首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到12条相似文献,搜索用时 78 毫秒
1.
在干扰、遮挡等复杂环境下,对鸭蛋进行快速、准确识别定位是开发鸭蛋拾取机器人的关键技术,该研究提出一种基于改进YOLOv7(you only look once)模型的复杂环境鸭蛋检测方法,在主干网络加入卷积注意力模块(CBAM,convolutional block attention module),加强网络信息传递,提高模型对特征的敏感程度,减少复杂环境对鸭蛋识别干扰;利用深度可分离卷积(DSC,depthwise separable convolution)、调整空间金字塔池化结构(SPP,spatial pyramid pooling),降低模型参数数量和运算成本。试验结果表明,与SSD、YOLOv4、YOLOv5_M以及YOLOv7相比,改进YOLOv7模型的F1分数(F1 score)分别提高了8.3、10.1、8.7和7.6个百分点,F1分数达95.5%,占内存空间68.7 M,单张图片检测平均用时0.022 s。与不同模型在复杂环境的检测对比试验表明,改进的YOLOv7模型,在遮挡、簇拥、昏暗等复杂环境下,均能对鸭蛋进行准确快速的识别定位,具有较强鲁棒性和适用性。该研究可为后续开发鸭蛋拾取机器人提供技术支撑。  相似文献   

2.
黄花菜是极具营养价值和经济效益的一种农作物,深受人们喜爱。目前黄花菜采摘大都是人工采摘,采摘效率低、人工成本较高,在设计黄花菜自动采摘机器人的过程中,复杂环境下黄花菜的目标识别是实现智能化采摘的核心问题。该研究建立了包含12 000幅黄花菜样本的数据库,比较了YouOnlyLookOnce(YOLOv7)、 FasterRegion Convolutional Neural Networks(Faster R-CNN)和Single Shot MultiBox Detector(SSD)三种模型的检测效果,提出一种基于改进YOLOv7目标检测算法的复杂环境下黄花菜识别的YOLOv7-MOCA模型,使用MobileOne网络作为主干特征提取网络,构建了一种轻量化网络模型,并在颈部网络中融合Coordinate Attention注意力机制改善对样本的检测效果。试验结果表明,YOLOv7-MOCA模型检测准确率为96.1%,召回率为96.6%,F1值为0.96,权重为10 MB,帧速率为58帧/s。较YOLOv7检测速度提高了26.1%,权重减少了86.7%,该研究所提出的YOLOv7-M...  相似文献   

3.
为提高复杂环境下棉花顶芽识别的精确率,提出了一种基于YOLOv5s的改进顶芽识别模型。建立了田间复杂环境下棉花顶芽数据集,在原有模型结构上增加目标检测层,提高了浅层与深层的特征融合率,避免信息丢失。同时加入CPP-CBAM注意力机制与SIOU边界框回归损失函数,进一步加快模型预测框回归,提升棉花顶芽检测准确率。将改进后的目标检测模型部署在Jetson nano开发板上,并使用TensorRT对检测模型加速,测试结果显示,改进后的模型对棉花顶芽识别平均准确率达到了92.8%。与Fast R-CNN、YOLOv3、YOLOv5s、YOLOv6等算法相比,平均准确率分别提升了2.1、3.3、2、2.4个百分点,该检测模型适用于复杂环境下棉花顶芽的精准识别,为后续棉花机械化精准打顶作业提供技术理论支持。  相似文献   

4.
刘诗怡  胡滨  赵春 《农业工程学报》2023,39(15):163-171
黄瓜叶片病虫害的检测与识别是科学防治病害的有效手段。为了提高对黄瓜叶片病斑细小特征的精准定位能力以及提高对早疫病叶片的检测性能,提出一种DCNSE-YOLOv7的深度学习算法。首先,将主干特征提取网络中对最后一个特征层的卷积2D convolution(Conv2D)改为可变形卷积2D Deformable convolution(DCNv2),提高模型对病斑细小特征的提取能力;其次,对主干特征提取网络输出的3个特征层结果添加Squeeze-and-Excitation networks(SENet)注意力机制模块构建网络模型,加强模型对发病早期相似病害特征的有效提取能力;同时,通过K-means++聚类算法对锚框重新聚类,避免算法在训练过程中盲目学习目标的尺寸和位置;最后,将原始YOLOv7的CIOU损失函数,更替为Focal-EIOU损失函数。试验结果表明,DCNSE-YOLOv7算法能够有效对黄瓜叶片病虫害进行检测,其平均精度均值为94.25%,比YOLOv5l、YOLOv7、Faster-RCNN、SSD和YOLOv7-tiny模型分别提高了2.72、2.87、0.28、12....  相似文献   

5.
针对复杂环境下柑橘果实大量重叠、枝叶遮挡且现有模型参数量大、计算复杂度高等问题,提出了一种基于改进YOLOv8n的柑橘识别模型YOLOv8-MEIN。首先,该研究设计了ME卷积模块并使用它改进YOLOv8n的C2f模块。其次,为了弥补CIoU损失函数在检测任务中泛化性弱和收敛速度慢的问题,使用Inner-CIoU损失函数加速边界框回归,提高模型检测性能。最后,在自建数据集上进行模型试验对比,试验结果表明,YOLOv8-MEIN模型交并比阈值为0.5的平均精度均值mAP0.5值为96.9%,召回率为91.7%,交并比阈值为0.5~0.95的平均精度均值mAP0.5~0.95值为85.8%,模型大小为5.8MB,参数量为2.87M。与原模型YOLOv8n相比,mAP0.5值、召回率、mAP0.5~0.95值分别提高了0.4、1.0、0.6个百分点,模型大小和参数量相比于原模型分别降低了3.3%和4.3%,为柑橘的自动化采摘提供技术参考。  相似文献   

6.
芽眼精准检测是实现马铃薯种薯智能化切块的前提,但由于种薯芽眼区域所占面积小、可提取特征少以及种薯表面背景复杂等问题极易导致芽眼检测精度不高。为实现种薯芽眼精准检测,该研究提出一种基于改进YOLOv7的马铃薯种薯芽眼检测模型。首先在Backbone部分增加Contextual Transformer自注意力机制,通过赋予芽眼区域与背景区域不同权值大小,提升网络对芽眼的关注度并剔除冗余的背景信息;其次在Head部分利用InceptionNeXt模块替换原ELAN-H模块,减少因网络深度增加而造成芽眼高维特征信息的丢失,更好地进行多尺度融合提升芽眼的检测效果;最后更改边界框损失函数为NWD,降低损失值,加快网络模型的收敛速度。经试验,改进后的YOLOv7网络模型平均准确率均值达到95.40%,较原始模型提高4.2个百分点。与同类目标检测模型Faster-RCNN(ResNet50)、Faster-RCNN(VGG)、SSD、YOLOv3、YOLOv4、YOLOv5n、YOLOX相比,其检测精度分别高出34.09、26.32、27.25、22.88、35.92、17.23和15.70个百分点。...  相似文献   

7.
基于改进YOLOv3的果园复杂环境下苹果果实识别   总被引:1,自引:4,他引:1  
为使采摘机器人能够全天候在不同光照、重叠遮挡、大视场等果园复杂环境下对不同成熟度的果实进行快速、准确识别,该研究提出了一种基于改进YOLOv3的果实识别方法。首先,将DarkNet53网络中的残差模块与CSPNet(Cross Stage Paritial Network)结合,在保持检测精度的同时降低网络的计算量;其次,在原始YOLOv3模型的检测网络中加入SPP(Spatial Pyramid Pooling)模块,将果实的全局和局部特征进行融合,提高对极小果实目标的召回率;同时,采用Soft NMS(Soft Non-Maximum Suppression)算法代替传统NMS(Non-Maximum Suppression)算法,增强对重叠遮挡果实的识别能力;最后,采用基于Focal Loss和CIoU Loss的联合损失函数对模型进行优化,提高识别精度。以苹果为例进行的试验结果表明:经过数据集训练之后的改进模型,在测试集下的MAP(Mean Average Precision)值达到96.3%,较原模型提高了3.8个百分点;F1值达到91.8%,较原模型提高了3.8个百分点;在GPU下的平均检测速度达到27.8帧/s,较原模型提高了5.6帧/s。与Faster RCNN、RetinaNet等几种目前先进的检测方法进行比较并在不同数目、不同光照情况下的对比试验结果表明,该方法具有优异的检测精度及良好的鲁棒性和实时性,对解决复杂环境下果实的精准识别问题具有重要参考价值。  相似文献   

8.
为解决智能化采收中红花识别性能易受田间复杂环境、设备计算资源等限制的问题,该研究提出一种基于改进YOLOv8n的轻量化红花识别方法,以便将模型部署在移动端上进行目标检测。该研究应用Vanillanet轻量化网络结构代替YOLOv8n的骨干特征提取网络,降低了模型的复杂程度;将大型可分离核注意力模块(large separable kernel attention, LSKA)引入特征融合网络,以降低存储量和计算资源消耗;将YOLOv8n的损失函数从中心点与边界框的重叠联合(center intersection of union, CIoU)替换为动态非单调的聚焦机制(wise intersection of union, WIoU)提升检测器的总体性能;并选用随机梯度下降算法(stochastic gradient descent, SGD)进行模型训练,以提高模型鲁棒性。试验结果表明,改进后的轻量化模型每秒传输帧数(frames per second, FPS)为123.46帧/s,与原YOLOv8n模型相比提高了7.41%,而模型大小为3.00MB,仅为原来的50.17%,并且精确度(precision, P)和平均精度值(mean average precision, mAP)达到了93.10%和96.40%,与YOLOv5s与YOLOv7-tiny检测模型相比,FPS分别提高了25.93%和19.76%,模型大小为原模型的21.90%和25.86%,研究结果为后续红花的智能化采收装备研发提供技术支持。  相似文献   

9.
棉田虫害的快速检测与准确识别是预防棉田虫害、提高棉花品质的重要前提。针对真实棉田环境下昆虫相似度高、背景干扰严重的问题,提出一种ECSF-YOLOv7棉田虫害检测模型。首先,采用EfficientFormerV2作为特征提取网络,以加强网络的特征提取能力并减少模型参数量;同时,将卷积注意力模块(convolution block attention module,CBAM)嵌入到模型的主干输出端,以增强模型对小目标的特征提取能力并削弱背景干扰;其次,使用GSConv卷积搭建Slim-Neck颈部网络结构,在减少模型参数量的同时保持模型的识别精度;最后,采用Focal-EIOU(focal and efficient IOU loss,Focal-EIOU)作为边界框回归损失函数,加速网络收敛并提高模型的检测准确率。结果表明,改进的ECSF-YOLOv7模型在棉田虫害测试集上的平均精度均值(mean average precision,mAP)为95.71%,检测速度为69.47帧/s。与主流的目标检测模型YOLOv7、SSD、YOLOv5l和YOLOX-m相比,ECSF-YOLOv7模型的mAP分别高出1.43、9.08、1.94、1.52个百分点,并且改进模型具有参数量更小、检测速度更快的优势,可为棉田虫害快速准确检测提供技术支持。  相似文献   

10.
为确保油茶果实处于最佳成熟度进行采摘,提高油茶果实的出油率及茶油品质,该研究针对自然环境下油茶果实多被遮挡的问题,以原始YOLOv7模型为基础进行改进,提出一种油茶果实成熟度检测方法。首先,在主干网络中引入十字交叉注意力机制(criss-cross attention,CCA)加强对被枝叶遮挡果实成熟度特征的提取能力;其次,使用基于距离和交并比的非极大值抑制(distance-iou non-maximum suppression,DIoU-NMS)算法代替传统非极大值抑制(nonmaximum suppression,NMS)算法,从而加强模型对相互遮挡果实的检测能力;最后,以训练集中3 098张油茶果实图像训练改进的YOLOv7模型,验证集中442张图像用于在训练过程中评估模型,并对测试集中885张图像进行测试。改进后的YOLOv7模型在测试集下的精确率P为93.52%,召回率R为90.25%,F1分数为91.86%,平均精度均值mAP为94.60%,平均检测时间为0.77 s,模型权重大小为82.6 M。与Faster R-CNN、EfficientDet、YOLOv3、YOLO...  相似文献   

11.
天气变化、光照变化、枝叶遮挡等复杂环境给红花丝的快速、准确检测带来挑战,影响红花采摘机器人的作业效率,该研究基于改进YOLOv3提出了一种目标检测算法(GSC-YOLOv3)。首先GSC-YOLOv3采用轻量级网络幻影结构GhostNet替换主干特征提取网络,并在保证良好检测精度的前提下,最大限度压缩算法参数,提高算法速度,从而使用少量参数生成红花丝有效特征;其次使用空间金字塔池化结构(spatial pyramid pooling,SPP)实现特征增强,弥补提取红花丝特征过程中的信息损失;最后将卷积块注意力模块(convolutional block attention module,CBAM)融入特征金字塔结构,以解决特征融合过程中的干扰问题,提高算法的检测效率和精度。检测结果表明:GSC-YOLOv3算法在测试集下的平均精度均值达到91.89%,比Faster R-CNN、YOLOv3、YOLOv4、YOLOv5、YOLOv6、YOLOv7算法分别高12.76、2.89、6.35、3.96、1.87、0.61个百分点;在GPU下的平均检测速度达到51.1 帧/s,均比其他6种算法高。在复杂场景下的对比试验结果表明,所改进算法具有高检测精度及良好的鲁棒性和实时性,对解决红花采摘机器人在复杂环境下红花丝的精准检测具有参考价值。  相似文献   

12.
针对目前苹果在复杂环境下难以进行生长状态分类识别、姿态信息同步获取等问题,该研究提出了一种基于改进YOLOv7的苹果生长状态分类和果实姿态融合识别方法。首先改进多尺度特征融合网络,在骨干网络中增加160×160的特征尺度层,用于增强模型对微小局部特征的识别敏感度;其次引入注意力机制CBAM(convolutional block attention module),改善网络对输入图片的感兴趣目标区域的关注度;最后采用Soft-NMS算法,能够有效避免高密度重叠目标被一次抑制从而发生漏检现象。此外,结合UNet分割网络和最小外接圆及矩形特征获取未遮挡苹果姿态。试验结果表明,改进YOLOv7的识别精确率、召回率和平均识别精度分别为86.9%、80.5%和87.1%,相比原始YOLOv7模型分别提高了4.2、2.2和3.7个百分点,另外苹果姿态检测方法的准确率为94%。该文模型能够实现苹果生长状态分类及果实姿态识别,可为末端执行器提供了抓取方向,以期为苹果无损高效的采摘奠定基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号