首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The study was conducted to investigate the effect of phosphorus (P) concentrations (0, 5, 10, 20, 50, and 100 μg g−1) on growth and arbuscular mycorrhizal (AM) colonization of two crops (a rainy season crop, Phaseolus mungo Roxb. var. PU-35 and a winter crop, Triticum aestivum L. var. WH-147) and seedlings of two multipurpose tree species (Eucalyptus tereticornis Sm. [Clone C-7, ITC, Bhadrachalam] and Albizia procera Benth.). Plant growth parameters (shoot length, dry weight) and P uptake increased significantly after inoculations with AM fungi (Acaulospora scrobiculata Trappe, Glomus cerebriforme McGee, and Glomus intraradices Schenck and Smith) in P. mungo, T. aestivum, E. tereticornis, and A. procera. Best results were obtained with G. cerebriforme in P. mungo and A. procera, and A. scrobiculata in T. aestivum, and G. intraradices in E. tereticornis. Results on effect of P application on mycorrhizal dependency (MD) of studied crop and tree species showed that decrease in MD with increase in P concentrations in non-nitrogen-fixing species (T. aestivum and E. tereticornis) was higher than in nitrogen-fixing species (P. mungo and A. procera). Threshold P concentrations for maximum benefits from the AM symbiosis in above-mentioned plant species varied from 5 to 20 μg g−1 and corresponding peaks of arbuscules, vesicles, sporocarp formation, colonization index, and spore count per 100 g sand were noticed. Thus, the results showed that the recorded plant growth peaks were due to AM colonization of crops and tree rhizosphere. Inoculations with AMF were more important than P application (explaining 14–78% variation in plant growth) for P. mungo, T. aestivum, and A. procera (forward selection method), whereas P application was more important for growth in E. tereticornis. Therefore, inoculating plants with a suitable AM inoculant could result in a benefit comparable to high P input and lead to a significant saving of inorganic P fertilizer.  相似文献   

2.
三种土壤上六种丛枝菌根真菌生长特征和接种效应   总被引:6,自引:3,他引:6  
以分离于华北、华中和华南3个生态区及法国引进的丛枝菌根真菌为试验菌株,采用三室根箱培养的方法,研究了它们在华北、华中和华南3种典型土壤褐土、棕壤和红壤上的菌根形成、接种效应、磷吸收贡献和根外菌物量情况。结果表明,6种菌株在上述指标上存在显著的种间或生态型差异,土壤与菌株间存在显著的交互作用。6种菌株在3种土壤上都能与玉米形成菌根,在褐土和棕壤上大多数菌株在分离地所在地区土壤类型上的菌根侵染率较高,说明其对该土壤条件的适应性较强;在红壤强酸性土壤条件抑制了菌根真菌的侵染。菌株BEG168、BEG167、BEG151、BEG221和BEG141在褐土上,BEG151和BEG221在棕壤上,BEG168和BEG150在红壤上显著提高了玉米的生物量。在褐土和棕壤上,除BEG150外,BEG168、BEG167、BEG151、BEG221和BEG141能显著促进宿主吸磷;而在红壤上,BEG168和BEG141显著促进了宿主吸磷。若以真菌的根外菌物量作为衡量AM真菌菌株土壤生态适应性的指标,BEG141和BEG167是生态适应性强的菌株,为广幅生态型菌株;菌株BEG168和BEG151次之,前者在棕壤上适应性高,后者在红壤上适应性高。BEG150和BEG221生态适应性较窄,仅适应红壤或褐土,为窄幅生态型菌株。Glomus.etunicatum的两个生态型BEG168和BEG221在土壤生态适应性上差异很大,前者在两种土壤上收集到菌物量,而后者只在褐土上收集到菌物量。土壤条件可以决定丛枝菌根真菌的生长状况和功能。  相似文献   

3.
【目的】 探究酸性土壤玉米丛枝菌根侵染对植物磷素吸收的促进作用,以加深理解根外菌丝对局部磷养分的获取如何受丛枝真菌侵染和环境磷养分的影响。 【方法】 以玉米为宿主植物,进行盆栽试验。在低磷酸性土壤上设置供P 0、50、500 mg/kg 3个水平 (P0、P50、P500),供试磷肥为磷酸二氢钾。每个处理再设置局部养分处理,即在每个重复中埋置两个各装有120 g灭菌土 (提前加 P 50 mg/kg) 的塑料小管,分别用孔径为0.45 μm(根系、菌丝均不能进入,以“–H”表示处理) 和50 μm(根系不能进入,菌丝可以进入,以“+H”表示处理) 的尼龙膜封住管口。测定了玉米的生长与磷吸收、土著丛枝菌根真菌的侵染和根外菌丝密度以及菌丝对局部磷养分的获取。 【结果】 1) 玉米株高、叶片SPAD值、全株干重、磷浓度及吸收量都随供磷水平升高而增加,以P50处理的根系干重最高,根冠比随供磷水平上升而降低。3个供磷水平下玉米根系均有不同程度的丛枝菌根真菌侵染。以P50处理的丛枝菌根侵染率、丛枝和孢囊结构发育最好;P0处理的丛枝菌根侵染率、丛枝丰度与P50处理没有显著差异,但孢囊丰度明显下降;P500处理虽然87.2%的根系具有侵染点,但整个根系形成的真菌结构、丛枝和孢囊比例远低于P0和P50处理,丛枝菌根的发育受到严重抑制。2) 土体土 (除塑料管之外的土) 菌丝密度随供磷水平升高而降低,但P0和P50处理差异不显著。–H处理塑料管中的菌丝密度在3个供磷水平下基本不变,保持在极低水平,而+H处理塑料管中的菌丝密度随供磷水平升高而下降。在相同供磷水平下,土体土的菌丝密度最高,其次是+H处理,–H处理的菌丝密度最低。根外菌丝从+H处理塑料管中获取的磷随环境供磷水平的升高而减少。 【结论】 酸性土壤条件下,适当地供磷可以促进玉米根系生长和丛枝菌根真菌的侵染。根外菌丝对局部磷养分的获取受环境磷养分的调控,在环境磷养分较低而局部磷养分高于环境磷养分时,较多的菌丝会进入局部区域获取磷。   相似文献   

4.
1996~1998年试验研究了大田不施肥条件下3种泡囊丛枝菌根真菌Arbuscular mycorrhizal fungi (AMF),即 Glomus mosseae(G.m)、Glomus versifome(G.v)、Sclerocystis sinousa(S.s)对玉米生长的生态效应.结果表明,AMF处理的玉米根系活力为对照的2.32~3.05倍,玉米N素吸收比对照增加24.14%~56.65%,玉米P素吸收比对照增加41.14%~78.29%,促进玉米生长发育显著;在灭菌条件下G.m、G.v、S.s处理分别比对照增产17.63%、22.91%和10.80%;而不灭菌条件下3个处理分别比对照增产10.35%、20.56%和4.53%,同时显著提高玉米的水分供应状况.  相似文献   

5.
Application of biochar to soil to achieve any number of goals should also consider unintended effects upon soil biology, including symbioses such as arbuscular mycorrhizas. We conducted an experiment to examine the interaction of biochar addition and arbuscular mycorrhizal (AM) fungus inoculation upon growth and phosphorus (P) uptake by Allium porrum L. and relate these responses to physicochemical properties of the biochars. A. porrum seedlings were grown with and without Glomus intraradices Schenck & Smith, and either without biochar or in the presence of one of 12 different biochars created by pyrolysis of three biomass feedstocks. Fast pyrolysis biochars greatly reduced colonization of roots by the AM fungus. Among biochars produced by a given pyrolysis method, higher surface areas were accompanied by higher AM fungus colonization. These findings are pertinent in selecting biochars for application to agricultural soils for such purposes as inactivation of pathogenic bacteria while being mindful of potential impacts upon the AM symbiosis.  相似文献   

6.
We investigated the effect of arbuscular mycorrhiza (AM) on amino acid concentration and composition of maize plants under low‐temperature stress. The AM plants had higher amino acid concentrations than the non‐AM pants. The concentrations of Thr, Lys, Gly, Ala, His, and Ile of the AM plants were higher than non‐AM plants. The results show that low‐temperature stress decreased the concentrations of amino acids and altered their composition.  相似文献   

7.
为研究不同小麦品种之间丛枝菌根(Arbuscular mycorrhiza,AM)侵染率差异的分子机制,于2017~  相似文献   

8.
This greenhouse study aimed to analyze the impact of arbuscular mycorrhizal (AM) fungal associations on maize (Zea mays L. hybrid Pioneer 3905) in order to compare their functional compatibility and efficiency. The AM fungus species used for this study were Glomus aggregatum, G. etunicatum, G. mosseae, and G. versiforme. Shoot and leaf masses, chlorophyll, soluble protein, total and reducing sugar, carbon (C), and nitrogen (N) concentrations, and glutamine synthetase (GS) activity in the maize leaves were analyzed. The root colonization ranged from 26% to 72% depending on the AM fungus species. Leaf mass was significantly higher when maize plants were colonized with G. etunicatum in comparison to the non‐AM control. The mycorrhizal effect on dry leaf mass ranged from 15.9% to 23.9% depending on the AM species. However, the total shoot mass did not differ significantly among the treatments. The mycorrhizal treatment had a marginally significant effect on the chlorophyll concentrations in maize leaves. The protein concentration was the highest in the plants colonized with G. etunicatum and the N percentage was significantly higher in the leaves of plants colonized by G. versiforme or G. aggregatum than those with G. mosseae. However, the AM colonization did not significantly alter the GS activity among the treatments. The highest sugar concentrations were detected in the leaves of plants colonized by G. versiforme. The sugar concentrations as well as the C percentage were lower in the leaves of plants colonized by G. etunicatum compared to the other mycorrhizal treatments but the values were comparable to the non‐AM control. Our overall results suggest that the expression of the mycorrhizal potential in the maize host plants varies among AM fungal species.  相似文献   

9.
Summary This paper reports the results of a survey of the occurrence of vesicular-arbuscular mycorrhizas and spores of the associated fungi in a variety of soils in Northern Greece. The roots of several crop species were examined for the presence of mycorrhizal structures and all samples showed evidence of infection, though to varying degrees. Cotton plants, in particular, had heavy arbuscular infection. Intact and presumably viable spores were relatively infrequent and empty non-viable spores were much more common. Soil characteristics at each sample site are reported also, but only broad generalizations are made at this stage with respect to correlations between mycorrhizal occurrence and edaphic factors.  相似文献   

10.
Journal of Soils and Sediments - The presence and interaction of shrubs and arbuscular mycorrhizal fungi (AMF) are important for the biogeochemical cycles and sustainable development of arid and...  相似文献   

11.
The effect of pre-inoculation with arbuscular mycorrhizal fungi (AMF) on post-transplant growth of peach seedlings in replant and non-replant soils was studied for two successive seasons. Seedlings raised in sterile media and pre-inoculated with soil-based Gigaspora margarita inoculum were transplanted in replant and non-replant field soils alongside non-inoculated controls. Pre-inoculated seedlings transplanted in non-replant soils showed greater initial growth in the first year. Plant height, and lateral shoot length and number was highest in non-replant soils irrespective of mycorrhizal pre-inoculation. Similarly, biomass yield was significantly higher in seedlings in non-replant soils, though there were no significant differences in shoot/root ratios, and in tissue mineral content between and within treatments. Seedling infection by indigenous AMF was high in both replant and non-replant soils, and even non-inoculated seedlings recorded high infection levels after the first season. Generally, mycorrhizal activity was lower, and spore populations higher in replant soils, while the opposite was true in non-replant soils. It seems that soil sickness has a negative impact on plant metabolism and limits the capacity of the plant host to support the mycorrhizal symbiosis.  相似文献   

12.
通过不同浓度的镉污染土壤接种丛枝菌根真菌的黑麦草盆栽试验,研究了丛枝菌根真菌对镉污染条件下黑麦草幼苗生长的影响。结果表明:重度镉污染(Cd2+:180 mg/kg)条件下,Glomus mosseae对黑麦草根系的侵染率仍达到30.23%,对黑麦草的生长有较好的促进作用;丛枝菌根在一定程度上缓解了镉污染对黑麦草株高、根长和生物量积累的抑制;镉污染显著降低黑麦草叶片的叶绿素含量,叶绿素a在重度镉污染时下降幅度最大,不接种丛枝菌根真菌的黑麦草较对照下降37.9%,而接种的黑麦草下降26.7%,接种菌根真菌在中重度镉污染条件下显著提高了黑麦草叶片的叶绿素含量;重度镉污染下接种和不接种的黑麦草根系活力都开始显著下降,但接种植株根系活力下降的幅度小于不接种植株。  相似文献   

13.
《Applied soil ecology》2010,46(3):138-143
We tested the potential for arbuscular mycorrhizal fungi to mediate plant adaptation to mine soil conditions utilizing a full factorial experiment involving two fungal communities, two ecotypes of plants and two soil types. We found that plants grew larger with fungal communities derived from mine soil regardless of the soil type in which they were grown. There was no evidence that the plants suffered from aluminum toxicity; however, plants grown in coal tailings produced far less biomass than those grown in low-nutrient clay soil. Andropogon virginicus L. grown from seeds collected from a coal mine had increased allocation to roots in sterile soil. Plantago lanceolata L. grown from seeds collected from a coal mine also showed an increased allocation to roots. We concluded that harsh edaphic conditions may help reinforce the symbiotic relationship between plants and AM fungi, resulting in more beneficial symbionts.  相似文献   

14.
It has widely been acknowledged that the diversity of arbuscular mycorrhizal fungi (AMF) is greatly affected by climate, land use intensity, and soil parameters. The objective of this study was to investigate AMF diversity in multiple agricultural soils (154 sites; 92 grasslands and 62 croplands) distributed over all agricultural regions in Switzerland and differing in a number of soil parameters (e.g., land use type and intensity, and altitude). We highlighted the main factors responsible for major AMF community shifts and documented specific distribution patterns for each AMF species. AMF spores were morphologically identified and counted for each species. In total, 17,924 spores were classified and 106 AMF species were identified. In general, AMF species richness (SR) was higher in grasslands than in croplands. In croplands, SR increased with altitude but this trend was not observed in grasslands. Some species occurred at virtually all sites, while others were rarely detected, and for others, species-specific distribution patterns were revealed. Some species were affected by land use type or intensity, or related factors like soil organic matter, soil microbial biomass and respiration or nutrient availability. Other species were more affected by soil pH and related parameters like base saturation and carbonate contents, by soil texture, or by altitude, or by a combination of two to several of all these parameters. We conclude that a high number of AMF species may serve as indicator species for specific habitats and land use. These species might deliver certain ecosystem services at their habitats and deserve further investigation about their functional diversity.  相似文献   

15.
The influences of arbuscular mycorrhizal fungi (MF, Acaulospora spp. and Glomus spp.), rice straw and earthworms (RE, Eisenia foetida) on nematode communities and arsenic (As) uptake by maize (Zea mays L.) in As-contaminated soils were examined in a field experiment conducted in Wujiang, Jiangsu Province, China. The experiment was designed as a 2 × 2 factorial with the factors of MF (inoculated or uninoculated) and RE (added or not added). The results demonstrated that MF inoculation led to significantly higher root colonization of MF and root dry weight. Plants inoculated with both MF and RE had the highest As concentrations in root. The number of total nematodes increased with MF inoculation when RE was absent, and decreased with RE addition when MF was inoculated. The improved abundance of nematodes with the MF treatment implied that the tested MF acted as food sources for fungivores. The abundances of omnivores-predators and plant parasites were reduced by earthworm activity. Twenty-seven genera of nematodes were identified, with Filenchus dominant in all treatments. Trophic diversity (TD), Shannon-Weaver diversity (H′), Simpson dominance index (λ), and species richness (SR) indicated higher species diversity, more proportionate species composition, evenly distributed species, and more food sources in the MF, RE, and their interaction treatments. Maturity index (MI) showed a moderately disturbed environment due to As pollution. Besides enhancing plant uptake of contaminants, MF and RE amendments could also improve soil health by restoring the structure of soil communities, as reflected by more stable nematode community structure.  相似文献   

16.
转Bt基因作物对丛枝菌根真菌的影响研究进展   总被引:1,自引:0,他引:1  
在过去的十年里,世界范围内转基因作物尤其是抗虫性转Bt基因作物的品种和种植面积迅速增加。同时,转Bt基因作物的环境安全性评价问题成为人们关注和研究的热点。丛枝菌根真菌(AMF)是生态系统中普遍存在的土壤微生物,能与绝大多数植物种类形成共生关系,在农业生态系统中起重要作用。转Bt基因作物环境释放后,其与AMF问的共生关系是否受所转入Bt基因的影响,以及影响机制需要及时研究。为此,综述了转Bt基因作物与AMF共生特征方面的研究进展,并根据Bt毒素发生的空间和时间规律提出了危害机制以及转Bt基因植物的规模化种植将降低农田系统中的AMF的生物多样性的观点。  相似文献   

17.
栽培基质与AM 真菌对园艺作物的影响   总被引:3,自引:2,他引:3  
从珍珠岩、蛭石、木屑、草炭、河沙等栽培基质的特点入手,讨论了不同基质对园艺作物生长发育、丛枝菌根(AM)真菌侵染和功能的影响以及AM真菌在不同基质条件下对作物生长的效应。将多种基质按一定比例混配而成的复合基质能综合各基质的优良理化特性,更有利于作物及其菌根的生长发育,如以草炭、蛭石和河沙接不同比例配成的7种基质中对西瓜接种Glomus mosseae,发现4号基质中侵染率最高,达39.9%,而1号基质中的最低,为14.8%,前者处理的植株生长量增加1.5-3倍。复合基质在无土设施栽培中十分有效,将得到更广泛的应用与开发。  相似文献   

18.
Glyphosate is the most widely used herbicide in the world, but its effects on non-target organisms, such as arbuscular mycorrhizal fungi (AMF), are unclear. No studies have been found that made reference to effects of glyphosate on AMF spore viability despite its importance as a source of propagules for the perpetuation and spread of AMF in the system. The objective of this study was to evaluate the effect of glyphosate application on AMF spore viability, and their ability to colonize roots. Soil samples were collected from a grassland area located in the Flooding Pampa region (Argentina). We evaluated three herbicide rates: 0, 0.26 and 1× recommended field rate, 10 and 30 days after application. Part of the soil from each tray was used to estimate the spore viability, and the remainder was used as substrate for growing Lolium multiflorum Lam. One month after sowing, total root colonization and percentage of arbuscules and vesicles were determined. The spore viability in herbicide untreated soils was between 5.8- and 7.7-fold higher than in treated soils. This reduction was detected even when the lower rate was applied. Root colonization was significantly lower in plants grown in glyphosate treated soil than in untreated ones. A decrease in arbuscular colonization (but not in vesicles) was found in plants grown in soils treated with the highest herbicide rate. That would indicate that symbiosis functionality was affected, given that arbuscules are the main site for host–fungus nutrient exchange. The results indicate that soil residence time of glyphosate and/or its degradation products was enough to reduce AMF spore viability and their ability to colonize roots. This decrease in propagules viability may affect plant diversity, taking into account the different degrees of mycorrhizal dependency between plant species that may coexist in grassland communities.  相似文献   

19.
20.
Abstract

The influence of the addition of Chinese peat and Canadian peat on arbuscular mycorrhizal colonization, mycorrhizal effectiveness and host-plant growth was investigated in a pot experiment. Chinese peat or Canadian peat was mixed with Masa soil (weathered granite soil) at different levels (0, 25, 50, 100, 150 or 200 g kg?1) into which an arbuscular mycorrhizal fungus (AMF) Gigaspora margarita Becker & Hall was inoculated, and seedlings of Miscanthus sinensis Anderess were planted. There was a significant increase in plant growth with increasing amounts of Chinese peat. The growth-promoting effect of the AMF on the host was enhanced when the addition of Chinese peat was increased from 25 to 100 g kg?1. Root colonization and the number of spores proliferating increased with increases at low levels of Chinese peat (from 25 to 100 g kg?1), and decreased gradually with higher Chinese peat increments. Although plant growth and root colonization with the addition of Canadian peat increased slightly, Canadian peat suppressed mycorrhizal effectiveness. In contrast to Canadian peat, the addition of Chinese peat improved considerably the physical and chemical properties of the soil, which might result in the promotion of AM formation and mycorrhizal effectiveness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号