首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
木质素是影响木质纤维原料酶水解的关键因素。本研究通过聚乙氧基接枝修饰制备木质素基表面活性剂,并探究其对预处理玉米秸秆纤维素酶水解的影响机制。结果表明,木质素基表面活性剂对蒸汽爆破预处理玉米秸秆酶水解有显著的促进作用。木质素基表面活性剂的最适添加量为0025 0 g/g(以纤维素计)。在最适添加量下,碱木质素基表面活性剂及醇溶木质素基表面活性剂使得蒸汽爆破预处理玉米秸秆72 h酶水解得率分别提高了275%和281%。与此同时,72 h酶水解液中外切葡聚糖酶酶活力分别提高了493%和410%;β-葡萄糖苷酶酶活力分别提高了196%和137%。说明木质素基表面活性剂可减少纤维素酶的无效吸附,从而起到对酶水解的促进作用。  相似文献   

2.
以慈竹为原料,研究了甲醛/二氧六环预处理对竹材纤维素酶水解糖得率的影响,并探索了酶水解液发酵生产乳酸工艺。研究结果表明:该预处理可以脱除木质素,大幅提高预处理得到的底物中纤维素的含量,纤维素质量分数可达75.6%~90.7%;预处理后底物酶水解的葡萄糖最高得率为92.8%;酶水解液可以直接用于发酵生产乳酸,葡萄糖转化为乳酸得率可以达73.2%。借助扫描电子显微镜(SEM)、X射线衍射(XRD)仪和离子色谱仪等手段分析预处理前后竹材结构的变化情况,发现预处理后竹材表面卷曲,蜡质几乎被完全溶解脱除,结构疏松。  相似文献   

3.
研究了不同的两步法预处理对杨木酶水解和木质素吸附性能的影响,结果显示:未处理原料中木质素为29.05%,其酶水解得率仅为15.24%;蒸汽爆破一步法预处理后物料中木质素为34.88%,酸性基团仅为10.16 mmol/kg,酶水解得率为56.88%,预处理过程中木质素几乎没有脱除,因此未能回收作为吸附剂使用。碱性氧化-蒸汽爆破和碱性磺化-蒸汽爆破两步法预处理后物料中木质素减少至21.06%和17.68%,酸性基团增加至101.34和107.69 mmol/kg,酶水解得率由一步法的56.88%提高至74.38%和81.09%,两步法预处理脱除了原料中50%左右的木质素,经回收可作为重金属离子吸附剂使用,对Pb(Ⅱ)的最大吸附量分别为158.73和142.86 mg/g。分析表明:碱性磺化-蒸汽爆破两步法预处理既可大量脱除木质素,增强纤维素酶水解,又可对木质素进行改性,提高木质素对重金属离子Pb(Ⅱ)的吸附性能。  相似文献   

4.
以杨木片为原料,采用两步法预处理脱除木质素后,对原料进行酶水解,对杨木表观结构、理化特征及酶水解结果进行考察。实验结果显示:相较于一步法蒸汽爆破(SE)预处理,碱性磺化-蒸汽爆破(AS-SE)和碱性氧化-蒸汽爆破(AO-SE)预处理后均可脱除50%左右的木质素,并且显著增加了物料中的酸性亲水基团如磺酸基和羧酸基含量,纤维素可及度分别提高至132.04和119.10 mg/g。傅里叶红外光谱(FT-IR)结果表明碱性磺化和碱性氧化后,木质素结构中出现了亲水性功能基团(羟基、羧基和磺酸基),扫描电镜(SEM)结果表明两步法预处理后的物料表面出现开裂分层、层层剥落的现象。AS-SE预处理后,杨木纤维素酶水解率高达81.09%,原料糖得率达到73.72%。两步法预处理可对木质素进行选择性脱除和改性,改变了木质素理化特性及表观结构,增强了纤维素酶水解效果。  相似文献   

5.
低浓度乙酸预处理玉米芯的工艺研究   总被引:1,自引:0,他引:1  
以脱除木质素,降解半纤维素为木糖,提高纤维素酶解得率为目的,研究了低浓度乙酸预处理玉米芯的效果,考察了乙酸质量分数、预处理温度和时间对预处理的影响。研究结果表明:质量分数5%乙酸预处理玉米芯可以脱除大部分的半纤维素和少部分木质素,预处理后的玉米芯具有较好的水解效果。低浓度乙酸预处理玉米芯最优条件为:预处理温度160℃,保温时间60 min,乙酸质量分数5%,固液比1∶8(g∶mL)。在此条件下,玉米芯固体渣回收率为53.75%,固体渣中纤维素保留率93.17%,半纤维素脱除率87.36%,木质素脱除率25.04%,预处理液中木糖质量浓度15.56 g/L。预处理后的玉米芯固体经72 h酶解,酶解得率为92.69%。  相似文献   

6.
采用蒸汽爆破技术处理尾叶桉木材,研究蒸汽爆破对其主化学成分的影响,以及爆破材料用纤维素酶水解的工艺,确定了水解糖化条件:温度50qC,pH值4.8,酶用量25FPIU/g底物,底物浓度2%。结果表明,蒸汽爆破过程溶解出一定量的半纤维素和木质素,而纤维素基本不受损失,有利于提高酶解率;爆破前用硫酸预处理,木质素脱除率和木聚糖分解率在同样的爆破压力下比未用硫酸预处理的高。在最优的水解条件下,硫酸预处理,2.2MPa爆破的尾叶按木材多糖水解率达到82.43%,比未用硫酸预处理的提高36.86%。  相似文献   

7.
酸预处理对毛竹酶解糖化的影响   总被引:1,自引:0,他引:1  
竹子富含纤维素和半纤维素,是生产纤维素乙醇的潜在原料来源。而预处理过程是研究的重点和难点之一。本文以毛竹为原料,研究了微波消解稀酸预处理对其化学组成及其酶水解的影响。结果表明,预处理条件为酸用量为2%(w/w干物质),固液比1∶6,温度180℃,时间30min时,能脱除97.2%的半纤维素。预处理得到的底物在酶用量为纤维素酶20FPU/g纤维素和β-葡萄糖苷酶40IU/g纤维素,水解48h,纤维素水解得到葡萄糖的收率由2.41%(未经预处理)提高到52.72%。酶水解过程中,酸不溶木质素的存在,可导致葡萄糖收率的降低。  相似文献   

8.
木质纤维素具有储量大、可再生等特点,是生物质精炼的重要原料。通过酶水解将高聚糖转化为葡萄糖、木糖等单糖,是目前木质纤维素生物质精炼的重要途径。传统观点认为,酶水解体系中的底物木质素和溶解木质素都会阻碍木质纤维原料中纤维素的酶水解,主要表现为木质素阻碍了纤维素酶对纤维素的可及性、木质素对纤维素酶的非生产性吸附和溶解的木质素或类木质素结构(木质素衍生的酚类分子)对纤维素酶的抑制作用。但是近几年的研究表明,在酶水解体系中加入适量的水溶性木质素可有效促进含木质素底物中纤维素的酶水解。笔者总结了近年来水溶性木质素对木质纤维素生物质酶水解的研究进展,从纤维素酶-木质素相互作用的角度探讨了水溶性木质素对纤维素酶水解的促进作用,提出了水溶性木质素与纤维素酶之间的作用机理,即水溶性木质素与底物木质素对纤维素酶存在竞争吸附,水溶性木质素与纤维素酶的吸附域结合形成木质素-纤维素酶复合物,可有效减少底物木质素对纤维素酶的非生产性吸附,从而提高木质纤维素生物质的酶水解转化效率。  相似文献   

9.
以中温碱抽提玉米秸秆渣为研究对象,考察了不同外源添加物对酶解工艺的辅助作用和影响机制。研究结果表明,采用中温碱抽提玉米秸秆可以脱除50.02%木质素,添加PEG6000辅助水解作用明显。当纤维素底物质量浓度40 g/L,酶用量在纤维素酶(Celluclast 1.5 L)15 FPIU/g和纤维二糖酶(Novozyme 188)30 BU/g水解48 h,添加PEG6000 4.0 g/L葡萄糖得率73.51%,酶解率84.51%,较未添加样品上升幅度分别达到26.2%和27.1%。添加PEG不仅可以减轻酶蛋白和碱抽提玉米秸秆渣的吸附,提高酶在液相中的分配,对纤维素酶活力和稳定性也具有显著的促进作用。PEG存在下纤维素酶1.5 L的滤纸酶活提高34.1%,稳定性提高57.3%。  相似文献   

10.
以廉价金属硫酸盐为催化剂,在γ-戊内酯/水复合溶剂中催化半纤维素定向转化制备糠醛,糠醛得率高达50.2%,半纤维素液化转化率达95.5%。在γ-戊内酯/水复合溶剂中,以金属硫酸盐为催化剂进一步研究了直接催化木质纤维生物质原料玉米芯和竹粉定向转化制备糠醛,其中糠醛得率分别达39.5%、29.7%,木质纤维原料液化转化率分别达86.5%、80.5%。  相似文献   

11.
4种木质纤维素预处理方法的比较   总被引:3,自引:0,他引:3  
采用4种方法对玉米秸秆预处理,研究了不同预处理方法对酶水解性能和可发酵性糖得率的影响,分析了预处理物料主要成分,预水解液中糖组成、碳水化合物降解产物及木质素降解产物含量.100 g玉米秸秆经稀酸、稀酸磨浆、中性蒸汽爆破和稀酸蒸汽爆破预处理、洗涤后,物料中纤维素由37.17g分别降为33.96、33.54、32.63和32.88 g,木聚糖由22.84 g分别降为2.77、2.47、3.56和2.05 g,木质素由18.76 g分别降为17.63、17.42、16.90和17.25 g.稀酸蒸汽爆破预处理物料在底物质量浓度100 g/L、纤维素酶用量20 FPIU/g(以纤维素计,下同)、β-葡萄糖苷酶用量3 IU/g下酶水解48 h,纤维素水解得率为75.91%.玉米秸秆经稀酸蒸汽爆破预处理、纤维素酶水解后可发酵性糖得率为44.93%(以玉米秸秆为基准).  相似文献   

12.
组合预处理对橡实壳组成及酶解转化的影响   总被引:1,自引:0,他引:1  
为脱除果壳类原料中的半纤维素和木质素,减少其对纤维素酶的无效吸附,提高酶解转化率。采用蒸汽爆破、Na OH、碱性H2O2及其组合预处理方法,研究不同方法对橡实(蒙古栎种子)壳组成及酶解转化的影响。结果表明,经过2.25 MPa蒸汽爆破预处理后,橡实壳半纤维素由26.81%降低至5.79%,半纤维素脱除率达87.28%,酶水解120 h后葡萄糖得率由10.32%提高至38.36%。橡实壳蒸汽爆破组合氢氧化钠处理后,木质素脱除率可达54.29%。而蒸汽爆破组合碱性H2O2处理后,酶解120 h葡萄糖得率可达76.65%,是未处理橡实壳的7.4倍。  相似文献   

13.
玉米秸秆稀酸预处理的研究   总被引:4,自引:1,他引:3  
研究了玉米秸秆稀酸预处理条件对木糖得率和纤维素酶水解性能的影响.在单因素试验的基础上,用正交试验法对稀酸预处理条件进行优化.在固液比1∶10、硫酸质量分数0.75%、温度150℃条件下处理30min,木糖得率最大为85.64%.100g玉米秸秆经稀酸预处理和纤维素酶水解后,可得到最大总糖量49.74g.分析结果表明,木糖得率最大影响因素为酸浓,酶解得率最大影响因素是温度.温度对综合指标的影响极显著,酸浓影响显著,时间影响不显著.预处理破坏了玉米秸秆的纤维素结构.  相似文献   

14.
为评价导致纤维素酶水解速率下降的因素,以底物质量浓度为50 g/L葡聚糖及酶用量为20 FPIU/g滤纸酶活和10 IU/gβ-葡萄糖苷酶活的蒸汽预处理玉米秸秆酶水解为研究对象,探讨了影响酶水解速率的潜在因素,包括物料反应性能、纤维素酶非特异性吸附、酶失活及终产物抑制。结果表明:酶用量40 FPIU/g条件下酶水解6 h及12 h后,蒸汽预处理玉米秸秆的物料反应性能分别下降了16.0%及23.7%,然而,在酶用量为20 FPIU/g时,物料反应性能的下降对酶水解速率的影响极其有限;酶解木质素的添加使得1 h酶解上清液中酶蛋白浓度降低了20.8%,但初始酶水解速率并未显著降低,即木质素对纤维素酶的非特异性吸附对酶水解速率影响不大;两段酶水解中纤维素酶的更新使得7 h酶水解速率由一段酶水解中的1.30 g/(L·h)提高至1.83 g/(L·h);两段酶水解中终产物的去除则使得7 h酶水解速率提高至4.76 g/(L·h),是一段酶水解中7 h酶水解速率的3.66倍。综合而言,酶失活及终产物抑制对酶水解速率影响较大,其中终产物抑制是导致蒸汽预处理玉米秸秆酶水解速率降低的关键因素。  相似文献   

15.
为评价导致纤维素酶水解速率下降的因素,以底物质量浓度为50 g/L葡聚糖及酶用量为20 FPIU/g滤纸酶活和10 IU/g β-葡萄糖苷酶活的蒸汽预处理玉米秸秆酶水解为研究对象,探讨了影响酶水解速率的潜在因素,包括物料反应性能、纤维素酶非特异性吸附、酶失活及终产物抑制。结果表明:酶用量40 FPIU/g条件下酶水解6 h及12 h后,蒸汽预处理玉米秸秆的物料反应性能分别下降了16.0%及23.7%,然而,在酶用量为20 FPIU/g时,物料反应性能的下降对酶水解速率的影响极其有限;酶解木质素的添加使得1 h酶解上清液中酶蛋白浓度降低了20.8%,但初始酶水解速率并未显著降低,即木质素对纤维素酶的非特异性吸附对酶水解速率影响不大;两段酶水解中纤维素酶的更新使得7h酶水解速率由一段酶水解中的1.30 g/(L·h)提高至1.83 g/(L·h);两段酶水解中终产物的去除则使得7 h酶水解速率提高至4.76 g/(L·h),是一段酶水解中7 h酶水解速率的3.66倍。综合而言,酶失活及终产物抑制对酶水解速率影响较大,其中终产物抑制是导致蒸汽预处理玉米秸秆酶水解速率降低的关键因素。  相似文献   

16.
以玉米秸秆为原料,研究稀硫酸-氢氧化钙联合预处理秸秆制备燃料乙醇的方法。玉米秸秆经稀硫酸预处理、固液分离后得到的预水解液(主要含有木糖)进行戊糖发酵;而残渣采用氢氧化钙进一步预处理后,经酶水解得到的葡萄糖进行己糖发酵,从而实现戊糖和己糖分开发酵产乙醇。研究结果表明,玉米秸秆稀硫酸预处理最佳条件为:硫酸用量1.00%(以绝干玉米秸秆计),反应温度130℃,反应时间70 min,此时木聚糖水解得率为80.45%;采用树干毕赤酵母对玉米秸秆稀硫酸预水解液原液、浓缩液Ⅰ(浓度为原液的2倍)和浓缩液Ⅱ(浓度为原液的3.5倍)进行戊糖发酵,乙醇得率分别为82.52%、85.13%和73.64%。氢氧化钙进一步预处理玉米秸秆稀硫酸预处理渣的最佳条件为:氢氧化钙用量0.125 g/g(以绝干玉米秸秆计),反应温度90℃,时间24 h,此时纤维素酶水解得率为84.92%;采用酿酒酵母对两步预处理残渣的酶水解液原液、浓缩液Ⅲ和浓缩液Ⅳ(浓度为原液的2倍和3倍)进行己糖发酵,乙醇得率分别为92.22%、91.89%和85.54%。  相似文献   

17.
研究了糠醛渣(FR)经不同强度绿液-过氧化氢预处理脱木质素后,与木薯渣(CR)混合进行同步糖化发酵生产乙醇,通过改变原料底物浓度、纤维素酶用量和添加无患子表面活性剂来优化混合底物同步糖化发酵条件,并分析了发酵过程中乙醇和副产物的浓度变化。结果表明,在糠醛渣预处理条件为:底物质量浓度5g/L、温度80℃、H_2O_2用量为0.6g/g、绿液用量为2mL/g(以糠醛渣计)预处理时间3h,在此条件下糠醛渣木质素脱除率可达56.5%。同步糖化发酵产乙醇条件为无患子皂素表面活性剂添加量0.5g/L,纤维素酶用量12FPU/g,纤维二糖酶用量15IU/g,预处理后的糠醛渣与木薯渣混合作底物(质量比为2∶1),底物质量浓度200g/L时,发酵120h最终乙醇质量浓度可达56.6g/L,乙醇得率为86.3%。同步糖化发酵过程中添加无患子皂素表面活性剂不仅降低了纤维素酶用量,还可延缓副产物乳酸的形成,减小甘油生产波动。  相似文献   

18.
为改善高底物浓度酶水解过程中产物抑制问题,采用三段酶水解方法,通过在水解过程中及时移除反应产物纤维二糖和葡萄糖,降低产物抑制作用,增加酶反应速率,从而提高酶水解得率、缩短酶反应时间。与原料和经NaOH预处理的桑木比较,NaOH-Fenton预处理后的桑木中木聚糖含量明显降低,纤维素含量相对增加,木质素含量变化较小。无论是一段水解还是三段水解,纤维素酶水解得率均随底物质量浓度的升高而下降。在0.30 g/m L(m/V)底物质量浓度下,当酶用量增加为40 U/g(以纤维素质量计)时,三段(10+10+10)h酶水解得率74.16%,比一段水解72 h得率45.61%增长了62.60%,并且水解时间缩短了42 h。该研究结果对提高纤维素酶水解得率、降低纤维资源制取燃料乙醇成本具有指导意义。  相似文献   

19.
以两种生物基极性非质子溶剂γ-戊内酯(GVL)和二氢左旋葡萄糖酮(Cyrene),分别与对甲苯磺酸水溶液(TsOH aq)构成耦合体系,对竹粉定向解聚及其酶解过程开展了研究。实验结果表明:质量浓度为75 g/L的TsOH,溶剂体积比为4∶1的GVL/TsOH aq体系在130℃预处理毛竹60 min后,半纤维素和木质素分离效率更高,半纤维素分离率(SH)和木质素分离率(SL)分别达到98.5%和98.4%,同时纤维素保留率(RC)为91.5%;而质量浓度为30 g/L的TsOH,溶剂体积比为0.8∶1的Cyrene/TsOH aq体系在120℃预处理毛竹60 min后,RC达到87.3%,SH和SL仅为85.5%和79.4%。预处理后固体样品的表征结果表明:竹粉经GVL/TsOH aq预处理后的样品木质纤维致密结构被有效破坏,无定形的半纤维素和木质素绝大部分被分离,结晶度达68.27%,结构更接近于微晶纤维素,同时暴露出更多的游离羟基,有利于后续酶解。而酶...  相似文献   

20.
研究了绿液预处理对麦秆酶水解的影响.比较了不同绿液预处理条件下麦秆的浆得率、成分组成与纤维素酶解率,结果表明,预处理条件越剧烈,原料损失越大,而木质素脱除率越高,且在相同酶水解条件下,纤维素酶解率却越高,其中适宜的条件是预处理温度150℃,总碱量8%(Na2O计,对绝干原料)和硫化度40%,浆得率62.0%,葡聚糖、木聚糖和木质素质量分数50.0%、18.9%和16.2%,葡萄糖和木糖得率分别为74.2%和73.5%.考察了质量浓度和酶用量对绿液预处理麦秆酶水解的影响,优化了商品纤维素酶酶系结构和Tween-80的添加量,表明绿液预处理麦秆纤维素酶水解的适宜条件为质量浓度100 g/L,纤维素酶用量15 FPU/g(以纤维素计,下同),β-葡萄糖苷酶9 IU/g,木聚糖酶30 IU/g,Tween-800.05 g/g.在以上条件下,酶水解72 h,葡萄糖得率和木糖得率分别达到了82.5%和77.8%,是优化前的2.6和1.6倍.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号