首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
AIM: To study the effect of histone deacetylase 1 (HDAC1) on the apoptosis of breast cancer cells.METHODS: The expression of HDAC1 at mRNA and protein levels in normal mammary epithelial cell line MCF-10A and breast cancer cell lines BT549, MCF-7 and MDA-MB-231 was measured by RT-qPCR and Western blot. HDAC1 siRNA was transfected into MDA-MB-231 cells, and then RT-qPCR and Western blot were used to determine the expression level of HDAC1. The cell viability was measured by MTT assay, and apoptosis was analyzed by flow cytometry. The protein levels of β-catenin, c-Myc, cyclin D1 and cleaved caspase-3 were determined by Western blot. Breast cancer cells with HDAC1 knockdown were treated with Wnt/β-catenin signaling pathway activator, and then the cell viability and apoptosis were measured.RESULTS: The expression of HDAC1 at mRNA and protein levels in BT549, MCF-7 and MDA-MB-231 cells was significantly higher than that in normal mammary epithelial cell line MCF-10A, and the highest expression level of HDAC1 was observed in MDA-MB-231 cells (P<0.05). HDAC1 siRNA reduced the expression of HDAC1 at mRNA and protein levels in the breast cancer cells. The viability of MDA-MB-231 cells was decreased after knockdown of HDAC1 expression, the apoptotic rate was increased, the protein level of cleaved caspase-3 in the cells was elevated, and the protein levels of β-catenin, c-Myc and cyclin D1 were decreased (P<0.05). Wnt/β-catenin signaling pathway activator reversed HDAC1 knockdown-induced apoptosis and decrease in viability of MDA-MB-231 cells, and reduced the protein level of cleaved caspase-3.CONCLUSION: Knockdown of HDAC1 expression induces apoptosis of breast cancer cells by inhibiting the activation of Wnt/β-catenin signaling pathway.  相似文献   

2.
AIM: To explore the effect of Wnt/β-catenin signaling pathway in airway smooth muscle cells (ASMC) on asthmatic airway remodeling.METHODS: The asthmatic airway remodeling model in rats was established and the ASMC was isolated and cultured. The protein expression of β-catenin, glycogen synthase kinase-3β (GSK-3β), c-Myc and cyclin D1 in the ASMC was determined by Western blot. After depressing the interaction between β-catenin and p300/CBP, the cell activity was measured by CCK-8 assay and the change of cell cycle distribution was analyzed by flow cytometry. Meanwhile, the protein expression of c-Myc and cyclin D1 in the ASMC was determined by Western blot after inhibiting P38 mitogen-activated protein kinase (MAPK) activity.RESULTS: The protein levels of β-catenin, c-Myc and cyclin D1 were significantly increased in asthma group while the protein level of GSK-3β was decreased in the same group (P<0.05). After depressing the interaction between β-catenin and p300/CBP, the cell activity of ASMC was decreased in asthma group compared with control group (P<0.05), and the change of the cell cycle distribution in asthma group was also more obvious (P<0.05). After inhibiting P38 MAPK activity, the protein levels of c-Myc and cyclin D1 were all decreased compared with control group in ASMC asthma and control rats (P<0.05).CONCLUSION: Wnt/β-catenin signaling pathway may participates in airway remodeling in asthma by increasing the protein expression of c-Myc and cyclin D1, reacting with the P38 MAPK signaling pathway and regulating the growth of ASMC.  相似文献   

3.
AIM:To study the role of ghrelin in cell protection by up-regulating heat shock protein 70 (HSP70) and inhibiting apoptosis induced by oxidative stress through extracellular regulated protein kinases 1/2 (ERK1/2) signaling pathway in the PC12 cells. METHODS:Sodium nitoprusside (SNP) was used to induce oxidative stress injury in the PC12 cells. The cultured PC12 cells were divided into SNP-injured group (incubated with SNP at 0.5 mmol/L for 6, 12, 18 and 24 h), ghrelin pretreatment group (ghrelin at 100 nmol/L was given 30 min before adding SNP); HSP70 inhibitor group (quercetin at 10 μmol/L was added 60 min before ghrelin treatment), ERK inhibitor group (ERK 1/2 inhibitor PD98059 was added 60 min before ghrelin treatment) and control group (added same amount of culture medium only). The apoptotic rate was detected by flow cytometry. The protein expression was determined by Western blot and immunocytochemistry. RESULTS:Compared with control group, the apoptotic rate of PC12 cells in SNP-injured group was significantly increased (P<0.05). Compared with SNP-injured group, ghrelin (100 nmol/L) pretreatment significantly inhibited SNP-induced apoptosis of PC12 cells (P<0.05), and significantly up-regulated the protein expression of HSP70 (P<0.05). Time-effect analysis showed that ghrelin had the most significant effect at 18 h after SNP injury. Quercetin, an inhibitor of HSP 70, significantly reduced the anti-apoptotic effect of ghrelin (P<0.05). Ghrelin pretreatment promoted the phosphorylation of ERK1/2. ERK1/2 inhibitor PD98059 significantly inhibited the effects of ghrelin on up-regulation of HSP70 expression (P<0.05). CONCLUSION:Ghrelin upregulates the expression of HSP70 and inhibits the apoptosis in the PC12 cells induced by oxidative stress by promoting the phosphorylation of ERK1/2.  相似文献   

4.
AIM: To observe the effect of Wnt/β-catenin signaling pathway on diabetic ulcer. METHODS: Diabetic animal model was established in the female Wistar rats by intraperitoneal injection of low-dose streptozotocin following high-fat diet feeding. A circular wound was made on the dorsum of the rats in both control group and diabetic group. The condition of wound healing was recorded and the structures of the wound tissues were observed by HE staining in the 2 groups at 3, 7 and 14 d after wounding. The expression of β-catenin, GSK-3β and Rspo-3 at mRNA and protein levels in the wound tissues was detected by RT-PCR and ELISA. RESULTS: In diabetic group, the wound healing rate was lower (P<0.05), and the inflammatory cells, fibroblast cells and new capillaries in the wound tissues were fewer than those in control group. The expression of β-catenin and Rspo-3 at mRNA and protein levels in the wound tissues in control group was significantly higher than those in diabetic group, and the expression of GSK-3β was exactly the opposite (P<0.05). CONCLUSION: The down-regulation of Wnt/β-catenin probably resultes from the decreased level of Rspo-3, which may be one of the reasons for delaying the diabetic ulcer healing.  相似文献   

5.
AIM:To investigate the inhibitory effect of thioredoxin 1 (Trx-1) over-expression on oxidative stress injury in 1-methyl-4-phenylpyridinium (MPP+)-induced rat pheochromocytoma PC12 cells by regulating NF-κB signaling pathway.METHODS:The PC12 cells were damaged by treatment with MPP+ at 1, 3 and 5 mmol/L, and the optimal concentration of 3 mmol/L was selected. The cell viability was measured by MTT assay. The oxidative stress indexes lactate dehydrogenase (LDH) activity, superoxide dismutase (SOD) activity and malondialdehyde (MDA) content in the cell culture supernatant were detected, and the protein expression of Trx-1 was determined by Western blot. Lentiviral infection with Ad-Trx-1-GFP sequence was used to establish a model of MPP+-treated PC12 cells with Trx-1 over-expression. The effects of Trx-1 over-expression on the cell viability, oxidative stress responses and NF-κB signaling pathway were determined by MTT assay, commercial kits and Western blot. The effects of phorbol 12-myristate 13-acetate (PMA), an activator of NF-κB signaling pathway, on the viability and oxidative stress of PC12 cells were observed. The NF-κB signaling pathway inhibitor pyrrolidine dithiocarbamate (PDTC) was used in MPP+-treated PC12 cells with Trx-1 over-expression, and the cell viability and oxidative stress responses were measured. RESULTS:The viability of PC12 cells, SOD activity in the supernatant and protein expression of Trx-1 were decreased, while LDH activity and MDA content in the supernatant were increased significantly by treatment with MPP+ at 1, 3 and 5 mmol/L. The effect of MPP+ at 3 mmol/L and 5 mmol/L was significantly greater than that at 1 mmol/L (P<0.05), and no significant difference between 3 mmol/L and 5 mmol/L was observed (P>0.05). The inhibitory effect of MPP+ on the viability of PC12 cells, and the oxidative stress injury and activation of NF-κB signaling pathway induced by MPP+ were significantly attenuated by over-expression of Trx-1. The inhibitory effect of MPP+ on the viability of PC12 cells and the oxidative stress injury induced by MPP+ were promoted by the activation of NF-κB signaling pathway, while the protective effects of Trx-1 over-expression on the MPP+-treated PC12 cells were enhanced by the inhibition of NF-κB signaling pathway. CONCLUSION:Over-expression of Trx-1 protects MPP+-treated PC12 cells from oxidative stress injury by regulating NF-κB signaling pathway.  相似文献   

6.
AIM: To investigate the effect of enhancer of zeste homolog 2 (EZH2) regulating Wnt/β-catenin signaling pathway on the apoptosis of brain glioma cell lines. METHODS: The expression level of EZH2 in glioma cell lines U87, H4 and U251 and normal human astrocytes (NHA) was detected by RT-qPCR and Western blot. The EZH2 siRNA and siRNA control were transfected into the H4 cells. The cell viability was measured by MTT assay. The apoptosis was analyzed by flow cytometry. Caspase-3 activity was detected by spectrophotometry. The expression levels of the key protein β-catenin of the Wnt/β-catenin signaling pathway and the downstream target molecule c-Myc were determined by Western blot. After the H4 cells transfected with EZH2 siRNA were treated with an activator of Wnt/β-catenin signaling pathway, the apoptosis rate was measured by flow cytometry, and the expression of β-catenin and c-Myc was determined by Western blot. RESULTS: The mRNA and protein expression levels of EZH2 in the glioma cell lines U87, H4 and U251 were significantly higher than those in NHA (P<0.05). The expression of EZH2 at mRNA and protein levels in the H4 cells was higher than that in U87 cells and U251 cells (P<0.05). EZH2 siRNA obviously inhibited the expression of EZH2 at mRNA and protein levels in the H4 cells. Knockdown of EZH2 expression decreased the viability of H4 cells, the apoptotic rate was significantly increased, and the activity of caspase-3 was significantly increased in the cells (P<0.05). Knockdown of EZH2 expression also inhibited the expression of β-catenin and c-Myc. The activator of Wnt/β-catenin signaling pathway reduced the apoptosis rate of H4 cells induced by down-regulation of EZH2, and reduced the activity of caspase-3 in the cells. CONCLUSION: EZH2 is over-expressed in glioma cells. Down-regulation of EZH2 expression induces apoptosis of glioma cells by inhibiting the activation of Wnt/β-catenin signaling pathway.  相似文献   

7.
AIM: To study the effect of SCUBE2 on epithelial-mesenchymal transition (EMT) in colorectal cancer cells and its mechanism. METHODS: The expression of SCUBE2 in human colorectal cancer cell line HCT116 and normal colonic cell line FHC was detected by real-time PCR and Western blot. HCT116 cells were transfected with GV144-SCUBE2 to over-express SCUBE2, and then the cell viability, migration, and apoptosis were determined by MTT assay, Transwell assay and flow cytometry, respectively. The expression of EMT markers (E-cadherin, vimentin, and Snail), β-catenin, c-Myc and cyclin D1 in the HCT116 cells was analyzed by real-time PCR or Western blot after transfection with GV144-SCUBE2 for 6 h, followed by the stimulation of 10 μg/L recombinant TGF-β1 protein for 48 h. Additionally, the EMT process of HCT116 cells, which were stimulated by TGF-β1, over-expressed SCUBE2, and treated with Wnt/β-catenin pathway activator lithium chloride (LiCl) or inhibitor XAV93920, was analyzed by Western blot. RESULTS: Compared with FHC cells, the expression of SCUBE2 in the HCT116 cells was significantly decreased. The viability and migration ability of the HCT116 cells were suppressed by SCUBE2 over-expression, but the apoptosis was not markedly changed. Elevated expression of SCUBE2 increased E-cadherin expression, and decreased the expression of vimentin, Snail, β-catenin, c-Myc and cyclin D1 induced by TGF-β1. Treatment with LiCl blocked but treatment with XAV93920 enhanced the effects of SCUBE2 on EMT. CONCLUSION: Over-expression of SCUBE2 may inhibit the cell growth and migration, and suppress EMT through Wnt/β-catenin signaling pathway.  相似文献   

8.
ATM: To probe the effect and the mechanism of astragaloside IV and ginsenoside Rg1 on autophagy of PC12 cells induced by oxygen glucose deprivation/reoxygenation (OGD/R). METHODS: The autophagy injury model of PC12 cells induced by OGD/R was established(PC12 cells were exposed to 2 h of OGD followed by 24 h of reoxygenation). The effects of astragaloside IV combined with ginsenoside Rg1 on autophagy of PC12 cells were observed, and the mechanism was studied through PI3K Ⅰ/Akt/mTOR and PI3K Ⅲ/becline-1/Bcl-2 signaling pathways. RESULTS: After OGD/R, LC3-Ⅱ/LC3-Ⅰin PC12 cells was increased. Astragaloside IV, ginsenoside Rg1 and astragaloside IV combined with ginsenoside Rg1 restrained the increase in LC3-Ⅱ/LC3-Ⅰ, the effect of the combination was greater than using the drug alone. Ginsenoside Rg1, astragaloside IV combined with ginsenoside Rg1 up-regulated the phosphorylation level of PI3K Ⅰ, Akt and mTOR. The effects of the combination were stronger than those of using the drug alone. Astragaloside IV, astragaloside IV combined with ginsenoside Rg1 inhibited the protein expression of PI3K Ⅲ and becline-1, the effects of the combination were better than those of single astragaloside IV and single ginsenoside Rg1. Meanwhile, the combination treatment increased Bcl-2 protein expression. CONCLUSION: The autophagy of PC12 cells induced by OGD/R is inhibited by astragaloside IV and ginsenoside Rg1. Furthermore, astragaloside IV combined with ginsenoside Rg1 plays synergitic inhibition on autophagy, the mechanism may be related to PI3K Ⅰ/Akt/mTOR and PI3K Ⅲ/becline-1/Bcl-2 signaling pathways.  相似文献   

9.
AIM: To investigate the mechanism of juglone on epithelial-mesenchymal transition in prostate cancer cells. METHODS: Human prostate cancer LNCaP cells were divided into control group (without juglone), 12.5 μmol/L juglone group and 25 μmol/L juglone group. LNCaP cells in the latter 2 groups were treated with juglone for 24 h. The invasion ability of the LNCaP cells was detected by Transwell assay. The protein expression of E-cadherin, vimentin, Snail and β-catenin was determined by Western blot. The LNCaP cells were treated with LiCl and juglone in combination for 24 h, and the protein expression of Snail and E-cadherin was detected by Western blot.RESULTS: The results of Trans-well invasion assay showed that the invasion ability in juglone groups was significantly decreased (P<0.01). The protein expression of E-cadherin in the LNCaP cells treated with juglone was increased, and the expression levels of vimentin and β-catenin were reduced (P<0.01). Treatment with LiCl significantly attenuated the inhibitory effect of juglone on Snail expression and subsequent down-regulation of E-cadherin expression. CONCLUSION: Juglone inhibits the epithelial-mesenchymal transition by inhibiting the Wnt/β-catenin/Snail signaling pathway in the LNCaP cells.  相似文献   

10.
ZHANG Tuan-jie  REN Min 《园艺学报》2018,34(11):2096-2100
AIM: To evaluate the expression of Wnt/β-catenin signaling pathway-related proteins in breast cancer and the significance. METHODS: The patients with breast cancer (n=150) in our hospital from January 2015 to January 2017 were selected as study object. The tumor tissue samples of these patients were obtained from paraffin section of breast cancer by surgical resection with complete clinicopathological data. The corresponding paracancerous tissue sam-ples were taken from the non-tumor tissue samples from the above breast cancer patients, which were 0.5~1 cm away from the tumor tissue. The methods of real-time PCR and Western blot were performed to examine the expression of Wnt-1 and β-catenin at mRNA and protein levels. Human breat cancer MCF-7 cells were divided into 3 groups:control group (MCF-7 cells without treatment), agonist group[MCF-7 cells+Wnt3a (1 mg/L)] and antagonit group[MCF-7 cells+DKK1 (16 μmol/L)]. The expression of Wnt-1 and β-catenin at mRNA and protein levels was detected by real-time PCR and Western blot. RESULTS: Compared with the paracancerous tissues, the expression levels of Wnt-1 and β-catenin were higher in tumor tissues at mRNA and proteins levels (P<0.05). Notably, the positive expression rates of Wnt-1 and β-catenin were significantly higher in tumor tissues than that in the paracancerous tissues. Furthermore, Wnt-1 expression was associated with tumor metastasis (χ2=5.352, P=0.021), tumor stage (χ2=9.412, P=0.002) and tumor size (χ2=9.412, P=0.002). In addition, β-catenin expression was also associated with tumor metastasis (χ2=9.851, P=0.002) and tumor stage (χ2=5.661, P=0.017). Compared with control group, the expression of Wnt-1 and β-catenin at mRNA and protein levels in agonist group was increased (P<0.05),while that in antagonist group was decreased (P<0.05). CONCLUSION: The expression levels of Wnt-1 and β-catenin related with Wnt/β-catenin signaling pathway are increased in the breast cancer, which are closely related to the malignant state of the tumor.  相似文献   

11.
Both Wnt/β-catenin and NF-κB signaling pathways are conserved pathways that regulate a variety of biological processes throughout the development and adult lifetime of mammals. Recent findings suggest that the 2 signaling pathways can cross-regulate each other. Several studies show that there are both positive and negative regulations between the 2 pathways. Some major components are involved in the cross-regulation of the 2 pathways such as Wnt proteins, DKK1, E-cadherin, GSK-3β, IKKs/IκB and so on. By reviewing the literature, we conjecture that the crosstalk between the 2 pathways regulate the wound healing process by intervening in the inflammation, fibroblast and angiogenesis, but the concrete mechanism is still unknown.  相似文献   

12.
AIM:To explore the role of PI3K/Akt signaling in the anti-apoptotic effect of minocyline (MC) on the apoptosis of PC12 cells induced by sodium nitroprusside (SNP). METHODS:PC12 cells were divided into 4 groups: blank control group, SNP (500 μmol/L) group, MC (10 μmol/L)+SNP group and LY294002+MC+SNP group. The cell viability was observed by MTT assay. The expression of Akt and p-Akt was determined by Western blotting. RESULTS: The viability of the PC12 cells decreased after exposed to 500 μmol/L SNP for 24 h. Meanwhile, MC at concentration of 10 μmol/L significantly blocked the effect of SNP, such as decreasing the cell viability. Pretreatment with LY294002 for 60 min prior to exposure of the PC12 cells to MC and SNP down-regulated the expression of p-Akt induced by SNP. CONCLUSION:Minocycline regulates PI3K/Akt signaling pathway to restrain the apoptosis of PC12 cells induced by SNP.  相似文献   

13.
AIM: To explore the effects of kaempferol on the proliferation, invasion and migration abilities of HBx-HepG2 cells and to examine the underlying molecular mechanisms. METHODS: The expression levels of related genes at mRNA and protein levels were determined by RT-qPCR and Western blot. The cell apoptotic rate was analyzed by flow cytometry. The cell proliferation, growth, invasion and migration abilities were measured by MTT assay, colony formation assay, Transwell invasion assay and wound healing assay, respectively. RESULTS: Kaemferol inhibited HBx-HepG2 cell proliferation in a concentration-and time-dependent manner. Kaempferol at 100 μmol/L significantly inhibited the colony formation, invasion and migration abilities of the HBx-HepG2 cells. Kaemferol at 100 μmol/L also increased cell apoptotic rate, increased the protein levels of cleaved caspase-3, cleaved caspase-9 and Bax, and decreased the expression level of Bcl-2. In addition, kaemferol at 100 μmol/L suppressed the mRNA and protein expression levels of β-catenin, c-Myc and cyclin D1 in the HBx-HepG2 cells. Kaemferol at 100 μmol/L also suppressed the protein level of p-GSK-3β and the β-catenin protein levels in both cytoplasm and nucleus. LiCl treatment reversed the inhibitory effect of kaempferol on the growth, invasion and migration of the HBx-HepG2 cells. CONCLUSION: Kaempferol inhibits cell proliferation, invasion and migration via activating Wnt/β-catenin signaling in HBx-HepG2 cells.  相似文献   

14.
AIM: To observe the expression of Akt/GSK-3β/Snail signaling pathway-related molecules in cisplatin-resistant cell line A549/DDP mediated by transforming growth factor-β1 (TGF-β1), and to explore the association of Akt/GSK-3β/Snail signaling pathway with epithelial-mesenchymal transition (EMT). METHODS: The A549/DDP cells were divided into TGF-β1 (+) group, TGF-β1 (-) group and LY294002 group. The morphological changes of A549/DDP cells treated with TGF-β1 were observed under microscope. The protein expression of E-cadherin and N-cadherin was determined by the methods of immumofluorescence and Western blot. The protein levels of Akt, p-Akt, GSK-3β, p-GSK-3βSer9 and Snail were also detected by Western blot. RESULTS: The A549/DDP cells in TGF-β1 (+) group were dispersive, showed a spindle-like shape and developed pseudopodia. This transformation was conformed to classic EMT markers. Compared with TGF-β1 (-) group, the protein expression of E-cadherin in TGF-β1 (+) group was significantly decreased (P<0.05), and N-cadherin was significantly increased (P<0.05). The protein levels of p-Akt, p-GSK-3βSer9 and Snail were also significantly increased (P<0.05). Compared with TGF-β1 (+) group, the protein levels of p-Akt, p-GSK-3βSer9 and Snail were significantly decreased in LY294002 group (P<0.05). No difference of Akt and GSK-3β expression between TGF-β1 (-) group and TGF-β1 (+) group was observed. CONCLUSION: The mechanism of EMT in A549/DDP cells might be related to Akt/GSK-3β/Snail signaling pathway activated by TGF-β1.  相似文献   

15.
AIM: To study the effect of paired-related homeobox 2 (PRRX2) gene on the viability and migration ability of gastric cancer cells, and to analyze the underlying mechanism of regulating Wnt/β-catenin signaling pathway.METHODS: The expression of PRRX2 in gastric cancer and normal gastric tissue and the correlation between PRRX2 expression in gastric cancer tissues with the overall survival rate of gastric cancer patients were analyzed by bioinformatics. The small interfering RNA (siRNA) and over-expressed plasmids of PRRX2 were transfected into gastric cancer cells MGC-803 and SGC-7901, respectively. MTT assay and Transwell assay were used to detect the viability and migration ability of gastric cancer cells. Western blot and TOPflash/FOPflash dual-luciferase reporter gene assay were used to detect the activity of Wnt/β-catenin signaling pathway. Co-immunoprecipitation was used to detected the interaction between PRRX2 and β-catenin proteins.RESULTS: Knockdown of PRRX2 attenuated the viability and migration ability of gastric cancer cell line MGC-803 (P<0.05). Over-expression of PRRX2 enhanced the viability and migration ability of SGC-7901 cells (P<0.05), increased the protein levels of β-catenin, c-Myc and cyclin D1 (P<0.05) and the activity of TOPflash/FOPflash dual-luciferase reporter gene (P<0.05). PRRX2 interacted with β-catenin protein in gastric cancer cells.CONCLUSION: PRRX2 promotes the viability and migration ability of gastric cancer cells, which may be related to Wnt/β-catenin signaling pathway.  相似文献   

16.
AIM: To investigate the protective effects and the mechanisms of 17β-estradiol on the propofol-induced neuroapoptosis in primary cultured cortical neurons. METHODS: The neurons were cultured for 7 d and treated with different concentrations of propofol and/or 17β-estradiol, respectively. The neuron viability, neuroapoptosis and the protein level of p-Akt was determined by MTT assay, Hoechst 33258 staining and Western blot 12 h after different treatments, respectively. RESULTS: Compared with vehicle-control group, propfol inhibited neuron viability in a dose-dependent manner (P<0.05). Compared with propofol treatment group, 17β-estradiol increased the neuron viability in a dose-dependent manner (P<0.05), and IGF increased the neuron viability greatly (P<0.01). Compared with vehicle-control group, the number of apoptotic neurons which was significantly decreased by treatment of 17β-estradiol was markedly increased by propofol (P<0.01). Compared with the 17β-estradiol+propofol group, LY294002 increased the number of apoptotic neurons (P<0.01). Compared with vehicle-control group, propfol decreased the protein level of p-Akt in a dose-dependent manner (P<0.05). Compared with propofol treatment group, 17β-estradiol increased the protein level of p-Akt in a dose-dependent manner (P<0.05). Compared with 17β-estradiol+propofol group, LY294002 significantly decreased the protein level of p-Akt (P<0.01). CONCLUSION: 17β-estradiol exerts the neuroprotective effects against propofol-induced neuroapoptosis by activating the PI3K-Akt signaling pathway.  相似文献   

17.
18.
19.
AIM: To investigate the effect of microRNA (miRNA)-21 on the PC12 cells with hypoxic-ischemic damage.METHODS: The PC12 cells were cultured in vitro, and the cell model of oxygen-glucose deprivation (OGD) was established. In accordance with the following requirements, the cells were randomly divided into control group, OGD group, negative control sequence+OGD group, miRNA-21 inhibitor+OGD group and miRNA-21 mimic+OGD group. The effects and mechanism of miRNA-21 on the protection of PC12 cells from OGD damage were determined by CCK-8 assay, real-time PCR and Western blot.RESULTS: Decrease in the expression of miRNA-21 by transfection with miRNA-21 inhibitor inhibited the viavility of the PC12 cells subjected to OGD damage. Increase in the expression of miRNA-21 by transfection with miRNA-21 mimic promoted the viability of the PC12 cells subjected to OGD damage. It was further confirmed that miRNA-21 promoted the AKT phosphorylation in OGD-damaged PC12 cells.CONCLUSION: miRNA-21 significantly increases the viability of PC12 cells subjected to OGD damage, which may be related to the activation of PI3K/AKT signaling pathway.  相似文献   

20.
AIM: To investigate the function of microRNA-125a-5p (miR-125a-5p) on epithelial-mesenchymal transition (EMT) of breast cancer cells via GSK-3β/Snail signaling pathway.METHODS: The expression of miR-125a-5p in normal breast epithelial cells and breast cancer cells, as well as the transfection efficiency of miR-125a-5p plasmid in MDA-MB-231 cells was detected by RT-qPCR. The chemotaxis ability and invasion ability were detected by chemotaxis assay and Transwell invasion assay. The changes of EMT-related markers, the protein level of phosphorylated glycogen synthase kinase-3β (p-GSK-3β) and the nuclear translocation of Snail were determined by Western blot. RESULTS: The expression of miR-125a-5p in the breast cancer cells was significantly lower than that in the normal breast epithelial cells. The expression of miR-125a-5p was significantly higher in MDA-MB-231/miR-125a-5p cells than that in MDA-MB-231/NC cells. The ability of epithelial growth factor (EGF) at 10 μg/L to induce chemotaxis of MDA-MB-231 cells was the strongest. Compared with MDA-MB-231/NC group, stimulation of EGF decreased the invasion ability of MDA-MB-231/miR-125a-5p cells, and resulted in the increase in E-cadherin expression, while significantly decreased the protein levels of vimentin and p-GSK-3β. Meanwhile, the nuclear localization of Snail was significantly inhibited. The invasion capacity of MDA-MB-231/miR-125a-5p+GAB2 cells was significantly enhanced compared with MDA-MB-231/miR-125a-5p+Con cells, the expression of E-cadherin was decreased, and the protein levels of vimentin and p-GSK-3β were significantly increased, while the nuclear localization of Snail was promoted. CONCLUSION: miR-125a-5p suppresses EMT via GSK-3β/Snail signaling pathway, thus inhibiting the invasion ability of breast cancer cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号