共查询到20条相似文献,搜索用时 31 毫秒
1.
American chestnut (Castanea dentata (Marsh.) Borkh.) was once a principal component of the eastern deciduous forest until it became functionally extinct as a result of the invasive fungus Cryphonectria parasitica (Murr.) Barr. Restoration efforts are underway by means of a blight-resistant American-Chinese chestnut hybrid, and detailed silvicultural information, such as the shade tolerance of American chestnut and optimum site selection for restoration, is critical for planting success. In the present study, the physiological and morphological leaf characteristics of pure American chestnut seedlings, saplings, and mature trees were investigated in one of the few remaining stands of oak-chestnut vegetation (West Salem, WI) to determine shade tolerance. Seedlings, saplings, and mature trees had high maximum rates of photosynthesis, similar to shade intolerant species, and low light compensation points (LCPs), quantum efficiency, leaf mass per area (LMA), and percent nitrogen content, reminiscent of shade tolerant species. Dark respiration rates of seedlings and saplings were low, but increased in mature trees. LMA was found to significantly increase with height in the canopy, indicating a high level of light-induced plasticity. The results of this study suggest that American chestnut should be classified as intermediate in shade tolerance. 相似文献
2.
An extensive survey on chestnut stands in NW Spain was carried out to study the population biology of Cryphonectria parasitica in order to design future biological control programmes of chestnut blight based on the field introduction of native hypovirulent strains. Five hundred and thirty-nine Cryphonectria parasitica isolates, belonging to five populations (A Coruña, Lugo, Ourense, Pontevedra and León), were obtained. The diversity of vegetative compatibility was very low. Six vc types were found, each population showing only from 2 to 4 vc types. Two vc types were the known European testers EU1 and EU66, and the other four were undescribed vc types that were named E1, E2, E3 and E4. E1 was the dominant vc type in Lugo and Ourense populations, and EU1 in Pontevedra and León. Hypovirulent isolates (a total of 15) were only detected in the León population, all but one being compatible with the vc type EU1. Hypovirulent strains belonged to the French subtype F1 of the Cryphonectria hypovirus-1 (CHV1). 相似文献
3.
在北京周边县区、湖北大老岭山区以及陕西安康地区分别调查栗疫病发生情况,采集病原栗疫菌(Cryphonectria parasitica)菌株并进行营养体亲和性试验.结果表明:北京板栗栽培区和陕西安康地区野生栗栗疫病发病率较高,局部地区危害严重;湖北大老岭山区栗疫病发病率低,危害轻微.北京地区菌株群体营养体亲和型多样性指数(Shannon-Wiener's diversity index)极显著低于湖北菌株群体和陕西菌株群体,而陕西与湖北菌株群体营养体亲和型多样性指数差异不显著.随机选取湖北、陕西野生栗栗疫菌部分菌株,利用特异性引物,通过普通PCR和巢氏PCR,对其交配型进行测定,发现陕西与湖北野生栗菌株群体中均存在MAT-1与MAT-2两种交配型的菌株.通过PCR扩增,在两地的野生菌株群体里均发现同时具有两种交配型基因的菌株,其中,陕西群体此类菌株比例较大,湖北菌株比例较小 相似文献
4.
Robert I. McDonald Glenn Motzkin David R. Foster 《Forest Ecology and Management》2008,255(12):4021-4031
Forest harvesting is one of the most significant disturbances affecting forest plant composition and structure in eastern North American forests, yet few studies have quantified the landscape-scale effects of widespread, low-intensity harvests by non-industrial private forest owners. Using spatially explicit data on all harvests over the last 20 years, we sampled the vegetation at 126 sites throughout central and western Massachusetts, one-third of which had not been harvested, and two-thirds of which had been harvested once since 1984. Seedling and sapling densities increased with increasing harvest intensity, but decreased to levels similar to unharvested sites by year 20 for all but the most intensive harvests. The composition of understory trees appears to be only slightly changed by harvesting, and was strongly correlated with adult tree composition. Regeneration was dominated by Betula lenta followed by Pinus strobus; Quercus spp. exhibited little sapling recruitment, even in Quercus-dominated stands. Total vascular plant species richness increased substantially with harvesting on low C:N sites (i.e., rich soils), but was only slightly increased on high C:N sites. While harvesting was associated with a statistically significant change in vascular plant composition, non-metric multidimensional scaling revealed that climate (temperature, precipitation) and C:N ratios were the major correlates of composition. Overall, the compositional impacts of harvesting were minor, perhaps because of the low-intensity of harvesting. However, our results support observations from elsewhere in the northeastern U.S. of limited oak regeneration on both harvested and unharvested sites. In addition, our results suggest that increased harvest intensity may be expected to alter forest composition, particularly on rich sites where invasive species may increase as a result of harvesting. 相似文献
5.
Wildfire and logging are common disturbances in the forests of northwestern North America, causing changes in soil chemistry and microbiology, including fungal and nitrogen-cycling bacterial communities. These organisms play key roles in nutrient cycling, and affect the regeneration of tree seedlings after disturbance. We studied the effects of wildfire and logging on fungal and nitrogen-cycling communities in the rhizosphere of 16 month-old Douglas-fir seedlings as they regenerated in burned and logged soils. Seeds were planted against root windows that were set up vertically in the soil, with a removable front panel used to access the seedling rhizosphere soil surface. Windows were established in control, lightly burned, and severely burned plots, as well as two types of logged plots (clearcut and screefed clearcut). Soil scrapings from the root window–soil interface were taken and the structure of fungal and nitrogen-cycling communities was resolved using length-heterogeneity PCR (LH-PCR) of fungal nuclear ribosomal RNA genes, and terminal restriction fragment length polymorphism (T-RFLP) analysis of nifH and nosZ genes. We found striking differences in the community structure of fungal, denitrifying, and N-fixing communities in response to burning and logging. With the exception of clearcut and screefed clearcut, which were generally similar, each treatment had a unique impact on community structure for these genes. Burning and logging also impacted the relative richness and evenness of these communities. Fungal relative richness and evenness increased in response to logging and severe burning, while denitrifier relative richness and evenness increased in all disturbance treatments, and N-fixing bacterial relative richness and evenness decreased in response to burning. The greatest differences in microbial community structure, relative richness, and evenness were found in the comparisons of lightly burned and logged treatments. The results suggest that the presence of an intact forest floor influences soil microbial communities less than the presence of living trees. 相似文献
6.
Aditi Shenoy Jill F. Johnstone Eric S. Kasischke Knut Kielland 《Forest Ecology and Management》2011,261(3):381-390
There has been a recent increase in the frequency and extent of wildfires in interior Alaska, and this trend is predicted to continue under a warming climate. Although less well documented, corresponding increases in fire severity are expected. Previous research from boreal forests in Alaska and western Canada indicate that severe fire promotes the recruitment of deciduous tree species and decreases the relative abundance of black spruce (Picea mariana) immediately after fire. Here we extend these observations by (1) examining changes in patterns of aspen and spruce density and biomass that occurred during the first two decades of post-fire succession, and (2) comparing patterns of tree composition in relation to variations in post-fire organic layer depth in four burned black spruce forests in interior Alaska after 10-20 years of succession. We found that initial effects of fire severity on recruitment and establishment of aspen and black spruce were maintained by subsequent effects of organic layer depth and initial plant biomass on plant growth during post-fire succession. The proportional contribution of aspen (Populus tremuloides) to total stand biomass remained above 90% during the first and second decades of succession in severely burned sites, while in lightly burned sites the proportional contribution of aspen was reduced due to a 40-fold increase in spruce biomass in these sites. Relationships between organic layer depth and stem density and biomass were consistently negative for aspen, and positive or neutral for black spruce in all four burns. Our results suggest that initial effects of post-fire organic layer depths on deciduous recruitment are likely to translate into a prolonged phase of deciduous dominance during post-fire succession in severely burned stands. This shift in vegetation distribution has important implications for climate-albedo feedbacks, future fire regime, wildlife habitat quality and natural resources for indigenous subsistence activities in interior Alaska. 相似文献
7.
Jesús Julio Camarero Christof BiglerJuan Carlos Linares Eustaquio Gil-Pelegrín 《Forest Ecology and Management》2011,262(5):759-769
The causal factors and effects of forest declines are not well understood in temperate conifer forests. Most studies have focused on climatic and environmental stressors and have obviated the potential role of historical forest management as a predisposing factor of decline. Here, we assess if the recent silver fir (Abies alba) decline observed in the Spanish Pyrenees was predisposed by historical logging and incited by warming-induced drought stress. We analysed a dataset of environmental, structural, and historical variables at the tree and stand level including 32 sites with contrasting degrees of defoliation distributed over 5600 km2. We followed a dendroecological approach to reconstruct historical logging and to infer the effects of warming-induced drought stress on growth. The silver fir decline was more severe and widespread in western low-elevation mixed forests dominated by trees of small size and slow growth. These sites were subject to higher water deficits than eastern sites, where late-summer rainfall as the key climatic variable controlling silver fir growth was higher. Declining sites showed more frequent growth releases induced by historical logging than non-declining sites. Historical logging and warming-induced drought acted as long-term predisposing and short-term inciting factors of silver fir decline in the Pyrenees, respectively. We suggest that biomass increases caused by past intense logging affected the vulnerability of silver fir against late-summer water deficit. Future research in declining temperate conifer forests should consider the interacting role of predisposing historical management and inducing climatic stressors such as droughts. 相似文献
8.
Boreal forest ecosystems are generally highly sensitive to logging and other forestry activities. Thus, commercial forestry has had major effects on the forests and landscape structure in northern Sweden since the middle of the 19th Century, when it rapidly extended across the region. Lichens (which constitute up to 80% of reindeer forage in winter and early spring) have often been amongst the most severely affected ecosystem components. The overall aim of the present study was to analyze how forestry has influenced the potential supply of ground-growing lichens as winter forage for the reindeer in this region over the past ca. 100 years. For this purpose, we analysed changes in forest and stand structure in Scots pine-dominated (Pinus sylvestris L.) reindeer wintering areas in the southern part of the county Norrbotten (covering ca. 58,000 ha) using detailed historical forest inventories and management plans. We found that the amount of the forest types considered potentially good pasture (mainly middle-aged and old pine forests) decreased during the first part of the 20th Century. However, the quality of grazing grounds was improved by forestry during this time mainly because selective logging made the forests more open which benefits lichen growth. During the last part of the 20th century forestry impaired the quality of grazing grounds in several ways, e.g. by clear-cutting and intensified use of various silvicultural measures. We conclude that ca. 30–50% of the winter grazing grounds have been lost in the study area because of intensive forest management during the last century. The spatially precise historical information about the affects of forestry on lichen pasture provided in this study can be used to direct forest management which will facilitate and promote reindeer herding in the future. 相似文献
9.
Habitats worldwide are increasingly threatened by degradation and conversion. Critical to the process of habitat loss is the organismal response, which can have effects on immediate conservation measures or future restoration. Among the most threatened and underappreciated habitats are headwater streams, which are small but abundant features of montane forests. These habitats comprise a significant proportion of the total stream length, can harbor remarkable biodiversity, and are critical for numerous ecosystem processes. One of the most abundant organisms in montane headwater ecosystems are salamanders, and therefore what happens to salamanders when the forest habitats surrounding headwater streams are altered? Three main hypotheses exist: (1) mortality hypothesis; (2) retreat hypothesis; and (3) evacuation hypothesis. To examine these hypotheses we evaluated the impacts of even-aged riparian timber harvest on stream-breeding salamanders. Riparian forests along headwater streams were logged, leaving riparian buffers of 0 m, 9 m, and 30 m. Responses to each riparian alteration were measured in terms of salamander terrestrial habitat use and growth in the riparian habitat, as well as changes in population density within headwater streams. Adult and juvenile salamander densities measured in headwater streams were significantly greater in logged riparian treatments than in unaltered riparian treatments. In addition, salamanders significantly reduced their terrestrial habitat use following riparian logging with both the average distance from the stream and the relative abundance of salamanders decreasing. It is unlikely that salamanders will persist in highly modified riparian habitats, as we measured significantly reduced body conditions over short periods of time at these sites. We present corroborative evidence that salamanders evacuate the riparian habitat following intensive riparian logging, emigrating to adjacent headwater streams. Our results underscore the sensitivity of stream salamanders to riparian habitat alteration as well as the importance of riparian buffers in preserving amphibian assemblages. 相似文献
10.
Outbreaks of bark beetles and drought both lead to concerns about increased fire risk, but the relative importance of these two factors is the subject of much debate. We examined how mountain pine beetle (MPB) outbreaks and drought have contributed to the fire regime of lodgepole pine forests in northwestern Colorado and adjacent areas of southern Wyoming over the past century. We used dendroecological methods to reconstruct the pre-fire history of MPB outbreaks in twenty lodgepole pine stands that had burned between 1939 and 2006 and in 20 nearby lodgepole pine stands that were otherwise similar but that had not burned. Our data represent c. 80% of all large fires that had occurred in lodgepole pine forests in this study area over the past century. We also compared Palmer Drought Severity Index (PDSI) and actual evapotranspiration (AET) values between fire years and non-fire years. Burned stands were no more likely to have been affected by outbreak prior to fires than were nearby unburned stands. However, PDSI and AET values were both lower during fire years than during non-fire years. This work indicates that climate has been more important than outbreaks to the fire regime of lodgepole pine forests in this region over the past century. Indeed, we found no detectable increase in the occurrence of high-severity fires following MPB outbreaks. Dry conditions, rather than changes in fuels associated with outbreaks, appear to be most limiting to the occurrence of severe fires in these forests. 相似文献
11.
Brian H. Aukema Jun Zhu Jesper Møller Jakob G. Rasmussen Kenneth F. Raffa 《Forest Ecology and Management》2010
Bark beetles are largely known for their ability to undergo intermittent population eruptions that transform entire landscapes and pose significant economic hardships. However, most species do not undergo outbreaks, and eruptive species usually exert only minor disturbances. Understanding the dynamics of tree-killing noneruptive species can provide insights into how beetles persist at low densities, and how some spatiotemporal patterns of host predisposition may more likely favor breaching eruptive thresholds than others. Elucidating mechanisms behind low-density populations is challenging, however, due to the requirement of long-term monitoring and high degrees of spatial and temporal covariance. We censused more than 2700 trees annually over 7 years, and at the end of 17 years, in a mature red pine plantation. Trees were measured for the presence of bark beetles and wood borers that breed within the primary stem, root weevils that breed in root collars, and bark beetles that breed in basal stems. We quantify the sequence of events that drive this decline syndrome, with the primary emergent pattern being an interaction between below- and above-ground herbivores and their fungal symbionts. This interaction results in an expanding forest gap, with subsequent colonization by early-successional vegetation. Spatial position strongly affects the likelihood of tree mortality. A red pine is initially very likely to avoid attack by tree-killing Ips beetles, but attack becomes increasingly likely as the belowground complex spreads to neighboring trees and eventually make trees susceptible. This system is largely internally driven, as there are strong gap edge, but not stand-edge, effects. Additional stressors, such as drought, can provide an intermittent source of susceptible trees to Ips beetles, and elevated temperature slightly accentuates this effect. New gaps can arise from such trees as they subsequently become epicenters for the full complex of organisms associated with this decline, but this is not common. As Ips populations rise, there is some element of positive feedback, in that the proportion of killed trees that were not first colonized by root organisms increases. This positive feedback is very weak, however, and we propose the slope between beetle population density and reliance on host stress as a quantitative distinction along a gradient from noneruptive through eruptive species. Almost all trees colonized by Ips were subsequently colonized by wood borers, likely a source of negative feedback. We discuss implications to our overall understanding of cross-scale interactions, between-guild interactions, forest declines, and eruptive thresholds. 相似文献
12.
One of the arguments against using prescribed fire to regenerate oak (Quercus spp.) forests is that the improvement in species composition of the hardwood regeneration pool is temporary and multiple burns are necessary to achieve and maintain oak dominance. To explore this concern, I re-inventoried a prescribed fire study conducted in the mid-1990s to determine the longevity of the effects of a single prescribed fire on hardwood regeneration. The initial study was conducted in three oak shelterwood stands in central Virginia, USA. In 1994, each stand was divided into four treatments (spring, summer, and winter burns and a control) and the hardwood regeneration was inventoried before the fires. During the burns, fire intensity was measured and categorized in each regeneration sampling plot. Second-year postfire data showed marked differences in species mortality rates, depending on season-of-burn and fire intensity: oak and hickory (Carya spp.) regeneration dominated areas burned by medium- to high-intensity fire during the spring and summer while yellow-poplar (Liriodendron tulipifera) and red maple (Acer rubrum) seedlings dominated unburned areas and all areas treated with low-intensity fire regardless of season-of-burn. The treatments were re-inventoried in 2006 and 2007 to determine whether these fire effects were still present. The new data show that the species distributions by season-of-burn and fire intensity found in 1996 still existed 11 years after the treatments. The fact that fire effects in oak shelterwood stands can last at least a decade has important management implications for resource professionals interested in sustaining oak forests in the eastern United States. 相似文献
13.
14.
The eastern Canadian boreal forest exhibits a specific disturbance regime where forest fires are less frequent than in the western part. This particularity may explain the abundance of irregular stands with distinct ecological features. To ensure sustainable forest management, these characteristics require the implementation of an adapted silviculture regime. In this context, two selection cutting methods were developed and compared with more conventional techniques, initially designed for cutting more regular stands of the boreal forest (cutting leaving small merchantable stems, careful logging preserving advance regeneration). The comparison focused on the capacity of treatments to maintain the primary attributes of irregular boreal forests, including complex vertical structure, abundant tree cover, species composition, and an abundance of dead wood. Mortality and regeneration processes were also compared. 相似文献
15.
Felícia Fonseca Tomás de Figueiredo Afonso Martins 《Forest Ecology and Management》2011,262(10):1905-1912
In Mediterranean environments, availability of water and nutrients are the main factors limiting the success of afforestation. As part of a wider project, an experiment was established in Northeast Portugal, aiming at testing the effect of several site preparation techniques on plant survival and growth (height and diameter) in a newly installed mixed forest stand. Results presented regard plant response during 42 months after plantation. The experimental protocol consisted in seven treatments described by mechanical operations that rank soil disturbance intensity from none to high, set in plots of 375 m2, randomly distributed in three blocks, in different topographic positions (gentle slope plateau, moderate slope shoulder, and steep mid-slope). Pseudotsuga menziesii (PM) and Castanea sativa (CS) forest species were planted in a 4 m × 2 m scheme and in alternate rows with 12 plants on each row per plot, summing up 72 plant per specie and treatment at start of the experiment. The results show that: (i) the highest mortality was observed immediately after the plantation and before the dry season, on the lowest intensity treatments; (ii) after the dry season, the highest mortality was also observed in treatments with the lowest intensity of soil disturbance, while the lowest values were found on the intermediate intensity treatments; (iii) during the experimental period, the effect of treatments on plant growth (height and diameter) was statistically significant; however, experimental results do not lead yet to a clear quantitative relationship between soil disturbance intensity due to site preparation and plant response under the conditions tested. 相似文献
16.
The role of disturbance in structuring vegetation is widely recognized; however, we are only beginning to understand the effects of multiple interacting disturbances on ecosystem recovery and development. Of particular interest is the impact of post-disturbance management interventions, particularly in light of the global controversy surrounding the effects of salvage logging on forest ecosystem recovery. Studies of salvage logging impacts have focused on the effects of post-disturbance salvage logging within the context of a single natural disturbance event. There have been no formal evaluations of how these effects may differ when followed in short sequence by a second, high severity natural disturbance. To evaluate the impact of this management practice within the context of multiple disturbances, we examined the structural and woody plant community responses of sub-boreal Pinus banksiana systems to a rapid sequence of disturbances. Specifically, we compared responses to Blowdown (B), Fire (F), Blowdown-Fire, and Blowdown-Salvage-Fire (BSF) and compared these to undisturbed control (C) stands. Comparisons between BF and BSF indicated that the primary effect of salvage logging was a decrease in the abundance of structural legacies, such as downed woody debris and snags. Both of these compound disturbance sequences (BF and BSF), resulted in similar woody plant communities, largely dominated by Populus tremuloides; however, there was greater homogeneity in community composition in salvage logged areas. Areas experiencing solely fire (F stands) were dominated by P. banksiana regeneration, and blowdown areas (B stands) were largely characterized by regeneration from shade tolerant conifer species. Our results suggest that salvage logging impacts on woody plant communities are diminished when followed by a second high severity disturbance; however, impacts on structural legacies persist. Provisions for the retention of snags, downed logs, and surviving trees as part of salvage logging operations will minimize these structural impacts and may allow for greater ecosystem recovery following these disturbance combinations. 相似文献
17.
Disturbance history was reconstructed across an 11300 ha managed longleaf pine (Pinus palustris Mill.) landscape in southwestern Georgia, USA. Our specific objectives were to: (i) determine forest age structure; (ii) reconstruct disturbance history through the relationship between canopy disturbance, tree recruitment and growth; and (iii) explore the relationship between canopy disturbance and climate. Age structure, canopy disturbance events and initial growth patterns at coring height were examined by randomly sampling 1260 trees in 70 1.3 ha plots. Principal component analysis was used to group plots with similar age structures to gain insight into the dynamics between canopy disturbance and recruitment. Disturbance events were detected by large and rapid increases in radial growth. We tested the following hypothesis to investigate whether these growth increases could have been triggered by improved climatic conditions: precipitation and drought are positively correlated to radial growth releases. Only four stands (comprising <6% of the study area) had an even-aged structure. Further, tree recruitment prior to European settlement indicates that longleaf pine naturally recruited into areas 1.3 ha or less, supporting early-20th century observations that the primary longleaf pine forest was uneven-aged. Contrary to our hypothesis, growing season precipitation and drought was significantly and negatively correlated with canopy disturbance (radial growth releases), which indicates that a reconstruction of disturbance history could proceed with some confidence. Most trees sampled were recruited at coring height from 1910 to 1935. Of the 67 canopy disturbances detected from 1910 to 1935, the average growth release ranged from 139 to 277% per half decade suggesting the occurrence of large canopy disturbances. Rapid initial growth patterns of young trees during these years show evidence of reduced overstory competition and support the detected disturbance intensity. Our reconstruction of stand dynamics is markedly similar to independent records of local oral and written history, which gives an additional set of evidence that the disturbance detection methodology used can be useful in open-canopied forests. Stands with multiple cohorts reveal a mix of continuous minor and major canopy disturbances leading to continual tree recruitment, suggesting their applicability as models for long-term forest management. The significant relationship between climate and disturbance in our data suggests that with the expected warming over the next 100 years, climatic impacts on stand dynamics should be incorporated into long-term longleaf pine forest restoration and management. 相似文献
18.
Atsushi Sakai Thiti Visaratana Tosporn Vacharangkura Ratana Thai-ngam Nobuyuki Tanaka Moriyoshi Ishizuka Shozo Nakamura 《Forest Ecology and Management》2009
We tested the effects of species and spacing of nurse trees on the growth of Hopea odorata, a dipterocarp tree indigenous to Southeast Asia, in a two-storied forest management system in northeast Thailand. Eucalyptus camaldulensis, Acacia auriculiformis, and Senna siamea were planted as nurse trees in 1987 at spacings of 4 m × 8 m, 2 m × 8 m, 4 m × 4 m, and 2 m × 4 m in the Sakaerat Silvicultural Research Station of the Royal Forest Department, Thailand. Seedlings of H. odorata were planted in the nurse tree stands at a uniform spacing of 4 m × 4 m and in control plots (no nurse trees) in 1990. Stem numbers of some nurse trees were thinned by half in 1994. The stem diameter and height of all trees were measured annually until 1995 and again in 2007. The mean annual increment (MAI) in volume was estimated as 8.2–10.1 m3 ha−1 year−1 for E. camaldulensis and 0.9–1.2 m3 ha−1 year−1 for S. siamea, smaller than reported elsewhere. This suggests that the site properties were not suitable for them. The MAI of A. auriculiformis was 7.9–9.8 m3 ha−1 year−1, within the reported range. Survival rates of H. odorata in the S. siamea stands and the control plots decreased rapidly during the first 2 years but then stayed constant from 1992. In contrast, survival rates of H. odorata in the E. camaldulensis and A. auriculiformis stands were initially high (>70%), but then decreased after 1995. Stem diameter, tree height, and stand basal area of H. odorata were large in both the S. siamea stands and the control plots from then. The growth of H. odorata was largest in the 2 m × 8 m S. siamea stands. In contrast, it was restricted in the E. camaldulensis and A. auriculiformis stands owing to strong shading by their canopies. Thinning by 50% tended to facilitate the growth of H. odorata temporarily in the E. camaldulensis and A. auriculiformis stands. The stand basal areas of nurse trees and of H. odorata showed a trade-off. These results suggest that the growth of H. odorata was maximized in the S. siamea stands. We assume, however, that the growth of H. odorata could be improved even in the E. camaldulensis and A. auriculiformis stands by frequent or heavy thinning. 相似文献
19.
The single-tree selection system is an important option for management of Norway spruce (Picea abies (L.) Karst.) and silver fir (Abies alba Mill.) forests because it provides continuous cover, requires low investments for tending, and promotes natural regeneration as well as high stand resistance and elasticity. It is often regarded as a very conservative system that usually results in only minor spatiotemporal changes in forest structure and composition. We studied management history, structural changes, regeneration dynamics, and light climate of a traditional single-tree farmer selection silver fir-Norway spruce forest (site typology Bazzanio-Abietetum). Stand structure was analyzed on five 0.25 ha permanent plots in 1994, 2001, and 2008. Regeneration density and height growth, forest floor vegetation, and light climate were also assessed on 1.5 × 1.5 m regeneration subplots in 2001 and 2008. Tree cores extracted from dominant trees from both species in two plots were used for reconstructing stand history and age structure of the canopy layer. We documented the forest response to three types of selection management regimes: excessive, normal, and conservative. Excessive management with harvest intensity significantly above the increment was documented until the late 1950s, including two peaks of heavy fellings (diameter limit cut) in the 1880s and 1930s, which favoured establishment of Norway spruce and released regeneration. The period that followed was characterized by normal selection management, but was nevertheless marked by a decline of silver fir as a result of air pollution and several droughts. This led to sanitary fellings that were carried out from the late 1970s to the early 1990s. In the last two decades conservative management followed, which led to suppression and decline of regeneration, especially of Norway spruce, and loss of selection structure. Although we recorded lower regeneration potential of silver fir compared with Norway spruce within the seedling category, silver fir outcompeted Norway spruce within the small-sized tree category (1 cm < dbh ? 10 cm) because of its superior height growth in low light levels (diffuse light <6%) and occupied a greater share of the canopy. Nevertheless, we anticipate that over the long-term the low light regime will also cause regeneration decline of silver fir and broadleaves. Our research revealed significant structural changes in a single-tree farmer selection forest during the last 150 years. These were a result of variable management regime and environment. A farmer single-tree selection system could better mimic the natural disturbance regime if spatiotemporal combinations of diverse felling regimes would be used. 相似文献
20.
Tropical montane cloud forest has been undergoing a drastic reduction because of its widespread conversion to pastures. Once these forests have been cleared exotic grasses are deliberately introduced for forage production. Exotic grass species commonly form monodominant stands and produce more biomass than native grass species, resulting in the inhibition of secondary succession and tree regeneration. The purpose of this study was to assess the effect of native vs. exotic grass species on the early establishment of two native tree seedlings (Mexican alder, Alnus acuminata and Jalapa oak, Quercus xalapensis) on an abandoned farm in central Veracruz, Mexico. Seedling survival and growth were monitored (over 46 weeks) in relation to grass cover and height, and available photosynthetic active radiation (PAR). More seedlings survived in the presence of the native grass Panicum glutinosum than those growing with the exotic grass Cynodon plectostachyus (92% vs. 48%). The causes of seedling mortality varied between species; Q. xalapensis was affected by herbivory by voles but mainly in the exotic grass-dominated stands, whereas A. acuminata seedlings died due to competition with the exotic grass. A. acuminata seedlings increased more in height in the exotic grass-dominated stands (102 ± 7.8 cm) compared to native grass-dominated stands (51 ± 4.7 cm). Grass layer height, cover and available PAR were correlated (Pearson; p < 0.05). In the exotic grass dominated plots, grass layer height was correlated with the relative height growth rates of Q. xalapensis (Pearson; p < 0.05). These results indicate that the exotic grass may be affecting tree regeneration directly (grass competition) and indirectly (higher herbivory). Passive restoration may occur once P. glutinosum dominated pastures are abandoned. However, when C. plectostachyus dominates, introduction of early and mid successional tree seedlings protected against vole damage is needed. 相似文献