首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到3条相似文献,搜索用时 0 毫秒
1.
AIM: To investigate the effects of N-acetylcysteine (NAC) combined with azithromycin (AZI) on oxidative stress in the rats with chronic obstructive pulmonary disease (COPD). METHODS: Male Wistar rats (n=60) were randomly divided into control group, model group, AZI intervention group,NAC intervention group and AZI+NAC group. The COPD model was established by passive smoking and intratracheal instillation of lipopolysaccharide. Each day 30 min prior to smoking, intragastric administration with AZI, NAC or combination of the 2 drugs was given for AZI, NAC, and AZI+NAC groups, respectively. On the 31st day, all rats were killed following lung function test. Cell counts of bronchoalveolar lavage fluid (BALF) were performed, and the contents of interleukin-8 (IL-8), interleukin-17 (IL-17) and tumor necrosis factor alpha (TNF-α) in BALF were measured by ELISA. The histopathology of the lung tissues was observed under light microscope, and the levels of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and malondialdehyde (MDA) in the lung homogenate were measured. RESULTS: Compared with control group, the other 4 groups showed decreased pulmonary function, and inflammatory cell infiltration and alveolar destruction in histopathology. Compared with control group, the other groups showed higher white blood cells, monocyte-macrophages, neutrophils and lymphocytes in the BALF (P<0.05). Compared with model group, AZI group and NAC group, lower white blood cells, neutrophils and lymphocytes in the BALF were observed in AZI+NAC group (P<0.05). Compared with model group, IL-8, IL-17, TNF-α and MDA in AZI group, NAC group and AZI+NAC group significantly decreased (P<0.05), while SOD and GSH-Px significantly increased (P<0.05). Compared with AZI or NAC group, IL-8, IL-17, TNF-α and MDA in AZI+NAC group significantly decreased (P<0.05), while SOD and GSH-Px increased significantly (P<0.05). CONCLUSION: Both NAC and AZI attenuate the lung inflammation and oxidative damage in COPD model rats. Combined medication exerts preferable anti-oxidation effects, which might be more suitable for the treatment of COPD.  相似文献   

2.
3.
AIM: In this study, the rat lung injury model was induced by ammonium chloride for studying the effect of imidapril on blood gas, serum TNF-α, IL-6 and MDA concentrations, and AngⅡ and CD54 protein expression in rat lung tissue. METHODS: Male rats were randomly divided into 3 groups: control group, lung injury model group and drug group. The rats in control group were given saline (2 mL/kg), while the rats in lung injury model group were given 6% ammonium chloride (2 mL/kg). In drug group, imidapril (3 mg·kg-1·d-1) was given to the rats once daily for 1 week by intragastric gavage after given 6% ammonium chloride. On the 7th day, the rats were anesthetized with 2% so-dium pentobarbital. Abdominal aorta blood, venous blood and lung tissue were collected. The blood gas indexes and serum TNF-α, IL-6 and MDA concentrations were determined. The lung tissues were fixed and sliced, and the expression of AngⅡ and CD54 proteins was detected by immunohistochemistry. RESULTS: The PaCO2 increased in lung injury model group compared with control group and drug group (P < 0.05).The expression of AngⅡ and CD54, and the concentrations of TNF-α, IL-6 and MDA also increased significantly (P < 0.01) in model group. Pulmonary edema, inflammation, alveolus congestion, hemorrhage and hyperplasia in model group were obvious compared with control group and drug group. CONCLUSION: Imidapril improves blood gas indexes, and reduces lipid peroxidation and inflammatory responses in the rats with lung injury induced by ammonium chloride.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号