首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We examined patterns of variation in richness, diversity, and composition of understory vascular plant communities in mixedwood boreal forests of varying composition (broadleaf, mixedwood, conifer) in Alberta, Canada, before and for 2 years following variable-retention harvesting (clearcut, 20 and 75% dispersed green tree retention, control). Broadleaf-dominated forests differed from mixedwood or conifer-dominated forests in that they had greater canopy cover, litter depth, soil nitrogen, warmer soils, as well as greater shrub cover, herb and shrub richness and diversity (plot scale). In contrast, conifer, and to a lesser extent mixedwood, forest had greater β diversity than broadleaf forest. Overall, mixedwood and conifer forests were similar to one another, both differed from broadleaf forest. Several species were found to be significant indicators of broadleaf forest but most of these also occurred in the other forest types. Understory composition was related to canopy composition and edaphic conditions. Variable-retention harvesting had little effect on understory cover, richness, or diversity but resulted in reduced richness and β diversity at a larger scale. The clearcut and 20% treatments affected composition in all forest types. Early successional species and those common in disturbed sites were indicators of harvesting while evergreen, shade-tolerant understory herbs were indicators of the control forest and 75% retention harvest. We conclude that it is important to maintain a range of variation in canopy composition of mixedwood forests in order to conserve the associated understory communities. The presence of conifers in these forests has a particularly important influence on understory communities. The threshold for a lifeboat effect of variable-retention harvesting is between 20 and 75% retention. Examination of richness and β diversity at a variety of scales can provide interesting information on effects of harvesting on spatial reorganization and homogenization of understory plant communities.  相似文献   

2.
Despite widespread recognition of linkages between vegetation and insects, understanding of the ecological mechanisms underlying these relationships is limited. Better comprehension of relationships linking abundance and biomass of insects to vegetation would increase accuracy of predictions of the effects of forest management activities on insect communities. This knowledge could also be pivotal to understanding predator–prey dynamics linked to insect populations. We sampled nocturnal flying insects and measured vegetation characteristics in 34 stream reaches in conifer-dominated forests of the Oregon Coast Range in the Pacific Northwest of the United States. We considered five a priori hypotheses (resource quality, resource diversity, resource abundance, resource concentration, and stream cover hypotheses) that could explain mechanisms underlying associations between riparian vegetation and nocturnal flying insects, and used an information-theoretic approach to determine the relative strength of evidence for each. The resource quality hypothesis, which predicts that abundance and biomass of insects increases with cover of deciduous vegetation, explained substantial variation for nearly every order of insect investigated, whereas the remaining hypotheses explained relatively little. Abundance and biomass of insects had stronger associations with characteristics of canopy trees than with characteristics of shrub or understory trees, suggesting that deciduous trees are an important habitat element for nocturnal flying insects in these areas. Resource managers planning riparian vegetation management in conifer-dominated forests should be aware that manipulation of the cover of deciduous trees in riparian areas could have a large impact on these insects and their vertebrate predators. By providing information on forest canopy composition, remote sensing may offer a low-cost tool for identifying areas with high abundance and biomass of insects during conservation planning.  相似文献   

3.
Forest harvesting strategies that approximate natural disturbances have been proposed as a means of maintaining natural species’ diversity and richness in the boreal forests of North America. Natural disturbances impact shoreline forests and upland areas at similar rates. However, shoreline forests are generally protected from harvest through the retention of treed buffer strips. We examined bird community responses to forest management guidelines intended to approximate shoreline forest fires by comparing bird community structure in early (1–4 years) post-burned and harvested boreal riparian habitats and the adjacent shoreline forest. We sampled riparian areas with adjacent: (1) burned merchantable shoreline forest (n = 21), (2) burned non-merchantable shoreline forest (n = 29), (3) 10 m treed buffer with 25% retention in the next 30 m (n = 18), and (4) 30 m treed buffer (n = 21). Only minor differences were detected in riparian species’ abundance and bird community composition between treatments with greater differences in these parameters occurring between post-fire and post-harvest upland bird communities. Indicators of all merchantable treatments were dominated by upland species with open-habitat species and habitat generalists being typical upland indicator species of burned merchantable habitats and forest specialists typical upland indicators of harvested treatments. Riparian species indicative of burned riparian habitats were Common Yellowthroat (Geothlypis trichas), Le Conte’s Sparrow (Ammodramus leconteii) and Eastern Kingbird (Tyrannus tyrannus) and indicators of 30 m buffers were Alder Flycatcher (Empidonax alnorum) and Wilson’s Warbler (Wilsonia pusilla). Multivariate Redundancy Analysis (RDA) of the overall (riparian and upland birds) community showed greater divergence than RDA with only riparian species suggesting less effect of fire and forestry on riparian birds than on upland birds. Higher natural range of variability (NRV) of overall post-fire bird communities compared to post-harvest communities emphasizes that harvesting guidelines currently do not achieve this level of variability. However, lack of a large negative effect on common riparian species in the first 4 years post-disturbance allows for the exploration of alternative shoreline forest management that better incorporates bird community composition of post-fire riparian areas and shoreline forests.  相似文献   

4.
The composition and structure of riparian forests in the coast redwood region were analyzed in relation to the length of time since timber harvest, and the width of riparian buffer zone. Ten sites were sampled in the central range of the coast redwood forest type within a variety of post-harvest age groups and riparian buffer zone widths. Data was collected using randomly selected sample plots adjacent to perennial coastal steams. Correlation Fisher's r to z tests and two-tailed t-test were used to examine the relationship between the sample variables and the experimental parameters “years since harvest”, and “width of buffer.” Results indicate that canopy cover was negatively correlated to “years since harvest” with the highest level of canopy cover found on the youngest sites and the lowest level found on the old-growth sites. The hardwood to conifer dominance ratio and the basal area of Alnus rubra (red alder) were correlated negatively to both “years since harvest” and “buffer width” indicating that timber harvest favored hardwood species. Late seral associates such as Oxalis oregana (redwood sorrel), Anthyrium filix-femina (lady fern), and Vaccinium parviflorum (billberry) were found preferentially in older forests and sites with wider buffer zones, while non-native species such as Hedera helix (English ivy), Pampas cortedaria (pampas grass), and Myosotis latifolia (forget-me-not) were found preferentially in younger forests and areas with smaller buffer zones.  相似文献   

5.
Coffea arabica shrubs are indigenous to the understorey of the moist evergreen montane rainforest of Ethiopia. Semi-forest coffee is harvested from semi-wild plants in forest fragments where farmers thin the upper canopy and annually slash the undergrowth. This traditional method of coffee cultivation is a driver for preservation of indigenous forest cover, differing from other forms of agriculture and land use which tend to reduce forest cover. Because coffee farmers are primarily interested in optimizing coffee productivity, understanding how coffee yield is maximized is necessary to evaluate how, and to what extent, coffee production can be compatible with forest conservation.Abiotic variables and biotic variables of the canopy were recorded in 26 plots within 20 forest fragments managed as semi-forest coffee systems near Jimma, SW Ethiopia. In each plot, coffee shrub characteristics and coffee yield were recorded for four coffee shrubs. Cluster and indicator species analyses were used to differentiate plant communities of shade trees. A multilevel linear mixed model approach was then used to evaluate the effect of abiotic soil variables, shade tree plant community, canopy and stand variables, coffee density and coffee shrub size variables on coffee yield.Climax species of the rainforest were underrepresented in the canopy. There were three impoverished shade tree communities, which differed in tree species composition but did not exhibit significant differences in abiotic soil variables, and did not directly influence coffee yield. Coffee yield was primarily determined by coffee shrub branchiness and basal diameter. At the stand level a reduced crown closure increased coffee yield. Yield was highest for coffee shrubs in stands with crown closure less than median (49 ± 1%). All stands showed a reduced number of stems and a lower canopy compared to values reported for undisturbed moist evergreen montane rainforests.Traditional coffee cultivation is associated to low tree species diversity and simplified forest structure: few stems, low canopy height and low crown closure. Despite intensive human interference some of the climax species are still present and may escape local extinction if they are tolerated and allowed to regenerate. The restoration of healthy populations of climax species is critical to preserve the biodiversity, regeneration capacity, vitality and ecosystem functions of the Ethiopian coffee forests.  相似文献   

6.
Intensively managed loblolly pine (Pinus taeda) forests are common in the southeastern United States and offer opportunities for conservation of biologic diversity. Within intensively managed landscapes, stand establishment relies on combinations of mechanical and chemical site preparation and herbaceous weed control (HWC) to manage competing vegetation and increase pine production. However, few long-term studies have described relationships between intensity of stand establishment and effects on plant communities. Therefore, we examined effects of 6 treatments that varied in intensity via combinations of mechanical (wide spacing and strip shear or narrow spacing and roller chop) and chemical (application or no application) site preparation treatments with HWC (broadcast or banded) from 1 to 8 years after site preparation on plant communities in loblolly pine plantations (n = 6) in the Coastal Plain of North Carolina, USA. All treatments resulted in abundant and diverse plant communities. Chemical site preparation had short lived (?4 year) effects on the herbaceous community but long-term effects on woody plants and pine cover. Increasing management intensity by including broadcast HWC or roller chop/narrow spacing did not additively reduce woody vegetation cover or species richness. However, broadcast HWC reduced grass, vine, and forb cover in the first year post-treatment. Average Morista community similarity values ranged from 0.69 to 0.89 among treatments and plots receiving the same chemical site preparation contained the most similar plant communities. Banded HWC can be paired with wide spacing to maximize herbaceous plant growth important for many wildlife species, particularly in the first few years after site preparation. Site preparation techniques should be tailored to local site conditions, plant communities, and management objectives.  相似文献   

7.
The search for indicators to monitor management impact on biodiversity is a crucial question because management practices promote changes in community structure and composition of different animal groups. This study explores the effect of widely conducted management practices (forest logging and livestock) in Pinus uncinata forests in the Pyrenees range (NE Spain) on the structure and composition of ground ant communities compared to those of old-growth stands. Forest structure clearly differed in stands with different forest managements. These stands managed for different uses also showed marked differences in structure and composition of ground ant communities. There was a great dominance of a single species, Formica lugubris, which accounted for 99% of ants collected in pitfall traps. Rarefaction curves indicated that species richness was highest in old-growth stands and lowest in even-aged ones, with woodland pasture stands showing an intermediate value. Classification methods allowed us to identify two groups of species: six species related to old-growth plots and three species (including F. lugubris) associated to managed stands. Habitat structure played an important role in determining the structure of ant communities: forests with high tree density but low basal area were the most favourable forest type for F. lugubris, while the abundance of the remaining ant species was negatively affected by the abundance of F. lugubris and by tree cover.  相似文献   

8.
Plantations cover a substantial amount of Earth's terrestrial surface and this area is expected to increase dramatically in the coming decades. Pinus plantations make up approximately 32% of the global plantation estate. They are primarily managed for wood production, but have some capacity to support native fauna. This capacity likely varies with plantation management. We examined changes in the richness and frequency of occurrence of bird species at 32 plots within a Pinus radiata plantation (a management unit comprising multiple Pinus stands) in south-eastern Australia. Plots were stratified by distance to native forest, stand age class and thinning regime. We also assessed the landscape context of each plot to determine relationships between bird assemblages and stand and landscape-level factors. Bird species richness was significantly higher at plots ≥300 m from native forest and in mature (∼20 years since planting) and old (∼27 years since planting) thinned pine stands. We were able to separate the often confounding effects of stand age and thinning regime by including old stands that had never been thinned. These stands had significantly fewer species than thinned stands suggesting thinning regime, not age is a key factor to improving the capacity of pine plantations to support native species (although an age × thinning interaction may influence this result). At the landscape level, species richness increased in pine stands when they were closer to native riparian vegetation. There were no significant differences in species composition across plots. Our study indicates the importance of stand thinning and retention of native riparian vegetation in improving the value of pine plantations for the conservation of native fauna.  相似文献   

9.
Novel fire mitigation treatments that chip harvested biomass on site are increasingly prescribed to reduce the density of small-diameter trees, yet the ecological effects of these treatments are unknown. Our objective was to investigate the impacts of mechanical thinning and whole tree chipping on Pinus ponderosa (ponderosa pine) regeneration and understory plant communities to guide applications of these new fuel disposal methods. We sampled in three treatments: (1) unthinned forests (control), (2) thinned forests with harvested biomass removed (thin-only), and (3) thinned forests with harvested biomass chipped and broadcast on site (thin + chip). Plots were located in a ponderosa pine forest of Colorado and vegetation was sampled three to five growing seasons following treatment. Forest litter depth, augmented with chipped biomass, had a negative relationship with cover of understory plant species. In situ chipping often produces a mosaic of chipped patches tens of meters in size, creating a range of woodchip depths including areas lacking woodchip cover within thinned and chipped forest stands. Thin-only and thin + chip treatments had similar overall abundance and species richness of understory plants at the stand scale, but at smaller spatial scales, areas within thin + chip treatments that were free of woodchip cover had an increased abundance of understory vegetation compared to all other areas sampled. Relative cover of non-native plant species was significantly higher in the thin-only treatments compared to control and thin + chip areas. Thin + chip treated forests also had a significantly different understory plant community composition compared to control or thin-only treatments, including an increased richness of rhizomatous plant species. We suggest that thinning followed by either chipping or removing the harvested biomass could alter understory plant species composition in ponderosa pine forests of Colorado. When considering post-treatment responses, managers should be particularly aware of both the depth and the distribution of chipped biomass that is left in forested landscapes.  相似文献   

10.
11.
The sub-Antarctic biome of South America is the world's southernmost forested ecosystem and one of the last remaining wilderness areas on the planet. Nonetheless, the region confronts various anthropogenic environmental impacts, such as the invasive North American beaver (Castor canadensis) and timber harvesting, particularly in stands of Nothofagus pumilio. Both of these disturbances can affect terrestrial and aquatic systems. To understand the influence and relative importance of these disturbances on sub-Antarctic watersheds, we characterized in-stream and riparian habitat conditions (pH, dissolved oxygen, conductivity, temperature, stream size, distance to riparian forest, bank slope, substrate heterogeneity, benthic organic matter) and benthic macroinvertebrate community structure (density, richness, diversity, evenness) and function (biomass, functional feeding group percent) in 19 streams on Tierra del Fuego Island. To explain the effects of beaver invasion and timber harvesting, we compared these physical and biotic variables among four habitat types: (a) beaver meadows, (b) shelterwood cut harvested areas without forested riparian zones, (c) variable retention harvested areas with riparian buffers, and (d) unmanaged old-growth primary forests. Most habitat variables were similar at all sites, except for dissolved oxygen (significantly higher in streams from old-growth primary forests). Benthic communities in beaver meadows had significantly lower diversity, compared to streams of unmanaged old-growth primary forests, and managed sites presented intermediate values between the two. Functionally, the benthic community in beaver meadows displayed a reduction of all functional feeding groups except collector-gatherers; again variable retention harvested areas with riparian buffers were similar to unmanaged old-growth primary forest streams, while shelterwood cut harvested areas occupied an intermediate position. These results indicated that current forestry practices that include both variable retention and legally mandated riparian forested buffers may be effective in mitigating impacts on stream benthic communities. Finally, these data demonstrated that C. canadensis invasion was a relatively larger impact on these streams than well-managed forestry practices.  相似文献   

12.
Wildfire and logging are common disturbances in the forests of northwestern North America, causing changes in soil chemistry and microbiology, including fungal and nitrogen-cycling bacterial communities. These organisms play key roles in nutrient cycling, and affect the regeneration of tree seedlings after disturbance. We studied the effects of wildfire and logging on fungal and nitrogen-cycling communities in the rhizosphere of 16 month-old Douglas-fir seedlings as they regenerated in burned and logged soils. Seeds were planted against root windows that were set up vertically in the soil, with a removable front panel used to access the seedling rhizosphere soil surface. Windows were established in control, lightly burned, and severely burned plots, as well as two types of logged plots (clearcut and screefed clearcut). Soil scrapings from the root window–soil interface were taken and the structure of fungal and nitrogen-cycling communities was resolved using length-heterogeneity PCR (LH-PCR) of fungal nuclear ribosomal RNA genes, and terminal restriction fragment length polymorphism (T-RFLP) analysis of nifH and nosZ genes. We found striking differences in the community structure of fungal, denitrifying, and N-fixing communities in response to burning and logging. With the exception of clearcut and screefed clearcut, which were generally similar, each treatment had a unique impact on community structure for these genes. Burning and logging also impacted the relative richness and evenness of these communities. Fungal relative richness and evenness increased in response to logging and severe burning, while denitrifier relative richness and evenness increased in all disturbance treatments, and N-fixing bacterial relative richness and evenness decreased in response to burning. The greatest differences in microbial community structure, relative richness, and evenness were found in the comparisons of lightly burned and logged treatments. The results suggest that the presence of an intact forest floor influences soil microbial communities less than the presence of living trees.  相似文献   

13.
We studied the short-term effects of a catastrophic windstorm and subsequent salvage-logging and prescribed-burning fuel-reduction treatments on ground beetle (Coleoptera: Carabidae) assemblages in a sub-boreal forest in northeastern Minnesota, USA. During 2000–2003, 29,873 ground beetles represented by 71 species were caught in unbaited and baited pitfall traps in aspen/birch/conifer (ABC) and jack pine (JP) cover types. At the family level, both land-area treatment and cover type had significant effects on ground beetle trap catches, but there were no effects of pinenes and ethanol as baits. Six times more beetles were trapped in the burned forests than in the other land-area treatments; more beetles were caught in undisturbed than in wind-disturbed sites, and one-third more beetles were caught in the ABC than in the JP cover type. Thus, the windstorm generally reduced the activity-abundance of the beetles, but prescribed-burning increased it. Both salvaged and burned forest plots (especially in the ABC cover type) had the greatest species richness, diversity, and the most unique species assemblages. There was a highly similar ground beetle species composition (nearly 100%) between the ABC and JP burned forests, indicating that burning was a more primary driver of composition than cover type. At the species level, Pterostichus melanarius, an invasive ground beetle from Europe and a cover type generalist, was the most abundant beetle in the study (one-third of the total catch), and was caught in greatest numbers in burned forests. Removal of P. melanarius from the species composition analyses altered similarities among cover types and land-area treatments. Sphaeroderus nitidicollis brevoorti and Myas cyanescens were caught exclusively in the ABC and JP cover type, respectively; two rare pyrophilous species, Sericoda obsoleta and Sericoda quadripunctata, were only caught in burned sites; three forest species, Pterostichus coracinus, P. pensylvanicus, and Sphaeroderus lecontei, were caught more often in undisturbed JP sites; and two frequently trapped, open-habitat species, Agonum cupripenne and Poecilus l. lucublandus, were nearly absent from the undisturbed and wind-disturbed sites, as salvage-logging had a significant positive effect on their activity-abundance. Most species of Amara and Harpalus were trapped only in the salvaged or burned sites, indicating invasion of these disturbed sites by open-habitat species. We conclude that both the combined effect of fuel-reduction activities subsequent to the wind event and the numerical response of the invasive P. melanarius to habitat disturbances can alter the short-term succession of ground beetle assemblages in the sub-boreal forest.  相似文献   

14.
Typically, after large stand-replacing fires in mid-elevation Sierra Nevada forests, dense shrub fields occupy sites formerly occupied by mature conifers, until eventually conifers overtop and shade out shrubs. Attempting to reduce fuel loads and expedite forest regeneration in these areas, the USDA Forest Service often disrupts this cycle by the logging of fire-killed trees, replanting of conifers and killing of shrubs. We measured the effects of these treatments on live and dead fuel loads and alien species and modeled potential fire behavior and fire effects on regenerating forests. Sampling occurred in untreated, logged and herbicide-treated stands throughout the Sierra Nevada in four large fire areas 4–21 years after stand-replacing fires. Logging fire-killed trees significantly increased total available dead fuel loads in the short term but did not affect shrub cover, grass and forb cover, alien species cover or alien species richness. Despite the greater available dead fuel loads, fire behavior was not modeled to be different between logged and untreated stands, due to abundant shrub fuels in both logged and untreated stands. In contrast, the herbicide treatment directed at shrubs resulted in extremely low shrub cover, significantly greater alien species richness and significantly greater alien grass and forb cover. Grass and forb cover was strongly correlated with solar radiation on the ground, which may be the primary reason that grass and forb cover was higher in herbicide treated stands with low shrub and tree cover. Repeat burning exacerbated the alien grass problem in some stands. Although modeled surface fire flame lengths and rates of spread were found to be greater in stands dominated by shrubs, compared to low shrub cover conifer plantations, surface fire would still be intense enough to kill most trees, given their small size and low crown heights in the first two decades after planting.  相似文献   

15.
Populus–Salix forests are a valued riparian vegetation type in western North America. These pioneer, obligate phreatophytes have declined on some rivers, raising conservation concerns and stimulating restoration plantings, but have increased on others. Understanding patterns and causes of forest change is essential for formulating conservation, restoration and management plans. Our goal was to assess spatio-temporal patterns of vegetation change on the Upper San Pedro River in semiarid Arizona, USA, one of the few undammed rivers in the region. Over 100 years ago, intense floods initiated channel incision and substantially altered hydrogeomorphology. Pioneer trees began to establish in the widening post-entrenchment zone as the surfaces began to stabilize. Using a time-series of aerial photographs (1955–2003) we quantified recent change in area of riparian cover types. Analysis indicated that wooded area in the post-entrenchment zone nearly tripled from 1955 to 2003, at the expense of bare ground, and the active channel narrowed appreciably. This forest expansion represents a long-term response to river entrenchment, with the temporal pattern influenced by recent flood cycles and biogeomorphic feedbacks. Populus–Salix have established episodically during the infrequent years with high winter flood runoff, sequentially filling available recruitment space. Older cohorts cover wide swaths of the floodplain while young trees form narrow bands lining the channel. Barring extreme flooding, the pioneer forests are expected to senesce over the coming century. An additional factor that has shaped the pattern of post-entrenchment forest expansion is anthropogenic water withdrawal. Populus–Salix forest increase has been greatest within a conservation area, where stream flows are largely perennial. In drier, agricultural sectors, Populus–Salix have declined while the more deeply-rooted Tamarix has increased. Overall, the study reveals that long-term fluctuations in pioneer forest area and age structure are common on dryland rivers, and shows how past events such as extreme floods can interact with recent environmental practices such as freshwater withdrawal to influence riparian forest patterns. This underscores the necessity of a long-term perspective for forest conservation and management.  相似文献   

16.
Old growth stands of boreonemoral spruce (Picea abies) forests frequently have a shrub layer dominated by hazel (Corylus avellana) – a species which is generally excluded in intensively managed forests due to clearcutting activities. We sampled understory species composition, richness and biomass, as well as environmental variables beneath these two species and also within forest ‘gaps’ in order to determine the effect of overstory species on understory vegetation. Species richness and biomass of herbaceous plants was significantly greater under Corylus compared with plots under Picea and in forest gaps. Indicator species analysis found that many species were significantly associated with Corylus. We found 45% of the total species found under woody plants occurred exclusively under Corylus. Light availability in spring and summer was higher in gaps than under forest cover but no difference was found between plots under Corylus and Picea. Hence, reductions in light availability cannot explain the differences in species composition. However, Ellenberg indicator values showed that more light demanding species were found under Corylus compared to Picea, but most light demanding species were found in gaps. The litter layer under Picea was three times thicker than under Corylus and this may be an important mechanism determining differences in understory composition and richness between the woody species. The presence of Corylus is an important factor enhancing local diversity and small-scale species variation within coniferous stands. Hence, management should maintain areas of Corylus shrubs to maintain understory species diversity in boreal forests.  相似文献   

17.
The cultural practices associated with Euro-American settlement in the United States have altered forest structure and ultimately changed fundamental ecosystem processes. Coarse woody debris (CWD) and canopy cover are recognized as having great importance for many wildlife species and ecological processes. Little information is available from forests on historical levels of canopy cover and CWD before European settlement. A great deal of uncertainty exists concerning the long-term role of fire and the dynamics of CWD, especially in forests that once experienced frequent, low-moderate intensity fire regimes. The objective of this study was to quantify CWD and forest canopy cover in an area where harvesting has never occurred and limited fire suppression began in the 1970s. This study was done in Jeffrey pine-mixed conifer forests in the Sierra San Pedro Martir (SSPM) in northwestern Mexico. Canopy cover, canopy closure, and CWD were sampled on a grid of plots. Average canopy cover was 26.8%, average canopy closure was 40.1%. A total of 102 CWD pieces were measured, and nearly half of the plots (45.7%) had no CWD present. Average CWD density, percent cover, volume, and weight were 108 pieces ha−1, 1.5%, 47.5 m3 ha−1, and 15.7 tonnes ha−1, respectively. All of the CWD sampled were in the later stages of decay. Less than average values for CWD density, percent cover, volume, and weight were recorded in 57%, 64%, 67%, and 69% of the plots, respectively. CWD dynamics in forests that experience frequent, low-moderate intensity fires are fundamentally different than those having long-interval, high-severity fires. There was a large amount of variability in all CWD and forest canopy cover measurements taken from Jeffrey pine-mixed conifer forests in the SSPM. Spatial heterogeneity in forest structure should be included in the desired conditions of xeric, pine-dominated forests in the United States that once experienced frequent, low-moderate intensity fire regimes. It should be noted that heterogeneity by itself may not lead to sustainable forests unless that heterogeneity includes stand structures that are resistant/resilient to high-severity fire, drought, insects, and disease.  相似文献   

18.
To examine the relationship between forest succession following fire and the composition of bird communities, we investigated the vegetation structure, bird population density, foraging behavior and guild structure in bamboo grasslands (11 years since the last fire), pine savanna (41 years), pine woodland (58 years), old-growth hemlock forest (never burned), and old-growth spruce forest (never burned) in the Tatachia area of central Taiwan. Canopy height, total foliage cover, tree density, total basal area of tree, total basal area of snags, foliage height diversity, and tree species richness all increased with successional age. However, shrub cover peaked in intermediate successional stages. The vertical profile of foliage cover was more diverse in later successional forests, which had more breeding bird species and ecological guilds. All the breeding bird species recorded in early and intermediate stages were also found distributed in the late successional forests. Because Taiwan has high precipitation and humidity, and most forest fires in Taiwan are caused by human activities, forest fires and large areas of early successional vegetation were probably rare in the mountain areas of Taiwan prior to the arrival of humans. Therefore, bird species have not had enough time to adapt to areas with early or intermediate successional vegetation. Moreover, late successional forests host all the major plant species found in the early and intermediate stages and have higher foliage height diversity index, which was positively correlated with the bird species richness and bird species diversity index in this study. As a result, all breeding bird species and guilds in the area can be found in late successional forests. Efforts for conserving avian diversity in Taiwan should focus on protecting the remaining native old-growth forests.  相似文献   

19.
In Scots pine Pinus sylvestris forests, the important ecological effects of natural fires could be emulated using prescribed fire. Species that may benefit from fire effects include capercaillie Tetrao urogallus, a large forest grouse. A key component of forest habitats for capercaillie is the ericaceous shrub, bilberry Vaccinium myrtillus, which is eaten by capercaillie, and supports abundant arthropods, taken by young chicks. We carried out an experiment testing whether prescribed burning would be a valuable technique for capercaillie habitat management. The study took place at Abernethy Forest, the largest ancient native pinewood in Britain, and a key capercaillie site, holding c 8-20% of the British population. Prescribed fire in woodland is highly novel in Britain. We therefore also tested mowing, which might replicate some fire effects more cheaply and safely. Twenty-five experimental blocks were established within open pine stands with ground vegetation including bilberry, but dominated by heather Calluna vulgaris. Each block held three 700 m2 plots, randomly assigned to control, mow and burn. Vegetation, arthropods and capercaillie dung were monitored over a 7-year period, including 1 year prior to treatment. Mean bilberry cover, initially around 12%, increased in mown and burnt areas, but there were also increases in controls, following unusual natural die-back of heather. By the sixth season after treatment, bilberry cover was significantly higher in burnt and mown areas than controls, averaging 27% (95% confidence intervals 24-30), compared to 20% (19-21) in controls. Biomass of spiders, an important dietary group for capercaillie chicks, as measured by pitfall trapping, was significantly higher in burnt and mown plots than controls, by about 56% (38-76). However, biomass of caterpillars, often considered a more important dietary group, did not show clear differences between treatments. An alternative analysis was used to ‘statistically remove’ natural heather die-back; this enhanced the treatment differences in bilberry cover and spider biomass. Capercaillie dung counts suggested that burnt, and especially mown areas, had more summer capercaillie usage than controls. Capercaillie conservation at sites similar to Abernethy is likely to benefit from either prescribed fire or mowing, because these techniques increase bilberry and spider abundance. This study illustrates the value of collaboration between researchers and land-managers, in developing and testing novel management techniques. We support the idea that ‘dominance reduction’, delivered through managed disturbance, offers a general principle to guide land-managers wishing to maintain biodiversity, particularly where key species, like capercaillie, are strongly associated with sub-dominant plant species like bilberry.  相似文献   

20.
Because shrub cover is related to many forest ecosystem functions, it is one of the most relevant variables for describing these communities. Nevertheless, a harmonized indicator of shrub cover for large-scale reporting is lacking. The aims of the study were threefold: to define a shrub indicator that can be used by European countries for harmonized shrub cover estimation using data from their respective national forest inventories (NFIs); to quantify the effects of using different NFI field cover scales; and to establish bridges to facilitate harmonized estimation. Data for shrub species cover from the Third Spanish NFI together with scales for cover assessment from 16 European NFIs were used. The indicator, mean species cover (MSC), was defined for each species and each European forest category. Estimates of MSC calculated using species covers recorded for field plots, with 1% interval widths (MSCobs), were compared with the MSC values that would be obtained for the same data with the different European cover scales (MSCpred). Residuals calculated as differences between MSCobs and MSCpred were analyzed, and a linear mixed model was used as bridging function to adjust predictions and thus further harmonize estimates. Scales with only two or three intervals produced the greatest residuals, while all the other analyzed scales had residuals less than 5%. Most scales, except those most similar to Braun-Blanquet, displayed a tendency to be unreliable for larger covers. The proposed mean species cover indicator provides comparable estimates for shrub communities at large scales. The linear models improved the harmonization of MSC for the scales having two and three intervals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号