首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 166 毫秒
1.
Eucalyptus and Acacia are two tree genera that are commonly used in industrial plantations and as components of agroforestry systems in southeast Asia. These fast-growing trees are mostly grown in monocultures. However, questions are now being raised about the long-term sustainability of their growth as well as their effects on site quality. Losses of N and P from the site through biomass harvest and during site preparation constitute a major nutrient drain. As an alternative to monocultures, mixed-species cultures which include at least one N2-fixing tree species can improve plant productivity and soil N dynamics. Among the various aspects of N dynamics in such stands, export of N during biomass harvest and inputs by the N2-fixing component are the most important. Reported estimates of the amount of N fixed by acacia and other N2-fixing trees are highly variable, depending on inherited plant characteristics, tree age, site factors (e.g., drought), soil fertility (e.g., available P, metal toxicities) and unreliable methods of measuring N2-fixation. Of the available techniques for assessing N2-fixation by trees, the total N difference method (TND) is the simplest. The contribution of roots to assessments of N2-fixation is recognized but rarely measured. For short-rotation mixed-species plantations, the amount and time of N transfer from N2-fixing trees to non-N2-fixing trees are important issues to consider when attempting to develop productive nutrient management strategies. Based on limited information from trials in southeast Asia, it appears that acacia fixes substantial amounts of N during the first few years of establishment and a significant amount of that N is transferred to adjacent eucalypts, thereby improving the growth and nutrition of the eucalypts. The presumed transfer of N from acacias to eucalypts during the early stages of plantation development probably results from belowground turnover of roots and nodules because aboveground litter decomposition is slight at this stage, and contributes little to the overall N dynamics. The available information on P cycling in mixed-species stands, during the early stages of stand growth, provides inconclusive evidence as to whether the availability of soil P increases, despite indications of higher levels of phosphatase activity in the fine roots of nitrogen-fixing trees. This would imply that additional inputs of P as fertilizer are required to remove any P deficiency in mixed-species stands. Long-term observations are required for better understanding of the nutritional and growth benefits of including N2-fixing trees in mixed-species stands. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

2.
We used an isotopic approach to evaluate the effects of three afforestation methods on the ecophysiology of an Aleppo pine plantation in semiarid Spain. The site preparation methods tested were excavation of planting holes (H), subsoiling (S), and subsoiling with addition of urban solid refuse to soil (S + USR). Five years after plantation establishment, trees in the S + USR treatment were over three times larger than those in the S treatment, and nearly five-fold larger than those planted in holes. Differences in tree biomass per hectare were even greater due to disparities in initial planting density and pine tree mortality among treatments. Pine trees in the S + USR treatment showed higher foliar P concentration, δ13C and δ15N than those in the S or H treatments. Foliar δ15N data proved that trees in the S + USR treatment utilized USR as a source of nitrogen. Foliar δ13C and δ18O data suggest that improved nutrient status differentially stimulated photosynthesis over stomatal conductance in the pine trees of the S + USR treatment, thus enhancing water use efficiency and growth. In the spring of 2002, trees in the S + USR treatment exhibited the most negative predawn water potentials of all the treatments, indicating that the rapid early growth induced by USR accelerated the onset of intense intra-specific competition for water. The results of this study have implications for the establishment and management of Aleppo pine plantations on semiarid soils. Planting seedlings at low density and/or early thinning of pine stands are strongly recommended if fast tree growth is to be maintained beyond the first few years after USR addition to soil. Foliar C, O and N isotope measurements can provide much insight into how resource acquisition by trees is affected by afforestation techniques in pine plantations under dry climatic conditions.  相似文献   

3.
The sustainability of plantation forests is closely dependent on soil nitrogen availability in short-rotation forests established on low-fertility soils. Planting an understorey of nitrogen-fixing trees might be an attractive option for maintaining the N fertility of soils. The development of mono-specific stands of Acacia mangium (100A:0E) and Eucalyptus grandis (0A:100E) was compared with mixed-species plantations, where A. mangium was planted in a mixture at a density of 50% of that of E. grandis (50A:100E). N2 fixation by A. mangium was quantified in 100A:0E and 50A:100E at age 18 and 30 months by the 15N natural abundance method and in 50A:100E at age 30 months by the 15N dilution method. The consistency of results obtained by isotopic methods was checked against observations of nodulation, Specific Acetylene Reduction Activity (SARA), as well as the dynamics of N accumulation within both species. The different tree components (leaves, branches, stems, stumps, coarse roots, medium-sized roots and fine roots) were sampled on 5–10 trees per species for each age. Litter fall was assessed up to 30 months after planting and used to estimate fine root mortality. Higher N concentrations in A. mangium tree components than in E. grandis might be a result of N2 fixation. However, no evidence of N transfer from A. mangium to E. grandis was found. SARA values were not significantly different in 100A:0E and 50A:100E but the biomass of nodules was 20–30 times higher in 100A:0E than in 50A:100E. At age 18 months, higher δ15N values found in A. mangium tree components than in E. grandis components prevented reliable estimations of the percentage of N derived from atmospheric fixation (%Ndfa). At age 30 months, %Ndfa estimated by natural abundance and by 15N dilution amounted to 10–20 and 60%, respectively. The amount of N derived from N2 fixation in the standing biomass was estimated at 62 kg N ha−1 in 100A:0E and 3 kg N ha−1 in 50A:100E by the 15N natural abundance method, and 16 kg N ha−1 in 50A:100E by the 15N dilution method. The total amount of atmospheric N2 fixed since planting (including fine root mortality and litter fall) was estimated at 66 kg N ha−1 in 100A:0E and 7 kg N ha−1 in 50A:100E by the 15N natural abundance method, and 31 kg N ha−1 in 50A:100E by the 15N dilution method. The most reliable estimation of N2 fixation was likely to be achieved using the 15N dilution method and sampling the whole plant.  相似文献   

4.
Trees which root below crops may have a beneficial role in simultaneous agroforestry systems by intercepting and recycling nutrients which leach below the crop rooting zone. They may also compete less strongly for nutrients than trees which root mainly within the same zone as crops. To test these hypotheses we placed highly enriched 15N-labelled ammonium sulphate at three depths in the soil between mixed hedgerows of the shallow-rooting Gliricidia sepium and the deep rooting Peltophorum dasyrrhachis. A year after the isotope application most of the residual 15N in the soil remained close to the injection points due to the joint application with a carbon source which promoted 15N immobilization. Temporal 15N uptake patterns (two-weekly leaf sub-sampling) as well as total 15N recovery measurements suggested that Peltophorum obtained more N from the subsoil than Gliricidia. Despite this Gliricidia appeared to compete weakly with the crop for N as it recovered little 15N from any depth but obtained an estimated 44–58% of its N from atmospheric N2-fixation. Gliricidia took up an estimated 21 kg N ha–1 and Peltophorum an estimated 42 kg N ha–1 from beneath the main crop rooting zone. The results demonstrate that direct placement of 15N can be used to identify N sourcing by trees and crops in simultaneous agroforestry systems, although the heterogeneity of tree root distributions needs to be taken into account when designing experiments. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

5.
Mature deciduous forests can serve as important carbon (C) sinks, but the C storage differs significantly in dependency on the tree species. To specify the significance of overstory-specific effects of litter fall on the soil microbial C turnover, we have investigated the 13C isotopic signature of microbial biomarker phospholipid fatty acids (PLFAs). Samples were taken under pure Fagus sylvatica and mixed overstory (F. sylvatica and Fraxinus excelsior or F. excelsior, Acer spp. and F. sylvatica) in a mature temperate deciduous forest in Central Germany 4 weeks prior to and 3 weeks after litter fall. Accordingly, the CO2 emission from soil was measured before, during and after the litter fall to investigate the response of decomposition. At all sites and at both sampling dates the fungal biomarker PLFA 18:2ω6,9 had predominantly lower δ13C values (from −32 to −43‰) than the bacterial biomarker PLFAs (δ13C values from −23 to −39‰). This difference indicated that fungi generally used preferentially plant derived C, whereas the bacterial populations include groups which used SOM derived C, independent on the overstory trees. Under pure F. sylvatica overstory the δ13C values of microbial biomarker PLFAs were slightly decreased (up to 2‰ for 17:0br) or unchanged after litter fall. By contrast, under both variants of mixed overstory the δ13C values of biomarker PLFAs of fungi (18:2ω6,9) were increased after litter fall (+3.5 and +3.8‰). This might be explained partly by a faster initial decomposition of foliar litter from mixed overstory already during litter fall as confirmed by higher CO2 emission under mixed F. excelsior, Acer spp. and F. sylvatica than under pure F. sylvatica in this period. However, the involved microbial populations differed overstory-specific. Bacterial biomarker PLFAs with strongest overstory-specific differences in the response on litter fall were 17:0br (Gram-positive bacteria), 18:1 and 19:0cy (Gram-negative bacteria). The present results indicate that a tree species conversion even exclusively between deciduous tree species might alter the soil microbial C turnover during litter decomposition and suggest that it would in the long-term change the SOM stability and C storage.  相似文献   

6.
The fate of high and equally distributed ammonium and nitrate deposition was followed in a 72-year-old roofed Norway spruce forest at Solling in central Germany by separately adding 15NH4+ and 15NO3 to throughfall water since November 2001. The objective was to quantify the retention of atmospheric ammonium and nitrate in different ecosystem compartments as well as the leaching loss from the forest ecosystem. δ15N excess in tree tissues (needles, twigs, branches and bole woods) decreased with increased tissue age. Clear 15N signals in old tree tissues indicated that the added 15N was not only assimilated to newly produced tree tissues but also retranslocated to old ones. During a period of over 3-year 15N addition, 30% of 15NH4+ and 36% of 15NO3 were found in tree compartments. For both 15N tracers, 15% of added 15N was found in needles, followed by woody tissues (twigs, branches and boles, 7–13%) and live fine roots (7%). The recovery of 15NH4+ and 15NO3 in the live fine roots differed with soil depth. The recovery of 15NH4+ tended to be higher in the live fine roots in the organic layer than in the upper mineral soil. In the live fine roots in deeper soil, the recovery of 15NO3 tended to be higher than that of 15NH4+. Soil retained the largest proportion of 15N, accounting for 71% of 15NH4+ and 42% of 15NO3. Most of 15NH4+ was recovered in the organic layer (65%) and the recovery decreased with soil depth. Conversely, only 8% of 15NO3 was found in the organic layer and 34% of 15NO3 was evenly distributed throughout the mineral soil layers. Nitrate leaching accounted for 3% of 15NH4+ and 19% of 15NO3. Only less than 1% of the both added 15N was leached as DON. These results suggested that trees had a high contribution to the retention of atmospheric N and soil retention capacity determined the loss of atmospheric N by nitrate leaching.  相似文献   

7.
Variability of soil CO2 efflux strongly depends on soil temperature, soil moisture and plant phenology. Separating the effects of these factors is critical to understand the belowground carbon dynamics of forest ecosystem. In Ethiopia with its unreliable seasonal rainfall, variability of soil CO2 efflux may be particularly associated with seasonal variation. In this study, soil respiration was measured in nine plots under the canopies of three indigenous trees (Croton macrostachys, Podocarpus falcatus and Prunus africana) growing in an Afromontane forest of south-eastern Ethiopia. Our objectives were to investigate seasonal and diurnal variation in soil CO2 flux rate as a function of soil temperature and soil moisture, and to investigate the impact of tree species composition on soil respiration. Results showed that soil respiration displayed strong seasonal patterns, being lower during dry periods and higher during wet periods. The dependence of soil respiration on soil moisture under the three tree species explained about 50% of the seasonal variability. The relation followed a Gaussian function, and indicated a decrease in soil respiration at soil volumetric water contents exceeding a threshold of about 30%. Under more moist conditions soil respiration is tentatively limited by low oxygen supply. On a diurnal basis temperature dependency was observed, but not during dry periods when plant and soil microbial activities were restrained by moisture deficiency. Tree species influenced soil respiration, and there was a significant interaction effect of tree species and soil moisture on soil CO2 efflux variability. During wet (and cloudy) period, when shade tolerant late successional P. falcatus is having a physiological advantage, soil respiration under this tree species exceeded that under the other two species. In contrast, soil CO2 efflux rates under light demanding pioneer C. macrostachys appeared to be least sensitive to dry (but sunny) conditions. This is probably related to the relatively higher carbon assimilation rates and associated root respiration. We conclude that besides the anticipated changes in precipitation pattern in Ethiopia any anthropogenic disturbance fostering the pioneer species may alter the future ecosystem carbon balance by its impact on soil respiration.  相似文献   

8.
Natural abundance of 15N was sampled in young and mature leaves, branches, stem, and coarse roots of trees in a cacao (Theobroma cacao) plantation shaded by legume tree Inga edulis and scattered non-legumes, in a cacao plantation with mixed-species shade (legume Gliricidia sepium and several non-legumes), and in a tree hedgerow bordering the plantations in Guácimo, in the humid Caribbean lowlands of Costa Rica. The deviation of the sample 15N proportion from that of atmosphere (δ15N) was similar in non-legumes Cordia alliodora, Posoqueria latifolia, Rollinia pittieri, and T. cacao. Deep-rooted Hieronyma alchorneoides had lower δ15N than other non-N2-fixers, which probably reflected uptake from a partially different soil N pool. Gliricidia sepium had low δ15N. Inga edulis had high δ15N in leaves and branches but low in stem and coarse roots. The percentage of N fixed from atmosphere out of total tree N (%Nf) in G. sepium varied 56–74%; N2 fixation was more active in July (the rainiest season) than in March (the relatively dry season). The variation of δ15N between organs in I. edulis was probably associated to 15N fractionation in leaves. Stem and coarse root δ15N was assumed to reflect the actual ratio of N2 fixation to soil N uptake; stem-based estimates of %Nf in I. edulis were 48–63%. Theobroma cacao below I. edulis had lower δ15N than T. cacao below mixed-species shade, which may indicate direct N transfer from I. edulis to T. cacao but results so far were inconclusive. Further research should address the 15N fractionation in the studied species for improving the accuracy of the N transfer estimates. The δ15N appeared to vary according to ecophysiological characteristics of the trees.  相似文献   

9.
Agroforestry trees are now well known to play a central role in the build up of nutrients pools and their transformations similar to that of forest ecosystem, however, information on the potential of homegarden trees accumulating and releasing nitrogen (mineralization) is lacking. The present study reports seasonal variations in pool sizes of mineral N (NH4+-N and NO3-N), and net N-mineralization rate in relation to rainfall and temperature under coconut (Cocos nucifera L.), clove (Eugenia caryophyllata Thunb) and nutmeg (Myristica fragrans Houtt. Nees) trees in a coconut-spice trees plantation for two annual cycles in the equatorial humid climate of South Andaman Island of India. Concentration of NH4+-N was the highest during wet season (May–October) and the lowest during post-wet season (November–January) under all the tree species. On the contrary, concentration of NO3-N was the lowest in the wet season and the highest during the post-wet season. However, concentrations of the mineral N were the highest under the nutmeg and the lowest under the coconut trees. Like the pool sizes, mean annual mineralization was the highest under the nutmeg (561 mg kg−1 yr−1) and the lowest under the coconut trees (393 mg kg−1 yr−1). Rate of mineralization was the highest during the post-wet season and the lowest during the dry season (February–April) under all the tree species. High rainfall during the wet season, however, reduced the rate of nitrification under all the tree species. The mean annual mineralization was logarithmically related with rainfall amount and mean monthly temperature.  相似文献   

10.
Acacia melanoxylon, a N2-fixing timber tree occurring naturally in eastern Australia, is now promoted as a component of silvopastoral systems; but the interaction of the tree with pasture and soils has not been adequately studied. This study investigated the effects of Acacia melanoxylon on soil nitrogen (N) levels, N availability, soil pH, bulk density, organic carbon, C:N ratios and soil moisture in three separate silvopastoral sites with contrasting soil types in the North Island of New Zealand. At each site four tree stocking rates were studied (0, 500, 800, and 1700 stems ha–1). The trees were nine years old at the time of the study. Soil samples from each study site were taken once at three depths (0 to 75 mm, 75 to 150 mm, and 150 to 300 mm), with three replicates per tree stocking rate. Soil analyses showed that although there were differences between soil types, few statistically significant differences occurred due to tree stocking rate. A greenhouse pot trial growing ryegrass (Lolium multiflorum L. cv. Concord) in soil from the A horizon of each soil type from under the trees and the open pasture found that ryegrass yield, N uptake and N supply increased with increasing tree stocking rate. Increased N supply under the trees, coupled with greater soil moisture compared to the open pasture may have accounted for the higher pasture yield under Acacia melanoxylon compared to non dinitrogen fixing tree species. This study suggested that Acacia melanoxylon in a silvopastoral system had the potential to increase soil N availability.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

11.
Nutrient resorption is an important mechanism for nutrient preservation in plants. Variations in nutrient availability can interfere with resorption-regulating mechanisms. Disturbances (such as forest harvest) leading to a loss of organic matter and nutrients in the soil could therefore determine important changes in resorption rates. This paper examines the effect of pine forest harvest on N and P resorption in young common oaks (Quercus robur) living under pine cover over a 4-year study period. The results obtained show a decrease in N-NH4+ concentration in the soil in the 2 years following the forest harvest process. Forest harvest did not affect the edaphic concentration of NO3 and PO43−, which presented relatively low values in both areas. Foliar concentration of N was significantly lower in the areas affected by forest harvest, whereas the differences in the foliar concentration of P varied each year. The mean foliar N/P ratio was greater in the non-harvested areas, but showed possible limitation by P in both harvested and non-harvested sites.  相似文献   

12.
Although the removal or addition of understory vegetation has been an important forest management practice in forest plantations, the effects of this management practice on soil respiration are unclear. The overall objective of this study was to measure and model soil respiration and its components in a mixed forest plantation with native species in south China and to assess the effects of understory species management on soil respiration and on the contribution of root respiration (Rr) to total soil respiration (Rs). An experiment was conducted in a plantation containing a mixture of 30 native tree species and in which understory plants had been removed or replaced by Cassia alata Linn. The four treatments were the control (Control), C. alata addition (CA), understory removal (UR) and understory removal with C. alata addition (UR + CA). Trenched subplots were used to quantify Rr by comparing Rs outside the 1-m2 trenched subplots (plants and roots present) and inside the trenched subplots (plants and roots absent) in each treatment. Annual soil respiration were modeled using the values measured for Rs, soil temperature and soil moisture. Our results indicate that understory removal reduced Rs rate and soil moisture but increased soil temperature. Regression models revealed that soil temperature was the main factor and soil moisture was secondary. Understory manipulations and trenching increased the temperature sensitivity of Rs. Annual Rs for the Control, CA, UR and UR + CA treatments averaged 594, 718, 557 and 608 g C m−2 yr−1, respectively. UR decreased annual Rs by 6%, but CA increased Rs by about 21%. Our results also indicate that management of understory species increased the contribution of Rr to Rs.  相似文献   

13.
In south-coastal British Columbia, a low availability of phosphorus (P) may limit the early growth of young red alder (Alnus rubra Bong.), even on sites classified as productive for red alder. However, it remains unclear as to what P addition rates best alleviate P deficiencies on such sites and how long effects of P additions on growth persist.We applied P 1-3 months after planting at rates up to 60 g P tree−1 and assessed growth and foliar elemental contents over three growing seasons at three sites with site productivity classed as good for red alder. Foliar δ13C was also determined in year 1 in the two sites on Vancouver Island and in year 2 in the site on the British Columbia mainland coast in order to better understand the relationships among foliar nutritional status, leaf water use efficiency (WUE), and growth.P additions at planting significantly increased height (11-15%), diameter (26%) and stem volume (62-64%) through 3 years. Maximum growth rates were achieved at P addition rates of 30 g tree−1 and at foliar P concentrations of 2.2-2.5 g kg−1. Growth did not increase further at addition rates of 60 g P tree−1. Stem growth increases were accompanied by increased individual leaf mass, first-year foliar concentrations of N, P, Ca, Mg, and S, and foliar δ13C, the latter suggesting that WUE increased with P additions. Foliar concentrations of P in unfertilized trees were at deficient levels, based on earlier studies, and increases in first-year foliar P concentrations and stem growth through year 3 were consistent with responses in earlier single-tree plot experiments. Longer-term measurements are required to define the duration of growth response to P additions in these otherwise-productive sites.  相似文献   

14.
Greenhouse gas emissions from managed peatlands are annually reported to the UNFCCC. For the estimation of greenhouse gas (GHG) balances on a country-wide basis, it is necessary to know how soil–atmosphere fluxes are associated with variables that are available for spatial upscaling. We measured momentary soil–atmosphere CO2 (heterotrophic and total soil respiration), CH4 and N2O fluxes at 68 forestry-drained peatland sites in Finland over two growing seasons. We estimated annual CO2 effluxes for the sites using site-specific temperature regressions and simulations in half-hourly time steps. Annual CH4 and N2O fluxes were interpolated from the measurements. We then tested how well climate and site variables derived from forest inventory results and weather statistics could be used to explain between-site variation in the annual fluxes. The estimated annual CO2 effluxes ranged from 1165 to 4437 g m−2 year−1 (total soil respiration) and from 534 to 2455 g m−2 year−1 (heterotrophic soil respiration). Means of 95% confidence intervals were ±12% of total and ±22% of heterotrophic soil respiration. Estimated annual CO2 efflux was strongly correlated with soil respiration at the reference temperature (10 °C) and with summer mean air temperature. Temperature sensitivity had little effect on the estimated annual fluxes. Models with tree stand stem volume, site type and summer mean air temperature as independent variables explained 56% of total and 57% of heterotrophic annual CO2 effluxes. Adding summer mean water table depth to the models raised the explanatory power to 66% and 64% respectively. Most of the sites were small CH4 sinks and N2O sources. The interpolated annual CH4 flux (range: −0.97 to 12.50 g m−2 year−1) was best explained by summer mean water table depth (r2 = 64%) and rather weakly by tree stand stem volume (r2 = 22%) and mire vegetation cover (r2 = 15%). N2O flux (range: −0.03 to 0.92 g m−2 year−1) was best explained by peat CN ratio (r2 = 35%). Site type explained 13% of annual N2O flux. We suggest that water table depth should be measured in national land-use inventories for improving the estimation of country-level GHG fluxes for peatlands.  相似文献   

15.
Abstract

Natural abundance of 15N changes strongly with gradients in soil or environmental conditions across large spatial and temporal scales, but variation in δ15N with stand age at intermediate scales is poorly understood. We analyzed soil and foliar δ15N along a secondary forest chronosequence in Northeast China in mid-growing seasons 2008 and 2009, to address two questions: how does foliar δ15N vary with stand age; and are the variations driven by compositional differences in species among stands, or by consistent changes in δ15N with plant growth forms, and within species. The results showed that community-level foliar δ15N depleted as stand age increased, and these responses were remarkably consistent within three contrasting plant growth forms (herbs, shrubs, and trees), and within individual species. In spite of the three plant growth forms sharing similar responses to the stand age, tree species showed smaller variations in foliar δ15N along stand ages than herbs and shrubs. Soil δ15N also significantly depleted with increasing stand age, which may drive the variations of foliar δ15N. In addition, mycorrhizal fungi discrimination against 15N may also partly affect the patterns of foliar δ15N along stand ages. The results clearly indicate that differences in foliar δ15N among different stand ages are dominantly driven by the δ15N variations at the species levels, which reflects the variations of soil δ15N and mycorrhizal association intensity and association type, not by compositional difference in species among stands.  相似文献   

16.
A field experiment was performed in eastern Kenya to estimate N2 fixation by Sesbania sesban over an 18-month period using the 15N dilution method. The influence of three reference species, Senna spectabilis, Eucalyptus saligna and Grevillea robusta, on the estimates of N2 fixation was also assessed. Percentage Ndfa (nitrogen derived from the atmosphere) was calculated based on foliar atom excess (FAE), above-ground atom excess (AAE) or whole tree atom excess (WAE) data. The differences in atom% 15N excess values between species and plant parts are presented and discussed. We recommend the use of several reference species for estimating %Ndfa and that the different results obtained should be carefully considered in relation to the issues being addressed. In this study, Senna was the most suitable of the three reference species because its N uptake pattern and phenology were very similar to those of Sesbania. When well established, the amount of N fixed by Sesbania accounts for more than 80% of its total N content, according to FAE-based estimates. We estimated the Ndfa by Sesbania after 18 months to between 500 and 600 kg ha−1 , depending on whether FAE, AAE or WAE data were used and on the choice of reference species. The substantial accumulation of N in planted Sesbania highlighted its potential to increase the sustainability of crop production on N-limited soils. We consider the 15N dilution method to be appropriate for quantifying N2 fixation in improved fallows in studies, similar to this one, of young trees with high N2-fixing ability.  相似文献   

17.
Acacia senegal, the gum arabic-producing tree, is the most important component of traditional dryland agroforestry systems in the␣Sudan. The spatial arrangement of trees and the type of agricultural crop used influence the interaction between trees and crops. Tree and crop growth, gum and crop yields and nutrient cycling were investigated over a period of 4 years. Trees were grown at 5 × 5 m and 10 × 10 m spacing alone or in mixtures with sorghum or sesame. No statistically significant differences in sorghum or sesame yields between the intercropping and control treatments were observed (mean values were 1.54 and 1.54 t ha−1 for sorghum grain and 0.36 and 0.42 t ha−1 for sesame seed in the mixed and mono-crop plots, respectively). At an early stage of agroforestry system management, A. senegal had no detrimental effect on crop yield; however, the pattern of resource capture by trees and crops may change as the system matures. A significant positive relationship existed between the second gum picking and the total gum yield. The second gum picking seems to be a decisive factor in gum production and could be used as an indicator for the prediction of the total gum yield. Soil organic carbon, N, P and K contents were not increased by agroforestry as compared to the initial levels. Soil OC was not increased by agroforestry as compared to sole cropping. There was no evidence that P increased in the topsoil as the agroforestry plantations aged. At a stocking density of 400 trees ha−1 (5 × 5 m spacing), A. senegal accumulated in its biomass a total of 18.0, 1.21, 7.8 and 972 kg ha−1 of N, P, K and OC, respectively. Agroforestry contributed ca. 217 and 1500 kg ha−1 of K and OC, respectively, to the top 25-cm of soil during the first four years of intercropping.  相似文献   

18.
Sesbania sesban (L.) Merr. (sesbania) is a fast growing N2-fixing widely used as an improved fallow species by smallholder farmers in eastern and southern Africa to restore fertility of their N-deficient soils. In order to establish the need for inoculation, the population of sesbania rhizobia in soil collected from a site where the species is intended for introduction was assessed using the most probable number (MPN) plant infection assay. The MPN of sesbania rhizobia was low (21, 6–81 fiducial limits at P=0.05 g−1soil) but with N2-fixation potential comparable to sesbania inoculant strain KFR 651. Evaluation of an indigenous sesbania rhizobial isolate GSS 1 from the MPN assay in potted field soil showed that it was more effective than strain KFR 651 in terms of plant growth and shoot dry matter (DM) accumulation at 9 and 12 weeks after planting, respectively. Total shoot N content was also higher for plants inoculated with isolate GSS 1 than inoculant strain KFR 651 and uninoculated control treatments 12 weeks after planting. These results demonstrate that it is better to inoculate with effective indigenous than exogenous rhizobia where the need for inoculation has been established.  相似文献   

19.
On fertile alluvial soils on the lakeshore plain of Malawi, maize (Zea mays L.) yields beneath canopies of large Faidherbia albida (synAcacia albida) trees greatly exceed those found beyound tree canopies, yet there is little difference in soil nutrients or organic matter. To investigate the possibility that soil nutrient dynamics contribute to increased maize yields, this study focused on the impact of Faidherbia albida on nitrogen mineralization and soil moisture from the time of crop planting until harvest. Both large and small trees were studied to consider whether tree effects change as trees mature.During the first month of the rainy season, a seven-fold difference in net N mineralization was recorded beneath large tree canopies compared to rates measured in open sites. The initial pulse beneath the trees was 60 g N g–1 in the top 15 cm of soil. During the rest of the cropping cycle, N availability was 1.5 to 3 times higher beneath tree canopies than in open sites. The total production of N for the 4-month study period was 112 g N g–1 below tree canopies compared to 42 g N g–1 beyond the canopies. Soil moisture in the 0–15 cm soil layer was higher under the influence of the tree canopies. The canopy versus open site difference grew from 4% at the beginning of the season to 50% at the end of the cropping season.Both N mineralization and soil moisture were decreased below young trees. Hence, the impact of F. albida on these soil properties changes with tree age and size. While maize yields were not depressed beneath young F. albida, it is important to realize that the full benefits of this traditional agroforestry system may require decades to develop.  相似文献   

20.
Theobroma cacao seedlings were grown alone (TCA) or associated with saplings of N2-fixing shade trees Gliricidia sepium and Inga edulis in 200 l of 15N labelled soil within a physical root barrier for studying direct nitrogen transfer between the trees and cacao. Root:shoot partitioning ratio for sapling total N was lower than biomass root:shoot ratio in all species. Sapling total 15N was partitioned between root and shoot in about the same ratio as total N in cacao and inga but in gliricidia much higher proportion of 15N than total N was found in roots. Thus, whole plant harvesting should be used in 15N studies whenever possible. Average percentage of fixed N out of total tree N was 74 and 81% for inga estimated by a yield-independent and yield-dependent method, respectively, and 85% for gliricidia independently of estimation method. Strong isotopic evidence on direct N transfer from trees to cacao was observed in two cases out of ten with both tree species. Direct N transfer was not correlated with mycorrhizal colonisation of either donor or receiver plant roots. Direct N transfer from inga and gliricidia to cacao is conceivable but its prevalence and the transfer pathway via mycorrhizal connections or via reabsorption of N-rich legume root exudates by cacao require further study. Competition in the restricted soil space may also have limited the apparent transfer in this study because the trees accumulated more soil-derived N than cacao in spite of active N2 fixation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号