首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Purpose

Sediment fingerprinting is increasingly being used to improve the understanding of sediment dynamics within the critical zone and provide information that can help guide management decisions at the watershed scale. The objectives of this study were to investigate both the implications of different sediment fingerprinting sampling designs and spatial scales on the characterization of sediment dynamics in a predominantly agricultural watershed in northwestern New Brunswick, Canada.

Materials and methods

Color and radionuclide fingerprints were used to discriminate between three potential sediment sources: agricultural topsoil, agricultural streambanks, and forested areas (topsoil and streambanks). Suspended sediment was collected seasonally, between 2008 and 2014, at five sites with drainage areas ranging from 3.0 to 13.4 km2. Using the same source and sediment data set, multiple-, nested-, and local-location fingerprinting sampling designs were employed to investigate the influence of scale of observation, geomorphic connectivity, land use, and the heterogeneity of source fingerprints on apportionment results.

Results and discussion

Sediment collected in the headwaters was primarily derived from forested areas while the sediment collected at the outlet of the watershed was primarily from agricultural topsoil. When comparing the multiple- and nested-location designs, it was found that accounting for the spatial variability in the fingerprint properties of each source had a small difference in the sediment apportionment results. Furthermore, the local-location design demonstrated that the sediment collected at each location was composed of predominately local sources as opposed to upstream sediment entering the local catchment.

Conclusions

Assessment of the sources of sediment at a range of spatial scales better accounts for both geomorphic connectivity and differences in land use throughout the watershed. Overall, each of the three fingerprinting sampling designs provided different information that can be used to guide soil and water conservation management.

  相似文献   

2.
复合指纹识别技术定量示踪流域泥沙来源   总被引:6,自引:3,他引:6  
土壤侵蚀导致水土资源及土地生产力的破坏和损失,泥沙淤积危害及其引发的一系列水环境效应已成为当前及以后一段时期内研究的热点和重点。开展流域(河流)泥沙来源研究,查明入塘、河、库泥沙通量,定量识别泥沙来源具有重要现实指导意义。选取了一个由山坪塘控制出口的封闭式农业单元小流域(10.7 hm2),开展复合指纹识别技术定量辨析塘库沉积泥沙来源新尝试。据流域现状,定性划分了3种泥沙来源,即旱地、水田、林草地,并分别于塘库中部采取A、B、C三柱表层沉积泥沙;结合复合指纹识别技术定量解析了塘库表层沉积泥沙来源。研究表明,塘库沉积泥沙各来源相对输沙贡献分别为旱地84%、水田14%、林草地2%,复合指纹识别技术能较好地辨析小流域泥沙来源。  相似文献   

3.

Purpose

Phosphorus (P) is a limiting nutrient for most US Midwestern aquatic systems and, therefore, increases of P, through point or non-point sources (NPS) of pollution such as agriculture, causes eutrophication. Identifying specific NPS contributions (e.g., upland vs. stream channels) for sediments and P is difficult due to the distributed nature of the pollution. Therefore, studies which link the spatial and temporal aspects of sediment and P transport in these systems can help better characterize the extent of NPS pollution.

Materials and methods

Our study used fingerprinting techniques to determine sources of sediments in an agricultural watershed (the North Fork of the Pheasant Branch watershed; 12.4 km2 area) in Wisconsin, USA, during the spring, summer, and fall seasons of 2009. The primary sources considered were uplands (cultivated fields), stream bank, and streambed. The model used fallout radionuclides, 137Cs, and 210Pbxs, along with total P to determine primary sediment sources. A shorter-lived fallout radioisotope, 7Be, was used to determine the sediment age and percent new sediments in streambed and suspended sediment samples (via the 7Be/210Pbxs ratio).

Results and discussion

Upland areas were the primary source of suspended sediments in the stream channels followed by stream banks. The sediment age and percent new sediment for the streambed and suspended sediments showed that the channel contained and transported newer (or more recently tagged with 7Be) sediments in the spring season (9–131 days sediment age), while relatively old sediments (165–318 days) were moving through the channel system during the fall season.

Conclusions

Upland areas are the major contributors to in-stream suspended sediments in this watershed. Sediment resuspension in stream channels could play an important role during the later part of the year. Best management practices should be targeted in the upland areas to reduce the export of sediments and sediment-bound P from agricultural watersheds.  相似文献   

4.
基于泥沙指纹识别的小流域颗粒态磷来源解析   总被引:5,自引:1,他引:5  
控制泥沙迁移一直是流域管理的重点,而泥沙携带污染物与养分(磷)对下游水体的影响愈发引起关注。研究泥沙来源的位置、特征及各来源对泥沙输出的贡献,有助于针对重点源区实施水土流失以及水污染治理措施。农业小流域中磷的输出以泥沙吸附的颗粒态磷为主,研究泥沙来源可为探讨颗粒态磷的来源提供重要基础。复合指纹技术是一种可靠的泥沙源解析方法,但在一些地表物质相对均一、输沙量较小、受人为因素影响较多的东部小流域,能否应用指纹识别法解析泥沙来源并探讨颗粒态磷来源还需要验证。该文以南京市九乡河上游小流域为研究区,尝试以指纹识别技术分析流域泥沙来源为基础,进而研究不同来源对颗粒态磷输出的相对贡献。研究结果表明,农田对泥沙输出的贡献为25.3%~65.2%,对颗粒态磷输出的贡献达52.2%~85.8%;矿山及道路施工用地对泥沙输出的贡献为34.8%~74.7%,但是对颗粒态磷输出的贡献仅为14.2%~47.7%;而来源于林地的泥沙与颗粒态磷总体上均不到0.1%。复合指纹技术不但能够有效识别泥沙来源,且以泥沙源解析来研究颗粒态磷来源,能够为基础资料缺乏地区提高颗粒态磷来源识别的合理性以及流域非点源磷污染控制提供一种思路和方法。  相似文献   

5.

Purpose

Sediment fingerprinting is a relatively recent research technique, capable of determining the origin of suspended sediment. In this study, we investigated sub-basins within a larger watershed we examined previously. The objectives were to determine if there was spatial variation in the origin of the suspended sediments and to test a streamlined fingerprinting approach which would reduce the cost, thereby paving the way for adoption by government agencies.

Materials and methods

Samples were collected from three tributaries, the outlet of the main stem, and at the middle of the main stem. Two methods to collect suspended sediment samples were compared: a mobile continuous-flow centrifuge and automated samplers. A relatively small initial tracer suite consisting of stable isotopes of nitrogen (N) and carbon (C) (15N and 13C), total N (TN), and total C (TC) was tested. Tracer concentrations were obtained through a single mass spectrometry analysis requiring <1 g of sediment.

Results and discussion

Multivariate discriminant analysis showed that three of the four tracers (δ 15N, δ 13C, and TC) from the initial pool were capable of accurate classification of the source samples. A multivariate mixing model showed that banks contributed the majority of sediment throughout all locations sampled and that in tributaries it was an even more dominant source. Despite variations in land use and stream order, the legacy sediments comprising the banks and floodplains were the main factor in impairment for suspended sediment. We found a small but statistically significant difference in δ 15N and δ 13C concentrations collected using automated samplers vs. the mobile centrifuge, but the effect on analysis of sediment source proportions was minimal.

Conclusions

The results of this study indicate that, at least in the study watershed, the majority of sediment in suspension was of streambank origin. A cost-effective tracer suite was identified as well as an attempt to make a streamlined approach to the technique. The streamlined approach cost much less ($7,550 US) than the conventional approach ($46,600 US) and should be suitable for total maximum daily loads analysis by state government agencies in the Southern Piedmont region of the USA.  相似文献   

6.

Purpose

Fine-grained sediment is an important pollutant in streams and estuaries, including the Chesapeake Bay in the USA. The objective of this study was to determine the sources of fine-grained sediment using the sediment fingerprinting approach in the Linganore Creek watershed, a tributary to the Chesapeake Bay.

Materials and methods

The sediment fingerprinting approach was used in the agricultural and forested, 147-km2 Linganore Creek watershed, Maryland from 1 August 2008 to 31 December 2010 to determine the relative percentage contribution from different potential sources of fine-grained sediment. Fine-grained suspended sediment samples (<63 μm) were collected during storm events in Linganore Creek using an automatic sampler and manual isokinetic samplers. Source samples were collected from 40 stream bank sites, 24 agricultural (cropland and pasture) sites, and 19 forested sites. Suspended sediment and source samples were analyzed for elements and stable isotopes.

Results and discussion

Results of sediment fingerprinting for 194 samples collected in 36 separate storm events indicate that stream banks contributed 53% of the annual fine-grained suspended sediment load, agriculture contributed 44%, and forests contributed 3%. Peak flows and sediment loads of the storms correlate to stream bank erosion. The highest peak flows occurred in the winter and, along with freeze–thaw activity, contributed to winter months showing the highest rate of stream bank erosion. Peak flow was negatively correlated to sediment sources from agricultural lands which had the greatest contribution in non-winter months. Caution should be observed when trying to interpret the relation between sediment sources and individual storms using the sediment fingerprinting approach. Because the sediment fingerprinting results from individual storms may not include the temporal aspects of the sourced sediment, sediment that is in storage from previous events, remobilized and sampled during the current event, will reflect previous storm characteristics. Stream bank sediment is delivered directly to the channel during an event, whereas the delivery of upland sediment to the stream is lower due to storage on hillslopes and/or in channels, sediment from stream banks are more likely to be related to the characteristics of the sampled storm event.

Conclusions

Stream banks and agricultural lands are both important sources of fine-grained sediment in the Linganore Creek watershed. Peak flows and sediment loads for the 36 storms show a significant relation to sediment sources from stream bank erosion. Attempting to link upland sediment sources to flow and seasonal characteristics is difficult since much of the upland sediment eroded in an event goes into storage. By averaging sediment sources over several storms, it may be possible to determine not only the sediment sources that are directly contributed during the current event but also sediment from previous events that was in storage and remobilized.  相似文献   

7.
Journal of Soils and Sediments - The main purpose of this study was to demonstrate the utility of the sediment fingerprinting approach to apportion surface-derived sediment, and then age date that...  相似文献   

8.
Intensive farming is a primary cause of increased sediment and associated nitrogen (N) and phosphorus (P) loads in surface water systems. Determining their contributing sources, pathways and loads present major challenges in the high-intensity agricultural catchments. Herein, we quantify the sediment sources and magnitude of sediment total N and total P from different sources using a novel application of compound-specific stable isotope (CSSI) and fallout radionuclides (FRNs) of 137Cs and 210Pbex in an intensive agricultural catchment in North China. Sediment sources from surface and sub-surface soils were estimated from FRNs fingerprint and accounted for 62 ± 7% and 38 ± 7% respectively, while surface soil from land uses that originated from hillslope were identified by CSSI fingerprint. Using a novel application of FRNs and CSSI sediment fingerprinting techniques, the dominant sediment source was derived from maize farmland (44 ± 0.1%), followed by channel bank (38 ± 7%). The sedimentation rate (13.55 ± 0.30 t ha−1 yr−1) was quantified by the 137Cs cores (0–60 cm) at the outlet of this catchment. The total N and total P in sediment were both mostly derived from maize farmland and least from channel banks. The channel banks are significant sediment sources but contribute little to the input of sediment N and P for eutrophication. It implies that chemically-applied farmlands are the main hotspots for catchment erosion control and pollution prevention. The novel application of FRNs and CSSI techniques cost-effectively quantified sediment N and P loads from different sources with a single visit to the catchment, enabling rapid assessment for optimizing soil conservation strategies and land management practices. Keywords: Sediment sources, Land use, N and P loads, Compound-specific stable isotope, Fallout radionuclides.  相似文献   

9.

Purpose

This contribution reviews the evolution of sediment source fingerprinting investigations since the beginning of such studies in the mid-1970s. Attention is directed to key advances and developments during this period, to the present status of source fingerprinting techniques and to the scope for future development.

Scope

An analysis of the number of papers reporting sediment source fingerprinting investigations or associated methodologies published annually since the mid-1970s to date indicates that the number of such papers has increased near exponentially. The key drivers behind the expansion of such work are examined and linked to both the progress of academic enquiry and the need to support the development of sediment management strategies aimed at countering environmental problems associated with fine sediment. Instead of providing a chronological review of the various advances and developments evidenced by the expanding literature, attention focuses on seven key areas of development which are seen as having together contributed to the current state of the art. These include the expanding range of fingerprint properties employed; the use of statistical tests to confirm the ability of particular fingerprint properties to discriminate between potential sources and to assist in the selection of the ‘best’ properties for inclusion in the final composite fingerprint; the use of numerical mixing models to obtain quantitative estimates of the relative contribution of different sources; recognition of the need to confirm the conservative behaviour of the sediment properties employed as fingerprints and to take account of contrasts in grain size composition and organic matter content between source material and target samples; extension of the approach to include a greater range of targets and potential sources; addition of a temporal dimension, in order to consider changes in sediment source through time; and recognition of the need to direct increased attention to the uncertainty associated with the results of such studies. At the present time, sediment source fingerprinting techniques can be seen as being in a transition from a scientific tool to an operational or management tool, but further development will be required before successful transition to the latter can be fully achieved.  相似文献   

10.
Erosion is a natural geomorphic process occurring continually over the Earth's surface and it largely depends on topography, vegetation, soil and climatic variables, and therefore, exhibits pronounced spatial variability due to catchment heterogeneity and climatic variation. This problem can be circumvented by discretizing the catchment into approximately homogeneous sub‐areas using GIS. In this study, the remote sensing and GIS techniques (through Imagine®8.6 and ArcGIS®9.1 software) were used for derivation of spatial information, catchment discretization, data processing etc. for the Himalayan Chaukhutia watershed (India). Various thematic layers for different factors of USLE were generated and overlaid to compute spatially distributed gross soil erosion maps for the watershed using 18‐year rainfall data. The concept of transport limited accumulation was formulated and used in ArcGIS® for generating the transport capacity maps. Using these maps, the gross soil erosion was routed to the catchment outlet using hydrological drainage paths, for derivation of transport capacity limited sediment outflow maps. These maps depict the amount of sediment rate from a particular grid in spatial domain and the pixel value of the outlet grid indicates the sediment yield at the outlet of the watershed. Up on testing, the proposed method simulated the annual sediment yield with less than ±40% error. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
Soil erosion and associated sediment redistribution are key environmental problems in Central Argentina. Specific land uses and management practices, such as intensive grazing and crop cultivation, are considered to be significantly driving and accelerating these processes. This research focuses on the identification of suitable soil tracers from hot spots of land degradation and sediment fate in an agricultural catchment of central Argentina with erodible loess soils. Using Energy Dispersive X-Ray Fluorescence (EDXRF), elemental concentrations were determined and later used as soil tracers for geochemical characterization. The best set of tracers were identified using two artificial mixtures composed of known proportions of soil sources collected from different lands having contrasting soil uses. Barium, calcium, iron, phosphorus, and titanium were identified for obtaining the best suitable reconstruction of source proportions in the laboratory-prepared artificial mixtures. Then, these elements, as well as the total organic carbon, were applied for pinpointing critical hot spots of erosion within the studied catchment. Feedlots were identified to be the main source of sediments, river banks and dirt roads together are the second most important source. This investigation provides key information for optimizing soil conservation strategies and selecting land management practices and land uses which do not generate great contribution of sediment, preventing pollution of the waterways of the region.  相似文献   

12.
13.
Quantitative identification of the covariation between sediment connectivity and soil erosion can contribute to provide the key information for watershed sediment management. However, this covariation and its spatiotemporal response mechanisms are still unclear, especially whether this covariation can be used as a basis for identifying critical source areas of sediment in large-scale ecological restored watersheds. In this study, an integrated methodology framework by the revised universal soil loss equation (RUSLE), index of connectivity (IC) and sediment delivery ratio (SDR) was proposed to visually assess the spatiotemporal characteristics of erosion and sediment yield processes in the Yanhe Watershed with large-scale ecological restoration from 1985 to 2020 and to identify the covariation between sediment connectivity and erosion in subbasins. The soil erosion estimated by RUSLE has decreased by over 80% since 1985 owing to increased vegetation cover and the effective implementation of soil conservation measures, but the upper reaches still have high erosion intensity due to differences in specific controlling factors such as topographic conditions and land cover, requiring focused soil conservation practice. The IC results showed that as the vegetation restoration and soil conservation measures in the Yanhe Watershed varied from year to year, their spatial and temporal patterns had a strong influence on the distribution of sediment connectivity, and some local areas in the middle reaches showed local minima of IC in 1995, 1998 and 2010 mainly due to the implementation of long-term ecological restoration project. The developed IC-Erosion maps indicated that areas with high connectivity but low erosion accounted for over 60% of the total watershed area from 1985 to 1999, demonstrating a reverse correlation between sediment connectivity and erosion. Meanwhile, over 40% of the erosion occurred in a few areas (approximately 20%) with high connectivity and high erosion from 2000 to 2004, which can be characterized as the critical areas of erosion. The methods and results of this study provide ideas for separately defining both erosion and connectivity and quantifying bi-variable erosion–connectivity classification, which can be easily viewed on a scatterplot.  相似文献   

14.

Purpose

Knowledge of sediment sources is a prerequisite for sustainable management practices and may furthermore improve our understanding of water and sediment fluxes. Investigations have shown that a number of characteristic soil properties can be used as “fingerprints” to trace back the sources of river sediments. Spectral properties have recently been successfully used as such characteristics in fingerprinting studies. Despite being less labour-intensive than geochemical analyses, for example, spectroscopy allows measurements of small amounts of sediment material (>60 mg), thus enabling inexpensive analyses even of intra-event variability. The focus of this study is on the examination of spectral properties of fluvial sediment samples to detect changes in source contributions, both between and within individual flood events.

Materials and methods

Sediment samples from the following three different origins were collected in the Isábena catchment (445 km2) in the central Spanish Pyrenees: (1) soil samples from the main potential source areas, (2) stored fine sediment from the channel bed once each season in 2011 and (3) suspended sediment samples during four flood events in autumn 2011 and spring 2012 at the catchment outlet as well as at several subcatchment outlets. All samples were dried and measured for spectral properties in the laboratory using an ASD spectroradiometer. Colour parameters and physically based features (e.g. organic carbon, iron oxide and clay content) were calculated from the spectra. Principal component analyses (PCA) were applied to all three types of samples to determine natural clustering of samples, and a mixing model was applied to determine source contributions.

Results and discussion

We found that fine sediment stored in the river bed seems to be mainly influenced by grain size and seasonal variability, while sampling location—and thus the effect of individual tributaries or subcatchments—seem to be of minor importance. Suspended sediment sources were found to vary between, as well as within, flood events; although badlands were always the major source. Forests and grasslands contributed little (<10 %), and other sources (not further determinable) contributed up to 40 %. The analyses further suggested that sediment sources differ among the subcatchments and that subcatchments comprising relatively large proportions of badlands contributed most to the four flood events analyzed.

Conclusions

Spectral fingerprints provide a rapid and cost-efficient alternative to conventional fingerprint properties. However, a combination of spectral and conventional fingerprint properties could potentially permit discrimination of a larger number of source types.  相似文献   

15.
Journal of Soils and Sediments - Erosion and its spatial distribution in three agricultural headwater catchments were assessed in the border of the volcanic plateau in Southern Brazil. We analyzed...  相似文献   

16.
Purpose

Rain storm events mobilise large proportions of fine sediments in catchment systems. Sediments from agricultural catchments are often adsorbed by nutrients, heavy metals and other (in)organic pollutants that may impact downstream environments. To mitigate erosion, sediment transport and associated pollutant transport, it is crucial to know the origin of the sediment that is found in the drainage system, and therefore, it is important to understand catchment sediment dynamics throughout the continuity of runoff events.

Materials and methods

To assess the impact of the state of a catchment on the transport of fine suspended sediment to catchment outlets, an algorithm has been developed which classifies rain storm events into simple (clockwise, counter-clockwise) and compound (figure-of-eight; complex) events. This algorithm is the first tool that uses all available discharge and suspended sediment data and analyses these data automatically. A total of 797 runoff events from three experimental watersheds in Navarre (Spain) were analysed with the help of long-term, high-resolution discharge and sediment data that was collected between 2000 and 2014.

Results and discussion

Morphological complexity and in-stream vegetation structures acted as disconnecting landscape features which caused storage of sediment along the transport cascade. The occurrence of sediment storage along transport paths was therefore responsible for clockwise hysteresis due to the availability of in-stream sediment which could cause the “first flush” affect. Conversely, the catchment with steeper channel gradients and a lower stream density showed much more counter-clockwise hysteresis due to better downstream and lateral surface hydrological connectivity. In this research, hydrological connectivity is defined as the actual and potential transfer paths in a catchment. The classification of event SSC-Q hysteresis provided a seasonal benchmark value to which catchment managers can compare runoff events in order to understand the origin and locations of suspended sediment in the catchment.

Conclusions

A new algorithm uses all available discharge and suspended sediment data to assess catchment sediment dynamics. From these analyses, the catchment connectivity can be assessed which is useful to develop catchment land management.

  相似文献   

17.
Adequate sulfur (S) nutrition is critical for sustaining yields in crop rotation systems. Because of slow oxidation of elemental S (S°), research on S° fertilizers has emphasized improving the short‐term availability, while the long‐term effects of S° have been overlooked. The effectiveness of a dispersible granule S° fertilizer (SF: Sulfer95), consisting of S° particles smaller than any S° fertilizer reported in literature (< 44 μm in diameter), was compared to gypsum (CS: CaSO4) and ammonium sulfate [AS: (NH4)2SO4] in a three‐year experiment (1997—1999) on a moderately S deficient Black Chernozem soil (Typic Cryoboroll). The three S fertilizers were applied to canola (Brassica rapa L.) at 20, 40, and 80 kg S ha‐1, supplemented with corresponding rates of nitrogen (N) fertilizer in the first year. The control treatment (CT) received N only. Barley (Hordeum vulgare L.) and peas (Pisum sativum L.) were grown in the second and third years to test the availability of residual S. Although the yield of canola in SF fertilized treatments was only slightly higher than in CT, available S provided by SF produced a higher physiological S efficiency (PSE). Superior yields with residual SF were obtained in the second and third years by barley and peas at the rate of 80 kg S ha‐1 applied in the first year, indicating that slow oxidation of SF was beneficial to the crops subsequently grown. Over three years, the total crop S uptake was 21, 4.0, and 15% higher with SF than with CT, CS, and AS, respectively.  相似文献   

18.
19.
基于小流域尺度的黔北喀斯特地区产流产沙特征   总被引:4,自引:3,他引:4  
目前,中国西南喀斯特地区流域尺度产流产沙长期定位观测试验报道较少,且其相关机制的探讨不足。该文基于小流域尺度,分析典型喀斯特小流域产流产沙特征,定性、定量探讨喀斯特小流域产流产沙的主要影响因子。选取位于贵州北部的典型喀斯特小流域—遵义浒洋水小流域为研究区,采用小流域控制站定位观测法,在4年连续观测的基础上,分析浒洋水小流域月际、年际产流产沙特征,并重点分析了降雨对小流域产流产沙的影响。结果表明:受喀斯特地区特殊的"二元"侵蚀环境等因素影响,浒洋水小流域产流、产沙高峰不同期,产流高峰出现在10月,多年月均值为63.9万m3,而产沙高峰为6月,116.21t。显著性检验则表明,浒洋水小流域月际产流无显著差异(P0.05),但6月产沙则显著高于1、2、3及12月(P0.05),其他月份间产沙无显著差异(P0.05);受年度降雨的影响,2010-2013年,无论是产流还是产沙,2013年均显著高于其他年份(P0.05)。研究期间,小流域多年平均输沙模数为215.32 t/(km2·a),这一结果与贵州省公布的贵州喀斯特区土壤侵蚀模数279.47t/(km2·a)接近;该小流域降雨对产流产沙影响显著,降雨强度(I60)同产流产沙在0.05水平上显著相关,而降雨量同产流产沙则在0.01水平上显著相关。结果可为喀斯特地区的水土流失治理提供参考。  相似文献   

20.

Purpose

Understanding the spatial distribution and sources of soil heavy metals (HMs) in a large city helps prevent and control soil pollution. This study aimed to investigate the spatial patterns of soil HMs and identify their main sources in a regional scale.

Materials and methods

A total of 110 topsoil samples were collected from Tai’an City, China. Cd, Cr, Cu, Hg, Ni, Pb, and Zn concentrations in each soil sample were determined. Geostatistics, geographic information system (GIS), and positive matrix factorization (PMF) were used to explore the spatial distribution of seven soil HMs and to reveal the main sources of soil HMs in Tai’an City, respectively.

Results and discussion

Soil Cd, Cr, Pb, and Zn generally showed slight pollution levels in the study area. However, soil Hg and Cu contents reached moderate to heavy pollution levels in some areas. Soil Hg content increased from north to south across the city, and the highest Hg concentration was detected in Ningyang County. Soil Cd, Cu, and Zn distributions exhibited a similar pattern, and their contents increased from west to east; the highest Cd, Cu, and Zn concentrations were found in Xintai County. The highest soil Ni concentration was obtained in the northeast of Feicheng and Xintai counties. PMF analysis revealed the following four potential sources of agricultural soil HMs in Tai’an City: industrial and mining activities, agricultural activities, residential living activities, and business activities. Soil Hg mainly originated from residential living activities, which accounted for 75.3% of the total source. The main sources of soil Ni were residential living activities, agricultural activities, and industrial and mining activities, which account for 38.2, 27.50, and 25.1% of the total source, respectively. Soil Cu was mainly produced by agricultural activities (36.6%), followed by residential living activities (29.8%) and industrial and mining activities (25.8%).

Conclusions

PMF combined with GIS could be effectively applied to determine the main sources of HMs in agricultural soils in a regional scale.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号