   

9.
10.
Prescribed burning is used in many fire-prone ecosystems for wildfire mitigation and conservation of biodiversity. However, there is limited information about how biota responds to long-term fire management, especially at a whole-of-community level. We studied community responses to different fire interval sequences resulting from planned and unplanned fires in Mediterranean-climate ecosystems in the Warren bioregion of south-west Western Australia (SWA) to determine the resilience of the biota to contrasting fire regimes. Fire history data were used to identify contrasting fire interval sequences in forest and shrubland communities for the period 1972-2004. We surveyed vascular plants, ants, beetles, vertebrates and macrofungi at 30 sites to investigate community-level responses to consecutive short (SS: ≤5 years), consecutive long (LL: ≥10 years), one very long (VL: 30 years), or mixed/moderate (M: 6-9 years) fire interval(s). All sites had a common time-since-fire of ∼4 years at the commencement of sampling which was conducted over two years. Species richness and composition differed between forest and shrubland communities, but the influence of fire interval sequences on taxonomic groups was minimal and difficult to detect. There was weak evidence of compositional differences between SS and LL/VL regimes for plants, ants, beetles and macrofungi but no difference between these regimes and the intermediate disturbance M-regime. These results demonstrate the resilience of the biota in open forests and shrublands of SWA to contrasting fire interval sequences over the past 30 years. We conclude that occasional short (3-5 years) intervals between fires are unlikely to have a persistent effect on community composition, though maintaining a regime of short or long intervals may alter species composition and/or abundance. We suggest that variability in fire intervals is important for long-term conservation of the biota. For the Warren Region, prescribed burning at an intermediate level of disturbance and incorporating variability in interval length is recommended to achieve the dual objectives of wildfire mitigation and biodiversity conservation.  相似文献   

11.
Due to increases in tree density and hazardous fuel loading in Sierra Nevadan forests, land management is focusing on fuel reduction treatments to moderate the risk of catastrophic fires. Fuel treatments involving mechanical and prescribed fire methods can reduce surface as well as canopy fuel loads. Mastication is a mechanical method which shreds smaller trees and brush onto the surface fuel layer. Little data exist quantifying masticated fuel beds. Despite the paucity of data on masticated fuels, land managers desire fuel loading, potential fire behavior and fire effects such as tree mortality information for masticated areas. In this study we measured fuel characteristics before and after mastication and mastication plus prescribed burn treatments in a 25-year old ponderosa pine (Pinus ponderosa C. Lawson) plantation. In addition to surface fuel characteristics and tree data collection, bulk density samples were gathered for masticated material. Regressions were created predicting masticated fuel loading from masticated fuel bed depth. Total masticated fuel load prior to fire treatment ranged from 25.9 to 42.9 Mg ha−1, and the bulk density of masticated fuel was 125 kg m−3. Mastication treatment alone showed increases in most surface fuel loadings and decreases in canopy fuel loads. Masticated treatment in conjunction with prescribed burning reduced both surface and canopy fuel loads. Detailed information on fuel structure in masticated areas will allow for better predictions of fire behavior and fire effects for fire in masticated fuel types. Understanding potential fire behavior and fire effects associated with masticated fuels will allow managers to make decisions on the possibility of mastication to create fuel breaks or enhance forest health.  相似文献   

12.
Forest thinning and prescribed fires are practices used by managers to address concerns over ecosystem degradation and severe wildland fire potential in dry forests. There is some debate, however, about treatment effectiveness in meeting management objectives as well as their ecological consequences. The purpose of this study was to assess changes to forest stand structure following thinning and prescribed fire treatments, alone and combined, in the eastern Cascade Mountains of Washington State. Treatments were applied to 12 management units, with each treatment combination replicated three times (including untreated controls). Thinning modified forest structure by reducing overall tree density by >60% and canopy bulk density by 50%, and increased canopy base height by ∼4 m, thereby reducing susceptibility to crown fire. The prescribed fire treatment, conversely, did not appreciably reduce tree density or canopy fuel loading, but was effective at increasing the density of standing dead trees, particularly when combined with thinning (37 snags/ha increase). Prescribed fire effects were more pronounced when used in combination with thinning. Thinning was more reliable for altering stand structure, but spring burning was lower in intensity and coverage than desired and may have led to results that downplay the efficacy of fire to meet forest restoration goals.  相似文献   

13.
Low-elevation ponderosa pine (Pinus ponderosa Dougl. ex. Laws.) forests of the northern Rocky Mountains historically experienced frequent low-intensity fires that maintained open uneven-aged stands. A century of fire exclusion has contributed to denser ponderosa pine forests with greater competition for resources, higher tree stress and greater risk of insect attack and stand-destroying fire. Active management intended to restore a semblance of the more sustainable historic stand structure and composition includes selective thinning and prescribed fire. However, little is known about the relative effects of these management practices on the physiological performance of ponderosa pine. We measured soil water and nitrogen availability, physiological performance and wood radial increment of second growth ponderosa pine trees at the Lick Creek Experimental Site in the Bitterroot National Forest, Montana, 8 and 9 years after the application of four treatments: thinning only; thinning followed by prescribed fire in the spring; thinning followed by prescribed fire in the fall; and untreated controls. Volumetric soil water content and resin capsule ammonium did not differ among treatments. Resin capsule nitrate in the control treatment was similar to that in all other treatments, although burned treatments had lower nitrate relative to the thinned-only treatment. Trees of similar size and canopy condition in the three thinned treatments (with and without fire) displayed higher leaf-area-based photosynthetic rate, stomatal conductance and mid-morning leaf water potential in June and July, and higher wood radial increment relative to trees in control units. Specific leaf area, mass-based leaf nitrogen content and carbon isotope discrimination did not vary among treatments. Our results suggest that, despite minimal differences in soil resource availability, trees in managed units where basal area was reduced had improved gas exchange and growth compared with trees in unmanaged units. Prescribed fire (either in the spring or in the fall) in addition to thinning, had no measurable effect on the mid-term physiological performance and wood growth of second growth ponderosa pine.  相似文献   

14.
Fuel treatments alter conditions in forested stands at the time of the treatment and subsequently. Fuel treatments reduce on-site carbon and also change the fire potential and expected outcome of future wildfires, including their carbon emissions. We simulated effects of fuel treatments on 140 stands representing seven major habitat type groups of the northern Rocky Mountains using the Fire and Fuels Extension to the Forest Vegetation Simulator (FFE-FVS). Changes in forest carbon due to mechanical fuel treatment (thinning from below to reduce ladder fuels) and prescribed fire were explored, as well as changes in expected fire behavior and effects of subsequent wildfire. Results indicated that fuel treatments decreased fire severity and crown fire occurrence and reduced subsequent wildfire emissions, but did not increase post-wildfire carbon stored on-site. Conversely, untreated stands had greater wildfire emissions but stored more carbon.  相似文献   

15.
We compared the effects of three fuel reduction techniques and a control on the relative abundance and richness of reptiles and amphibians using drift fence arrays with pitfall and funnel traps. Three replicate blocks were established at the Green River Game Land, Polk County, North Carolina. Each replicate block contained four experimental units that were each approximately 14 ha in size. Treatments were prescribed burn (B); mechanical understory reduction (M); mechanical + burn (MB); and controls (C). Mechanical treatments were conducted in winter 2001–2002, and prescribed burns in March 2003. Hot fires in MB killed about 25% of the trees, increasing canopy openness relative to controls. Leaf litter depth was reduced in B and MB after burning, but increased in M due to the addition of dead leaves during understory felling. The pre-treatment trapping period was short (15 August–10 October 2001) but established a baseline for post-treatment comparison. Post-treatment (2002–2004), traps were open nearly continuously May–September. We captured a total of 1308 species of 13 amphibians, and 335 reptiles of 13 species. The relative abundance of total salamanders, common salamander species, and total amphibians was not changed by the fuel reduction treatments. Total frogs and toads (anurans) and Bufo americanus were most abundant in B and MB; however, the proximity of breeding sites likely affected our results. Total reptile abundance and Sceloporus undulatus abundance were highest in MB after burning, but differed significantly only from B. Mean lizard abundance in MB was highest in 2004 and higher than in other treatments, but differences were not statistically significant. Our results indicate that a single application of the fuel reduction methods studied will not negatively affect amphibian or reptile abundance or diversity in southern Appalachian upland hardwood forest. Our study further suggests that high-intensity burning with heavy tree-kill, as in MB, can be used as a management tool to increase reptile abundance – particularly lizards – with no negative impact on amphibians, at least in the short-term.  相似文献   

16.
Forest thinning and prescribed fire practices are widely used, either separately or in combination, to address tree stocking, species composition, and wildland fire concerns in western US mixed conifer forests. We examined the effects of these fuel treatments alone and combined on dwarf mistletoe infection severity immediately after treatment and for the following 100 years. Thinning, burning, thin + burn, and control treatments were applied to 10 ha units; each treatment was replicated three times. Dwarf mistletoe was found in ponderosa pine and/or Douglas-fir in all units prior to treatment. Stand infection severity was low to moderate, and severely infected trees were the largest in the overstory. Thinning produced the greatest reductions in tree stocking and mistletoe severity. Burning reduced stocking somewhat less because spring burns were relatively cool with spotty fuel consumption and mortality. Burning effects on vegetation were enhanced when combined with thinning; thin + burn treatments also reduced mistletoe severity in all size classes. Stand growth simulations using the Forest Vegetation Simulator (FVS) showed a trend of reduced mistletoe spread and intensification over time for all active treatments. When thinned and unthinned treatments were compared, thinning reduced infected basal area and treatment effects were obvious, beginning in the second decade. The same was true with burned and unburned treatments. Treatment effects on infected tree density were similar to infected basal area; however, treatment effects diminished after 20 years, suggesting a re-treatment interval for dwarf mistletoe.  相似文献   

17.
Prescribed fire is an important tool in the management of ponderosa pine (Pinus ponderosa Dougl. ex Laws.) forests, yet effects on bark beetle (Coleoptera: Curculionidae, Scolytinae) activity and tree mortality are poorly understood in the southwestern U.S. We compared bark beetle attacks and tree mortality between paired prescribed-burned and unburned stands at each of four sites in Arizona and New Mexico for three growing seasons after burning (2004–2006). Prescribed burns increased bark beetle attacks on ponderosa pine over the first three post-fire years from 1.5 to 13% of all trees, increased successful, lethal attacks on ponderosa pine from 0.4 to 7.6%, increased mortality of ponderosa pine from all causes from 0.6 to 8.4%, and increased mortality of all tree species with diameter at breast height >13 cm from 0.6 to 9.6%. On a per year basis, prescribed burns increased ponderosa pine mortality from 0.2% per year in unburned stands to 2.8% per year in burned stands. Mortality of ponderosa pine 3 years after burning was best described by a logistic regression model with total crown damage (crown scorch + crown consumption) and bark beetle attack rating (no, partial, or mass attack by bark beetles) as independent variables. Attacks by Dendroctonus spp. did not differ significantly over bole heights, whereas attacks by Ips spp. were greater on the upper bole compared with the lower bole. Three previously published logistic regression models of tree mortality, developed from fires in 1995–1996 in northern Arizona, were moderately successful in predicting broad patterns of tree mortality in our data. The influence of bark beetle attack rating on tree mortality was stronger for our data than for data from the 1995–1996 fires. Our results highlight canopy damage from fire as a strong and consistent predictor of post-fire mortality of ponderosa pine, and bark beetle attacks and bole char rating as less consistent predictors because of temporal variability in their relationship to mortality. The small increase in tree mortality and bark beetle attacks caused by prescribed burning should be acceptable to many forest managers and the public given the resulting reduction in surface fuel and risk of severe wildfire.  相似文献   

18.
  • ? Both burning and harvesting cause carbon and nutrient removals from forest ecosystems, but few studies have addressed the combination of these effects. For a Pinus jeffreyii forest in the Sierra Nevada Mountains of California, we posed the question: what are the relative impacts of thinning and subsequent burning on carbon and nutrient removals?
  • ? The thinning methods included whole-tree thinning (WT, where all aboveground biomass was removed) cut to length (CTL, where branches and foliage were left on site in a slash mat on top of skid trails) and no harvest (CONT). Total C and nutrient exports with thinning and burning were greater in the WT and CTL than in the CONT treatments. Total C and N removals were approximately equal for the WT and CTL treatments, although harvesting dominated exports in the WT treatment and burning dominated exports in the CTL treatment. Total removals of P, K, Ca, Mg and S were greatest in the WT treatments, where harvesting dominated removals.
  • ? Comparisons of nutrient removals with ecosystem capital and calculations of potential replenishment by atmospheric deposition suggested that N is the nutrient likely to be most depleted by harvesting and burning treatments.
  •   相似文献   

    19.
    The capacity of prescribed fire to restore forest conditions is often judged by changes in forest structure within a few years following burning. However, prescribed fire might have longer-term effects on forest structure, potentially changing treatment assessments. We examined annual changes in forest structure in five 1 ha old-growth plots immediately before prescribed fire and up to eight years after fire at Sequoia National Park, California. Fire-induced declines in stem density (67% average decrease at eight years post-fire) were nonlinear, taking up to eight years to reach a presumed asymptote. Declines in live stem biomass were also nonlinear, but smaller in magnitude (32% average decrease at eight years post-fire) as most large trees survived the fires. The preferential survival of large trees following fire resulted in significant shifts in stem diameter distributions. Mortality rates remained significantly above background rates up to six years after the fires. Prescribed fire did not have a large influence on the representation of dominant species. Fire-caused mortality appeared to be spatially random, and therefore did not generally alter heterogeneous tree spatial patterns. Our results suggest that prescribed fire can bring about substantial changes to forest structure in old-growth mixed conifer forests in the Sierra Nevada, but that long-term observations are needed to fully describe some measures of fire effects.  相似文献   

    20.
    We used pre- and post-burn fire effects data from six prescribed burns to examine post-burn threshold effects of stand structure (understory density, overstory density, shrub cover, duff depth, and total fuel load) on the regeneration of yellow pine (Pinus subgenus Diploxylon) seedlings and cover of herbaceous vegetation in six prescribed-fire management units located within western Great Smoky Mountains National Park (GSMNP) in east Tennessee, USA. We also evaluated the utility of the Keetch-Byram Drought Index (KBDI) as a predictor of post-burn stand and fuel conditions by comparing post-burn stand variables for different ranges of KBDI (23-78; more wet, and 328-368; more dry). We found that yellow pine seedlings were effectively absent in post-burn forests until overstory density was reduced over 40%, understory density was reduced over 80%, and post-burn shrub cover was 10% or less. We also observed that a reduction in total fuels of 60% and a post-burn duff layer depth of less than four cm were required for successful regeneration of yellow pine. Total herbaceous species cover exhibited near identical responses with increased cover following an 80% reduction in understory density and a post-burn duff depth of less than 4 cm. We observed strong positive relationships between high KBDI values and burn severity, changes in forest structure, reductions in fuels, and post-burn yellow pine reproduction. We observed continuous recruitment of yellow pine seedlings 5 years after fire in high KBDI burns while low KBDI burns showed little change in yellow pine density through time. An intense outbreak of the southern pine beetle (SPB; Dendroctonus frontalis) occurred within 2 years of our high KBDI burns and reduced shading resulting from overstory mortality likely enhanced the survival of yellow pine seedlings. The results of this study provide targets for the application of prescribed fire to restore yellow pine in the southern Appalachians. Continued research and monitoring will help determine how prescribed fire can best be applied in combination with other disturbance agents such as SPB to perpetuate yellow pine forests.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号