首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 198 毫秒
1.
Protection provided by live and inactivated virus vaccination against challenge with the virulent nephropathogenic infectious bronchitis virus (NIBV) strain PA/Wolgemuth/98 was assessed. Vaccinations with combinations of live attenuated strains Massachusetts (Mass) + Connecticut (Conn) or Mass + Arkansas (Ark) were given by eyedrop to 2-wk-old specific-pathogen-free leghorn chickens. After live infectious bronchitis virus (IBV) vaccination, some chickens at 6 wk of age received an injection of either an oil emulsion vaccine containing inactivated IBV strains Mass + Ark or an autogenous vaccine prepared from NIBV PA/Wolgemuth/98. Challenge with PA/Wolgemuth/98 was given via eyedrop at 10 wk of age. Serum IBV enzyme-linked immunosorbent assay antibody geometric mean titers (GMTs) after vaccination with the combinations of live attenuated strains were low, ranging from 184 to 1,354, prior to NIBV challenge at 10 wk of age. Both inactivated vaccines induced an anamnestic response of similar magnitudes with serum GMTs of 6,232-12,241. Assessment of protection following NIBV challenge was based on several criteria virus reisolation from trachea and kidney and renal microscopic pathology and IBV-specific antigen immunohistochemistry (IHC). Live attenuated virus vaccination alone with combinations of strains Mass + Conn or Mass + Ark did not protect the respiratory tract and kidney of chickens after PA/Wolgemuth/98 challenge. Chickens given a live combination vaccination of Mass + Conn and boosted with an inactivated Mass + Ark vaccine were also susceptible to NIBV challenge on the basis of virus isolation from trachea and kidney butshowed protection on the basis of renal microscopic pathology and IHC. Live IBV-primed chickens vaccinated with an autogenous inactivated PA/Wolgemuth/98 vaccine had the highest protection against homologous virulent NIBV challenge on the basis of virus isolation.  相似文献   

2.
The protective efficacy of three infectious bronchitis virus (IBV) vaccines for sentinel chickens raised with commercial Delmarva broiler chickens was evaluated during winter 1987. Specific-pathogen-free leghorn sentinel chickens were vaccinated with Massachusetts (Mass) alone, Mass and JMK, or Mass and Arkansas (Ark) combination live vaccines, or they remained unvaccinated. Four weeks post-vaccination, sentinels were placed on broiler farms at weekly intervals for 3 weeks corresponding to weeks 4, 5, and 6 of the broiler growing cycle. Vaccine efficacy was evaluated based on IBV reisolation attempts from tracheal swabbings following a 1-week field exposure period. Sentinel chickens vaccinated with Mass and Ark combination vaccine were best protected against IBV field challenge. Only four IBV isolations were made out of a 3-week total of 36 attempts, for an 11% isolation rate. IBV vaccines containing either Mass alone or Mass and JMK offered much lower levels of protection.  相似文献   

3.
4.
A commercial infectious bronchitis virus (IBV) vaccine of the Massachusetts 41 strain was injected in embryonating chicken eggs on embryonation day (ED) 18. The IBV vaccine was pathogenic for embryos, and it was passaged in chicken kidney tissue culture to reduce the pathogenicity. At the 40th tissue culture passage (P40-IBV), the virus became apathogenic for the embryos. Maternal antibody-positive or -negative chicks hatching from eggs injected with P40-IBV developed antibody to IBV and were protected against challenge exposure at 4 weeks of age with virulent Massachusetts 41 IBV. Although P40-IBV protected chicks when administered on ED 18, this virus did not protect chicks well if given at hatch. When combined with the turkey herpesvirus (HVT), P40-IBV given on ED 18 did not interfere with the protection against challenge exposure with virulent Marek's disease virus, nor did the presence of HVT interfere with protection by P40-IBV. Thus, under laboratory conditions, IBV vaccine could be combined with HVT to form a bivalent embryonal vaccine.  相似文献   

5.
Intramuscular (i.m.) administration of infectious bronchitis virus (IBV) oil-emulsion vaccine (OEV) to IBV-primed or unprimed chickens resulted in the production of zero or minimal concentrations of IBV-specific IgM in the serum, as measured by enzyme-linked immunosorbent assay of gel chromatography fractions. Live-attenuated infectious bronchitis (IB) vaccine given i.m. or by eyedrop stimulated the production of IBV-specific IgM in similar amounts following inoculation by both routes. These levels were comparable to those found in earlier studies following intranasal inoculation with a virulent strain of IBV and confirm that the detection of IBV-specific IgM is a valuable aid to the diagnosis of recent infection. As expected, administration of live-attenuated IB vaccines i.m. or by eyedrop protected the respiratory tract against challenge with virulent virus 24 days later; however, OEV given i.m. did not.  相似文献   

6.
A multivalent in ovo vaccine (MIV) was tested for safety and efficacy in a commercial broiler complex. The MIV comprised five replicating live viruses including serotypes 1, 2, and 3 of Marek's disease virus (MDV), an intermediate infectious bursal disease virus (IBDV) and a recombinant fowl poxvirus (FPV) vector vaccine containing HN and F genes of Newcastle disease virus (NDV). The performance of MIV-vaccinated broilers was compared with that of hatchmates that received turkey herpesvirus (HVT) alone (routinely used in ovo vaccine in the broiler complex). The chickens that hatched from the MIV-injected and HVT-injected eggs were raised under commercial conditions in six barns. Barn 1 housed 17,853 MIV-vaccinated chickens and each of the barns 2-6 housed 18,472-22,798 HVT-vaccinated chickens. The HVT-vaccinated chickens were given infectious bronchitis virus (IBV) and NDV vaccines at hatch and at 2 wk of age. The MIV-vaccinated chickens received IBV vaccine at hatch and IBV + NDV at 2 wk of age. The relative values of hatchability of eggs, livability and weight gain of chickens, and condemnation rates at processing were comparable between the MIV and the HVT groups (P > 0.05). Chickens from the MIV- and the HVT-vaccinated groups were challenged with virulent viruses under laboratory conditions. The resistance of vaccinated chickens against Marek's disease could not be assessed because of high natural resistance of unvaccinated commercial broilers to virulent MDV. The relative resistances of the MIV- and the HVT-vaccinated groups, respectively, against other virulent viruses were as follows: IBDV, 100% for both groups; NDV, 81% vs. 19%; FPV, 86% vs. 0%. The successful use of MIV under field conditions expands the usefulness of the in ovo technology for poultry.  相似文献   

7.
8.
Coronavirus avian infectious bronchitis virus   总被引:8,自引:0,他引:8  
Infectious bronchitis virus (IBV), the coronavirus of the chicken (Gallus gallus), is one of the foremost causes of economic loss within the poultry industry, affecting the performance of both meat-type and egg-laying birds. The virus replicates not only in the epithelium of upper and lower respiratory tract tissues, but also in many tissues along the alimentary tract and elsewhere e.g. kidney, oviduct and testes. It can be detected in both respiratory and faecal material. There is increasing evidence that IBV can infect species of bird other than the chicken. Interestingly breeds of chicken vary with respect to the severity of infection with IBV, which may be related to the immune response. Probably the major reason for the high profile of IBV is the existence of a very large number of serotypes. Both live and inactivated IB vaccines are used extensively, the latter requiring priming by the former. Their effectiveness is diminished by poor cross-protection. The nature of the protective immune response to IBV is poorly understood. What is known is that the surface spike protein, indeed the amino-terminal S1 half, is sufficient to induce good protective immunity. There is increasing evidence that only a few amino acid differences amongst S proteins are sufficient to have a detrimental impact on cross-protection. Experimental vector IB vaccines and genetically manipulated IBVs--with heterologous spike protein genes--have produced promising results, including in the context of in ovo vaccination.  相似文献   

9.
Infectious bronchitis virus (IBV) causes respiratory disease in chickens all over the world. IBV has many serotypes that do not confer cross protection against each other. Hemagglutination inhibition (HI) test has been used to determine the serotypes of IBV as a substitute to the more laborious virus neutralization test and the more sophisticated restriction endonuclease digestion or sequencing of the S1 gene. In Jordan, no previous studies have been carried out to determine the involvement of IBV in respiratory disease in chickens, or the serotypes of IBV that possibly exist. In this study, serum from different chicken flocks (n = 20) that suffered from respiratory disease were tested for IBV antibodies using commercial IBV antibody ELISA at time of the initial signs of the respiratory disease and repeated on serum samples from the same flocks 10–14 days later. ELISA titer for IBV increased in 14 out of 20 flocks (70%) after 10–14 days of the initial signs of the respiratory disease and this indicates a recent exposure to IBV. The second serum samples from these 14 flocks were further examined against a panel of five IBV antigens (Ark, Conn, DE-072, JMK, and Mass) by HI test to determine the serotype(s) of IBV they have been exposed to. The HI test results indicated that the exposure of some of these flocks were to Ark, DE-072, and Mass like serotypes. However, the HI titers against the antigens used in this study were relatively similar in 10 out of the 14 flocks (71%) and the serotype of IBV that these flocks were exposed to could not be determined and the possible causes of this are discussed.  相似文献   

10.
A recombinant DNA probe with specificity for the 3' end of genomic RNA from the Ark 99 strain of infectious bronchitis virus (IBV) was found to hybridize with extracted RNA of three strains with the Ark serotype, as well as the Mass41, Holl52, Gray, JMK, Conn, Fla and SE17 strains of IBV. Viral infection was detected in the cytoplasm of chicken embryo kidney cells inoculated with Mass41, Ark99, SE17 or two recent field isolates of IBV using in situ cytohybridization and a biotinylated probe. In vivo infections were detected in individual cells of tracheas and lungs 2,4, and 6 days after inoculation of chicks with Mass41 and Ark99. In situ hybridization of Ark99 infected tissue sections using 32P-dATP labelled probe indicated that more viral replication was present in the trachea on day 4 than either days 2 or 6; whereas more viral RNA was found in the lungs on day 6 than days 2 or 4 after inoculation.  相似文献   

11.
The prevalence of Arkansas (Ark)-type infectious bronchitis virus (IBV) in Delmarva peninsula broiler-type chickens was determined. The immunity of 5-to-11-week-old commercial broilers was evaluated by intraocular inoculation with Ark-type DPI strain (Ark DPI) challenge virus and collection of tracheal swabbings 5 days later. Serum Ark-type antibody titers were obtained using the virus-neutralization test. Eighty-five flocks were tested from January to August 1981. Nearly 60% of the flocks had substantial (greater than or equal to 70%) local immunity of the upper respiratory tract. Twenty-two percent had intermediate (50-69%) and 19% of the flocks had low (less than or equal to 40%) levels of local immunity. Serum antibody titers generally agreed with challenge results. In addition, high Ark-type IBV neutralizing-antibody titers were found in 16 Delmarva broiler breeder flocks. Seven current IBV field isolates were characterized for antigenic similarity to Ark DPI. Four isolates contained Ark antigen(s) based on significant neutralization in virus-neutralization tests and on substantial immunity to challenge afforded by Ark DPI virus immunization. Three isolates did not appear to contain Ark antigen(s). Immunization of chickens with Ark DPI virus afforded substantial protection against Connecticut- and homologous-type virus challenge, partial immunity (63%) against JMK, and no protection against the Massachusetts 41 strain of IBV.  相似文献   

12.
Infectious bronchitis (IB) is an economically important viral disease with worldwide distribution. Every country with an intensive poultry industry has infectious bronchitis virus (IBV). The virus rapidly spreads from bird to bird through horizontal transmission by aerosol or ingestion. Sentinel bird studies were carried out in southern Ontario and IBV has been isolated from layer flocks. Genetic analysis of the S1 region of the strains showed that they were not vaccine related. The pathogenicity of selected Ontario variants of IBV isolates was studied and the subsequent work was to determine the degree of protection against field isolates provided by a commonly used vaccine MILDVAC-Ma5 in Ontario. The protection was evaluated by challenging immunized chickens with the respiratory (IBV-ON1) and nephropathogenic (IBV-ON4) viruses. The mean vaccine efficacy for IBV-ON1 was 66.7% indicating that a Massachusetts serotype vaccine would provide some protection against IBV field isolates.  相似文献   

13.
Marek's disease virus (MDV) vaccines of serotypes 1 and 2 administered in 18-day-old embryonated eggs induced better protection against post-hatch challenge at 3 days with virulent MDV than vaccines given at hatch. Embryonal vaccination with a polyvalent vaccine containing equal quantities of serotypes 1 and 2 of MDV and serotype 3 virus (turkey herpesvirus, HVT) was also significantly more effective than post-hatch vaccination. These and earlier results indicate that protective efficacy of single or combined Marek's disease vaccine serotypes against post-hatch challenge at 3 days can be substantially improved if the vaccines are injected into 18-day embryos rather than at hatch. Injection of vaccines of serotypes 1 or 2 into embryonated eggs or hatched chicks did not cause detectable gross or microscopic lesions in chickens. Vaccine viruses of serotypes 1 and 2 could be isolated from spleen cells of chickens 1 week post-vaccination, and the titer of recoverable viruses was higher in chickens that received the vaccines at the 18th day of embryonation than in chickens vaccinated at hatch. Although embryo vaccination with HVT usually provided better protection than post-hatch vaccination against early post-hatch challenge with variant pathotypes of MDV, the protection was poor regardless of vaccination protocol. If challenge with variant pathotypes of MDV was delayed until embryonally or post-hatch HVT-vaccinated chickens were 21 days of age, protection of chickens by HVT was not enhanced. Thus, resistance induced by embryonal vaccination with HVT was qualitatively similar to that induced by post-hatch vaccination with this virus.  相似文献   

14.
Infectious bronchitis (IB) is a highly contagious viral disease and is responsible for considerable economic losses in the poultry industry, worldwide. To mitigate the IB-associated losses, multiple vaccines are being applied in the sector with variable successes and thus necessitating the development of a potent vaccine to protect against the IB in the poultry. In the present study, we investigated a bivalent live attenuated vaccine consisting of IB virus (IBV) strain H120 (GI-1 lineage) and D274 (GI-12 lineage) to evaluate its protection against heterologous variant of IBV (GI-23 lineage) in chicken. Protection efficacy was evaluated based on the serology, clinical signs, survival rates, tracheal and kidney histopathology and the viral shedding. Results demonstrated that administering live H120 and D274 (named here Classivar®) vaccine in one day-old and 14 days-old provided 100 % protection. We observed a significant increase in the mean antibody titers, reduced virus shedding, and ameliorated histopathology lesions compared to routinely used vaccination regimes. These results revealed that usage of different IBV vaccines combination can successfully ameliorate the clinical outcome and pathology in vaccinated chicks especially after booster vaccination regime using Classivar®. In conclusions, our data indicate that Classivar® vaccine is safe in chicks and may serve as an effective vaccine against the threat posed by commonly circulating IBV strains in the poultry industry.  相似文献   

15.
Twenty infectious bronchitis virus (IBV) field isolates obtained from commercial layer and broiler chickens in 1987 and 1988 were serotyped using the virus-neutralization (VN) test. Six different previously unrecognized variant serotypes were identified from a total of seven isolates from layer chickens. Only two isolates, both from Maine, were the same variant serotype. Variant serotypes also were recovered from layer flocks in Illinois and Washington and the province of Ontario, Canada. Two different variants were isolated from the same multi-age layer complex in Connecticut. Only one of 13 broiler chicken isolates was found to be a new variant serotype, that being from birds reared in Delaware. Cross-protection studies in specific-pathogen-free chickens indicated that vaccines containing the Holland, L-1, or Connaught strains of Massachusetts (Mass) combined with Arkansas produced a broader spectrum of immunity against challenge with the layer variants than Mass (Holland) alone or Mass (L-1) + Connecticut. All vaccines tested produced solid immunity (greater than or equal to 80% protection) against the broiler variant virus.  相似文献   

16.
17.
18.
The emergence of new infectious bronchitis virus (IBV) genotypes or serotypes along with the poor cross-protection observed among IBV serotypes have complicated the avian infectious bronchitis (IB) control programs in different geographic regions. In Cuba, the lack of genetic information regarding IBV and the increasing epidemiological importance of this virus in Cuban chicken flocks demand further characterization of IBV isolates. In the present work, studies of genetic diversity and phylogenetic relationships among recent IBV isolates from Cuban chicken flocks showing respiratory disorders were performed. Two putative genotypes genetically different to the Massachusetts genotype H120 strain used in the Cuban vaccination program were found in the flocks assessed. In addition, a potential nephropathogenic IBV isolate was found by first time in Cuba.  相似文献   

19.
20.
Serial passage of two infectious bronchitis virus (IBV) vaccine strains in chickens enhanced their capacity to increase the incidence and severity of Mycoplasma synoviae (MS) airsacculitis. Included in this report were the mild Massachusetts-type Connaught strain and the Arkansas 99 vaccine strain of IBV. The Connaught strain and one of two Ark 99 vaccine strains passaged in chickens increased the incidence of airsacculitis markedly compared with nonpassaged virus. The other Ark 99 vaccine virus already exacerbated MS airsacculitis, before passage in chickens, and its influence did not increase on passage. All IBV strains studied to date have either possessed this trait or reacquired it on passage in the natural host.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号